
Question/Answer Booklet COMPSCI 101

Page 1 of 17

THE UNIVERSITY OF AUCKLAND

SEMESTER TWO, 2018

Campus: City

COMPUTER SCIENCE
POSSIBLE SOLUTIONS

Principles of Programming

(Time Allowed: TWO hours)

NOTE:
You must answer all questions in this exam.
No calculators are permitted.
Answer in the space provided in this booklet.
There is space at the back for answers which overflow the allotted space.

Surname

Forenames

Preferred Name
(if different to forenames)

Student ID

Username

Q1

(/12)

Q4

(/15)

Q7

 (/10)
Q2

(/12)

Q5

(/15)

Q8

 (/9)
Q3

 (/12)

Q6

 (/15)

TOTAL

 (/100)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 2 of 17

Question 1 (12 marks)

a) Complete the output produced by the following code.

a = 5 // 3 + 6 % 8

b = 5.7 // 3 + 16 % 4

print("a:", a, "b:", b)

 a: 7 b: 1.0

(2 marks)

b) Complete the output produced by the following code.

result = 21 // 4 ** 2 - 1 + 16 / 5 * 3 // 2 - 1
print("Result:", result)

 Result: 3.0

(2 marks)

c) Complete the output produced by the following code.

phrase = "How lovely."

bits_of_string = (phrase[-2] + "-" + phrase[2:5] +

 "-" + phrase[4: : 2])

print("Output:", bits_of_string)

Output: y-w l-lvl.

(2 marks)

d) Assume the variable, value, has been initialised to an integer value. Write a boolean

expression which tests if value is an odd number which is exactly divisible by 9.

 value % 2 == 1 and value % 9 == 0

(2 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 3 of 17

e) Give the output produced when the following main() function is executed.

def main():
 do_ifs(52, 50)

def do_ifs(num1, num2):
 if num1 < num2 and num2 < 60:
 print("A", end = " ")
 if num2 % 2 == 0:
 print("B", end = " ")
 elif num2 % 3 == 0:
 print("C", end = " ")
 print("D", end = " ")
 else:
 if num1 > 50 or num2 < 50:
 print("E", end = " ")
 if num2 % 2 == 1:
 print("F", end = " ")
 print("G", end = " ")

 print("H")

 E G H

(2 marks)

f) In the docstring of the get_result() function below, add a short description (fifteen

words or less) of the function.

def get_result(number, list_of_numbers):
 """

Returns the value from the list_of_numbers
parameter which is closest to the number
parameter.

 """
(2 marks)

 result_number = list_of_numbers[0]

 smallest_difference = abs(result_number - number)

 for value in list_of_numbers:

 diff = abs(value - number)

 if diff < smallest_difference:

 smallest_difference = diff

 result_number = value

 return result_number

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 4 of 17

Question 2 (12 marks)

a) Using a while loop, complete the code below so that the phrase

'Do it again!' is printed 100 times.

 count = 0
 while count < 100:
 print('Do it again!')
 count = count + 1

(2 marks)

b) Complete the get_user_number() function below which continuously prompts the
user for a positive odd number less than 10 until the number entered by the user satisfies
this requirement. You can assume that the user will only enter a whole number. As
soon as the user enters a positive odd number less than 10, the function returns the
number. Below are two example outputs produced using the completed program. In the
examples the user input is shown in a bigger font and in bold.

def main():
 number = get_user_number()

 print("User number:", number)

def get_user_number():

 prompt = "Enter a positive odd number less than 10: "

 user_number = int(input(prompt))

 while user_number % 2 != 1 or user_number < 1
 or user_number > 9:
 user_number = int(input(prompt))

 return user_number

(4 marks)
main()

Enter a positive odd number less than 10: -3
Enter a positive odd number less than 10: 25
Enter a positive odd number less than 10: 9
User number: 9

Enter a positive odd number less than 10: 7
User number: 7

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 5 of 17

c) Using a for … in loop, complete the code below so that the phrase
'Do it again!' is printed 100 times.

 for count in range(100):

 print('Do it again!')

 (2 marks)

d) Complete the output produced by the following code.

count_a = 0
count_b = 0
count_c = 0
for num1 in range(6):
 count_a += 1
 for num2 in range(3):
 count_b += 1
 count_c += 1
print("A:", count_a, "B:", count_b, "C:", count_c)

 A: 6 B: 18 C: 6

(2 marks)

e) Complete the output produced by the following code.

count_a = 0
count_b = 0
count_c = 0
for num1 in range(2, 5):
 count_a += 1
 for num2 in range(num1):
 count_b += 1
count_c += 1
print("A:", count_a, "B:", count_b, "C:", count_c)

 A: 3 B: 9 C: 1

(2 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 6 of 17

Question 3 (12 marks)

a) Complete the capitalise_letter() function which is passed two parameters: a

string (word) and an integer (index). The function returns the word all in lowercase
characters except for the letter at the index given by the index parameter. For
example, executing the following program with the completed function prints:

1. bloSsom
2. cArrot
3. Dog

Note: you may assume that the index parameter value is always less than the length of
the word parameter.

def main():
 result = capitalise_letter("BLOSSOM", 3)

 print("1.", result)

 print("2.", capitalise_letter("carrOT", 1))

 print("3.", capitalise_letter("dog", 0))

def capitalise_letter(word, index):

 word = word.lower()

 letter = word[index]

 letter = letter.upper()

 return word[:index] + letter + word[index + 1:]

(6 marks)

main()

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 7 of 17

b) The following program firstly prompts the user for a number between 5 and 20 using the
prompt variable defined in the main() function, then the program calculates the cost
of the number of items entered by the user, and finally the program displays the details
of the transaction (number of items, cost per item, handling cost and the final price
rounded to the closest whole dollar).

All the functions for this program have already been defined. You are required to
complete the main() function of the program by adding THREE lines of code, with
each line making a call to one of the three defined functions. Below are two example
outputs produced using the completed program (the user input in the examples is shown
in a larger bold font).

def main():

 handling_cost = 5
 cost_per_item = 4.25
 prompt = "Enter number (5 – 20)"

 num_items = get_number(prompt)

 total_cost = get_cost(num_items,
cost_per_item, handling_cost)

 display_details(num_items, cost_per_item,
handling_cost, total_cost)

def get_number(prompt):
 return int(input(prompt + ": "))

def get_cost(number, cost_per_unit, handling_cost):
 total_cost = number * cost_per_unit + handling_cost

 return round(total_cost)

def display_details(items, cost_each, handling_cost, final_price):
 print()
 print("Items: ", items, " Cost per item: $", cost_each, sep="")

 print("Handling cost: $", handling_cost, sep="")

 print("Total $", final_price, sep="")

main()
(6 marks)

Enter number (5 – 20): 6

Items: 6 Cost per item: $4.25
Handling cost: $5
Total $30 Enter number (5 – 20): 10

Items: 10 Cost per item: $4.25
Handling cost: $5
Total $48

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 8 of 17

Question 4 (15 marks)

The following program reads a numbered list of players and id numbers from the input file,
"Players1.txt", removes some of the players from the list and writes a sorted
numbered list of players and id numbers to the output file, "Players2.txt".

• The input file contains a numbered list of players' names, each followed by an id
number, each player on a separate line.

• The output file displays a sorted numbered list of names and id numbers.

Below is an example of a "Players1.txt" file (on the left) and the corresponding
"Players2.txt" file (on the right) produced by the completed program:

a) Complete the get_players_list() function which is passed one parameter, the

name of a file which contains a numbered list of players and id numbers, one player's
information per line. This function returns a list of each line of the input file (a list of
strings). Each element of the returned list should not contain a newline character.

b) Complete the get_updated_players_list() function which is passed two lists
of strings as parameters:

• a list of strings where each element of the list is made up of a number followed by a
dot and a space, followed by a player name, a space, and finally, an id number, e.g.,
"5. Jack 5495".

• a list of id numbers (strings).

The function returns a new list of strings containing all the elements from the first
parameter list except for those elements which have an id number listed in the second
parameter list.

c) Complete the remove_numbering() function which is passed a list of strings as a
parameter: each string in the parameter list starts with a number, followed by a dot and
a space, e.g., "5. Jack 5495".. This function removes the number, the dot and the
space from the beginning of each string element of the parameter list.

d) Complete the write_to_file() function which has two parameters: the name of a
file and a list of strings. Each element of the list is made up of a player name, followed
by a space and an id number, e.g., "Jack 5495".. This function first sorts the list
and then writes a numbered list of the players followed by a space and their id number
to the file, each player on a new line (see the example output file above on the right):

def main():
ids_to_remove = ["5495", "2231", "5495", "2798"]
players = get_players_list("01_Players1.txt")
players = get_updated_players_list(players, ids_to_remove)
remove_numbering(players)
write_to_file("01_Players2.txt", players)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 9 of 17

def get_players_list(filename):

 file_in = open(filename, "r")
 contents = file_in.read()
 file_in.close()
 players_list = contents.split("\n")

 return players_list

def get_updated_players_list(players_list, ids_to_remove):

 players_list2 = []

 for current_player in players_list:
 split_line = current_player.split()
 id = split_line[2]
 if id not in ids_to_remove:
 players_list2.append(current_player)

 return players_list2

def remove_numbering(players_list):

 for index in range(len(players_list)):
 current_player = players_list[index]
 split_line = current_player.split()
 to_keep = split_line[1] + " " +

 split_line[2]

 players_list[index] = to_keep

def write_to_file(filename, players_list):

 file_out = open(filename, "w")
 players_list.sort()
 number = 1

 for name in players_list:
 line_of_info = str(number) + ". " + name + "\n"
 file_out.write(line_of_info)
 number += 1

 file_out.close()

main()
 (15 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 10 of 17

Question 5 (15 marks)

a) In the boxes below, show each element of a_list after the following code has been

executed. Use as many of the boxes as you need.

a_list = [5, 7, 5, 14]

a_list = a_list + [11]

a_list.insert(2, 3)

value = a_list.pop(0)

a_list.append(value)

a_list.append(len(a_list))

(4 marks)

b) Complete the output produced by the following code.

numbers = [5, 7, 8, 3, 2]

value1 = max(numbers)

value2 = min(numbers)

result1 = []

result2 = []

for num in numbers:

 result1.append(value1 - num)

 result2.append(num - value2)

print("Result1:", result1)

print()

print("Result2:", result2)

 Result1: [3, 1, 0, 5, 6]

 Result2: [3, 5, 6, 1, 0]

(4 marks)

 7 3 5 14 11 5 6

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 11 of 17

c) Complete the get_special_average() function which is passed a list of integers

as a parameter. The function calculates and returns the average of the parameter list of
integers, excluding the largest and smallest values in the list. The average which is
returned by the function is rounded to one decimal place. For example, executing the
following main() function using the completed get_special_average()
function gives the output:

Result: 4.5

Note: you may assume that the parameter list always contains at least three elements.

def main():
 a_list = [5, 7, -8, 5, 14, 1]

 print("Result:", get_special_average(a_list))

def get_special_average(nums_list):

 smallest = min(nums_list)

 largest = max(nums_list)

 length = len(nums_list) - 2

 total = sum(nums_list) - smallest – largest

 return round(total / length, 1)

(7 marks)
main()

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 12 of 17

Question 6 (15 marks)

a) Complete the following code which sorts all the lists corresponding to the keys in the

a_dict dictionary. The output of the completed code is:

AFTER: {'BC618': [19, 45, 65, 98], 'BC235': [38, 39, 56],

 'BC345': [25, 34, 62, 87]}

 a_dict = {'BC345': [34, 25, 87, 62],
 'BC618': [98, 65, 19, 45],
 'BC235': [56, 39, 38] }

 for key, value in a_dict.items():
 value.sort()

 print("AFTER:", a_dict)

 (4 marks)

b) Give the output produced when the following main() function is executed:

def main():
 total = 0
 index = 0
 a_dict = {"S": 5, "C": 2, "D": 3, "A": 2, "E": 8}

 codes = "984351AXBCDST"

 for key in a_dict:
 if key in codes and str(a_dict[key]) in codes:

 print(key, "-", a_dict[key])

 total = total + int(codes[index])

 index = index + 1

 print("Total:", total)

 S - 5

 D - 3

 Total: 17

 (4 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 13 of 17

c) Complete the add_dict2_values() function which is passed two dict objects
as parameters, dict1 and dict2. Both parameter dictionaries have a single
character as the keys and a list of integers as the corresponding values. The function
looks at the lists corresponding to the same key in both dictionaries. For any key which
is the same in both dictionaries, then any integer in the corresponding list of dict2
which is not already in the corresponding list of dict1 is added to the dict1
corresponding list. All the corresponding lists of dict1 are kept in sorted order.

For example, executing the following main() function with the completed function
gives the output:

A: [1, 2, 3, 5]
B: [1, 2, 4, 7, 8]
X: [0, 9]
N: [3, 8]

def main():
 dict1 = {"A": [1, 2, 3, 5], "B": [1, 2, 8], "X": [0, 9], "N": [8]}

 dict2 = {"A": [5], "B": [2, 4, 7], "T": [5, 6], "N": [3, 8]}

 add_dict2_values(dict1, dict2)

 for key in dict1:

 print(key, ": ", dict1[key], sep = "")

def add_dict2_values(dict1, dict2):

 for key, value_list1 in dict1.items():

 if key in dict2:

 value_list2 = dict2[key]

 for value in value_list2:

 if value not in value_list1:

 value_list1.append(value)

 value_list1.sort()

(7 marks)

main()

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 14 of 17

Question 7 (10 marks)

Both parts of this question refer to the following program:

from tkinter import *

def draw_pattern(a_canvas, size):
 top = size
 indent_list = [size * 3, size * 2, size]
 pattern_dict = {0: [2, 4, 3, 1],
 1: [3, 2, 1, 4],
 2: [1, 1, 3, 4]
 }
 sorted_keys = list(pattern_dict.keys())
 sorted_keys.sort()
 for key in sorted_keys:
 list_of_shapes = pattern_dict[key]
 left = indent_list[key]
 for shape in list_of_shapes:
 if shape == 1:
 a_canvas.create_rectangle(left, top,
 left + size, top + size)
 elif shape == 2:
 a_canvas.create_line(left, top + size,
 left + size , top + size)
 elif shape == 3:
 a_canvas.create_oval(left, top, left + size,
 top + size, fill='black')
 else:
 a_canvas.create_line(left , top, left + size,
 top + size)
 left = left + size

 top = top + size * 2

def main():
 root = Tk()
 root.title("A Canvas")
 root.geometry("130x75+10+10")
 a_canvas = Canvas(root, bg="white")
 a_canvas.pack(fill=BOTH, expand=1) #Canvas fills whole window

 draw_pattern(a_canvas, 10)
 root.mainloop()

main()

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 15 of 17

a) In the above program, how many rows of shapes are drawn?

 3

(2 marks)

b) As accurately as possible, in the window below, show what is drawn by the above
program. Grid lines have been drawn in the window to help you. The gap between
adjacent gridlines is 10 pixels.

 (8 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 16 of 17

Question 8 (9 marks)

a) Complete the output produced when the following main() function is executed.

def main():

 a_list = [4, 7]

 fiddle1(a_list)

 print("a_list:", a_list)

def fiddle1(list1):

 extra_elements = [4, 6, 7, 1]

 list2 = list1

 for element in extra_elements:

 if element not in list1:

 list2.append(element)

 a_list: [4, 7, 6, 1]

(2 marks)

b) Complete the output produced when the following main() function is executed.

def main():

 a_list = [3, 7, 6]

 fiddle2(a_list)

 print("a_list:", a_list)

def fiddle2(list1):

 list2 = [1, 3]

 list1 = list2

 for i in range(len(list1) - 1, -1, -1):

 list2.append(list1[i])

 a_list: [3, 7, 6]

(2 marks)

Question/Answer Booklet COMPSCI 101
 ID: ………………

Page 17 of 17

c) Given the following code, what is the type of each of the three Python objects

(object1, object2 and object3)?

a_string = "Hopscotch"

a_dict = {2: "A", 5: "CC", 9: "X"}

a_list = [4, a_dict[2], "st"]

object1 = (a_list[2], a_string[-3])

object2 = a_string.find(a_list[2])

object3 = a_list[1] * 3

 object1 is of type: tuple

 object2 is of type: int

 object3 is of type: str

(3 marks)

d) In the docstring of the do_a_check() function below, add ONE doctest which does

not fail.

def do_a_check(value1, value2):
 """Checks the parameter values

 >>> do_a_check(2, 4)
 True

 (2 marks)
"""

number1 = value1 + value2
number2 = value1 * value2

return number1 < number2

import doctest
doctest.testmod()

