
VERSION 00000001 COMPSCI101

Page 1 of 21

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2018

Campus: City

COMPUTER SCIENCE

Principles of Programming

(Time Allowed: TWO hours)

Note:
• The use of calculators is NOT permitted.

• You should separate the Section A Question Booklet from the Section B Question/Answer

Booklet. You may keep the Section A Question Booklet. You must hand in the Section B

Question/Answer booklet and the Teleform sheet.

• Compare the exam version number on the Teleform sheet supplied with the version number

above. If they do not match, ask the supervisor for a new sheet.

• Enter your name and Student ID on the Teleform sheet. Your name and Student ID should be

entered left aligned. If your name is longer than the number of boxes provided, truncate it.

• Answer Section A on the Teleform answer sheet provided. For Section A, use a dark pencil to

mark your answers in the answer boxes on the Teleform sheet. Check that the question

number on the sheet corresponds to the question number in this question/answer book. Do not

cross out answers on the Teleform sheet if you change your mind. You must completely erase

one answer before you choose another one. If you spoil your sheet, ask the supervisor for a

replacement. There is one correct answer per question.

• Answer Section B in the space provided in the Section B Question/Answer Booklet.

• Attempt all questions. Write as clearly as possible. The space provided will generally be

sufficient but is not necessarily an indication of the expected length. Extra space is provided at

the end of this exam book.

VERSION 00000001 COMPSCI101

Page 2 of 21

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

VERSION 00000001 COMPSCI101

Page 3 of 21

SECTION A

MULTIPLE CHOICE QUESTIONS

For each question, choose the best answer according to the information presented in lectures. Select
your preferred answer on the Teleform answer sheet provided by shading in the appropriate box.

Question 1
[2 marks] What is the output of the following code fragment?

var1 = 7
var2 = 3
var3 = var1 * var2 - var2
var4 = var2 ** var2 - var3
print(min(max(var1,var3),max(var2,var4)))

(a) 18
(b) 3
(c) 9
(d) 7
(e) None of the above.

Question 2
[2 marks] What is the output of the following code fragment?

number = 23
result = ""
while number > 0:
 val = number % 2
 number = number // 2
 result = str(val) + result
print(result)

(a) 10111
(b) 01000
(c) 11101
(d) 00010
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 4 of 21

Question 3
[2 marks] What is the output of the following code fragment?

text = "the quick brown fox jumps over the lazy dog"
message = text[text.rfind("the") + 4] + text[-17:-14] + \
 text[text.find("brown") - 3] + \
 text[text.rfind("revo s")]
print(message)

(a) zovers
(b) q ovog
(c) lovecs
(d) lovecg
(e) None of the above.

Question 4
[2 marks] What is the output of the following code fragment?

def display(message):
 message = message.upper()
 print(message)

message = "Hello World!"
display(message)
print(message)

(a) HELLO WORLD!

Hello World!

(b) Hello World!
Hello World!

(c) Hello World!
HELLO WORLD!

(d) HELLO WORLD!
HELLO WORLD!

(e) None of the above.

VERSION 00000001 COMPSCI101

Page 5 of 21

Question 5
[2 marks] What is the output of the following code fragment?

def get_horoscope(number):
 message1 = "Amazing day ahead"
 message2 = "Romance is very likely"
 message3 = "Proceed with caution"
 message4 = "Lucky lucky you"
 if number < 4:
 return message1
 elif number < 7:
 return message2
 elif number < 8:
 return message3
 else:
 return message4

message = get_horoscope(17 % 9)
print(message)

(a) Proceed with caution
(b) Romance is very likely
(c) Amazing day ahead
(d) Lucky lucky you
(e) None of the above.

Question 6
[2 marks] What is the output of the following code fragment?

def show_output():
 number = 1
 count = 10
 value = 4
 while count > 4:
 count = count – 2
 value += count
 number += 1
 print(str(number) + ":", count, value)

show_output()

(a) 2: 6 12
(b) 4: 4 22
(c) 1: 8 4
(d) 3: 4 18
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 6 of 21

Question 7
[2 marks] What is the output of the following code fragment?

def show_output():
 top = 6
 count = 0
 total = 0

 for bottom in range(0, top + 1, 2):
 count += 1
 total += top + bottom
 print("count:", count, "total:", total)

show_output()

(a) count: 5 total: 45
(b) count: 3 total: 24
(c) count: 4 total: 36
(d) count: 3 total: 27
(e) None of the above.

Question 8
[2 marks] What is the output of the following code fragment?

list1 = [7, 3, 3, 9, 6, 4]
list2 = [3, 4, 1, 7, 6]
list3 = list2[2: 4] + [list2[-3]] + list1[-1: -4: -2]
print("list3:", list3)

(a) list3: [1, 7, 1, 7, 6, 4, 9]
(b) list3: [1, 7, 1, 4, 9]
(c) list3: [1, 7, 1, 9, 4]
(d) list3: [1, 7, 1, 7, 6, 4, 9, 3]
(e) list3: [1, 7, 6, 1, 4, 9]

Question 9
[2 marks] Given the following code, which of the following correctly states the type of the three
variables, object1, object2 and object3?

a_tuple = (31, 2, 2.0)
a_list = [a_tuple[-1], a_tuple[:2], 'True']
a_dict = {14: [4, 3], 23: [3, 4, 1]}
object1 = a_tuple * 2
object2 = a_list[1]
object3 = a_dict[23] + a_dict[14]

(a) object1: list, object2: float, object3: list
(b) object1: tuple, object2: string, object3: list
(c) object1: list, object2: tuple, object3: int
(d) object1: tuple, object2: tuple, object3: list
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 7 of 21

Question 10
[2 marks] The get_result() function contains five doctests. One of the five doctests fails (i.e., the
result returned by the function does not match the expected answer). Which one of the doctest
function calls below will fail?

def get_result(list_of_numbers):
 """
 >>> get_result([1, 2, 4])
 3
 >>> get_result([])
 0
 >>> get_result([6, 0, 0, 0])
 6
 >>> get_result([6])
 0
 >>> get_result([1, 6])
 6
 """

 if len(list_of_numbers) < 2:
 return 0
 result1 = sum(list_of_numbers) - min(list_of_numbers)
 result2 = len(list_of_numbers) – 1
 result3 = round(result1 / result2)
 return result3

(a) >>> get_result([6, 0, 0, 0])
(b) >>> get_result([1, 6])
(c) >>> get_result([])
(d) >>> get_result([6])
(e) >>> get_result([1, 2, 4])

Question 11
[2 marks] Give the output produced when the following main() function is executed.

def main():
 a_list = [3, 4, 7]
 num = 4
 do_something1(a_list, num)
 print("a_list:", a_list, "num:", num)

def do_something1(list1, num):
 list2 = list1
 num = num + 1
 for count in range(3):
 list2.append(num)

(a) a_list: [3, 4, 7, 5, 5] num: 4
(b) a_list: [3, 4, 7] num: 5
(c) a_list: [3, 4, 7, 5, 5, 5] num: 5
(d) a_list: [3, 4, 7] num: 4
(e) a_list: [3, 4, 7, 5, 5, 5] num: 4

VERSION 00000001 COMPSCI101

Page 8 of 21

Question 12
[2 marks] Give the output produced when the following main() function is executed.

def main():
 a_list = [3, 7, 5]
 a_tuple = (1, 8)
 do_something2(a_list, a_tuple)
 print("a_list:", a_list, "a_tuple:", a_tuple)

def do_something2(list1, a_tuple):
 list2 = [6, 2, 1]
 a_tuple = (a_tuple[1], a_tuple[0])
 list1 = list2

(a) a_list: [6, 2, 1] a_tuple: (1, 8)
(b) a_list: [3, 7, 5] a_tuple: (1, 8)
(c) a_list: [6, 2, 1] a_tuple: (8, 1)
(d) a_list: [3, 7, 5] a_tuple: (8, 1)
(e) None of the above.

Question 13
[2 marks] Given the following code, how many times are the letters "A", "B" and "C" printed?

for num1 in range(5):
 print("A")
 for num2 in range(2):
 print("B")
 print("C")

(a) A: 5 B: 10 C: 5
(b) A: 6 B: 10 C: 10
(c) A: 4 B: 8 C: 4
(d) A: 5 B: 2 C: 5
(e) A: 6 B: 18 C: 6

Question 14
[2 marks] Given the following code, how many times are the letters "A", "B" and "C" printed?

for num1 in range(1, 4):
 print("A")
 for num2 in range(num1):
 print("B")
print("C")

(a) A: 3 B: 12 C: 3
(b) A: 4 B: 10 C: 1
(c) A: 4 B: 10 C: 3
(d) A: 3 B: 6 C: 1
(e) A: 3 B: 10 C: 3

VERSION 00000001 COMPSCI101
Question/Answer Sheet ID ……….…………

Page 9 of 21

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2018

Campus: City

Computer Science

Principles of Programming

(Time Allowed: TWO hours)

SECTION B Question/Answer Booklet

Answer all questions in this section in the space provided. If you run out of space then please use the
Overflow Sheet and indicate in the allotted space that you have used the Overflow Sheet.

Surname:

First Name(s):

Preferred Name:

Student ID:

Login Name (UPI):

MARKERS ONLY

Q1 – Q14

(/28)

Q15

(/16)

Q16

(/16)

Total

(/100)

Q17

(/14)

Q18

(/14)

Q19

(/12)

VERSION 00000001 COMPSCI101

Page 10 of 21

Question 15 (16 marks)

a) Complete the capitalize_each_word() function below which takes a single string

parameter text. The function returns a string, where each word in the parameter string has its
first letter capitalized. You can assume that words in the parameter text are separated by a
single space character and that all letters are lowercase. The string returned by the function
should be of the exact same length as the parameter text.

For example, when the following program is executed with the completed function, the output
is:

This Is An Easy Exam.

I Am Having Fun!

 def main():
 print(capitalize_each_word("this is an easy exam."))

 print(capitalize_each_word("i am having fun!"))

def capitalize_each_word(text):

(8 marks)
main()

b) Complete the output when the following main() function is executed.

def main():

 a = 5

 print(first(a))

def first(a):

 b = 2

 str_list = text.split()

 new_string = ""

 for string in str_list:

 first_letter = string[0].upper()

 rest_of_word = string[1:]

 new_string += first_letter +

 rest_of_word + " "

 new_string = new_string.strip()

 return new_string

VERSION 00000001 COMPSCI101

Page 11 of 21

 for i in range(0, a):

 b += 2

 print("1.", b)

 return a + b

(4 marks)
c) Complete the output when the following main() function is executed.

def main():

 b = 15

 print(second(b))

def second(a):

 b = a * 2

 if a % 2 == 0:

 b = 2

 elif a % 3 == 0:

 b = 3

 elif a % 5 == 0:

 b = 5

 elif a % 7 == 0:

 b = 7

 else:

 b = 11

 print("2.", b)

 return a % b

(4 marks)

1. 12
17

2.3
0

VERSION 00000001 COMPSCI101

Page 12 of 21

Question 16 (16 marks)

a) In the boxes below, show each element of a_list after the following code has been executed.

Use as many of the boxes as you need.

a_list = [5, 2, 1, 2, 8]

value = a_list.pop(2)

a_list.insert(2, 3)

a_list.pop()

a_list.insert(3, value)

value = a_list.pop()

value = value + a_list.index(2)

a_list.append(value)

(5 marks)
b) Complete the output produced when the following main() function is executed.

def main():

 numbers = [4, 3, 3, 2, 1]

 result_list = []

 index1 = 0

 index2 = len(numbers) - 1

 while index1 <= index2:

 num1 = numbers[index1]

 num2 = numbers[index2]

 result_list.append(num1 + num2)

 index1 += 1

 index2 -= 1

 print("Result_list:", result_list)

 Result_list:[5, 5, 6]

(5 marks)

5 2 3 1 3

VERSION 00000001 COMPSCI101

Page 13 of 21

c) Complete the remove_negatives_and_zeros() function which is passed a list of
integers as a parameter. The function removes all the negative numbers and all the zero numbers
from the parameter list. For example, executing the following main() function using the
completed remove_negatives_and_zeros() function gives the output:

 BEFORE: [4, -3, 0, 9, -2, 7, 8, -3, 2, -8]

 AFTER: [4, 9, 7, 8, 2]

def main():

 a_list = [4, -3, 0, 9, -2, 7, 8, -3, 2, -8]

 print("BEFORE:", a_list)

 remove_negatives_and_zeros(a_list)

 print(" AFTER:", a_list)

def remove_negatives_and_zeros(nums_list):

 for i in range(len(nums_list) - 1, -1, -1):

 if nums_list[i] < 1:

 nums_list.pop(i)

 (6 marks)

VERSION 00000001 COMPSCI101

Page 14 of 21

Question 17 (14 marks)

The following program reads information from the input file, "Players.txt", processes the
information and writes output to a text file, "RowsOfOpponents.txt". The input file is made
up of the names of players each separated by one or more spaces, e.g., "Tommaso Simone
Gill Antonio Piero Gill Mary ...". Some of the names in the file occur more
than once.

Below is an example of the "Players.txt" file (on the left) and the corresponding
"RowsOfOpponents.txt" file (on the right) produced by the completed program:

a) Complete the get_players_list() function which is passed one parameter, the name of a

file which contains names separated by spaces. The function returns a list of strings where each
element corresponds to one name from the file.

b) Complete the get_uniques_list() function which is passed a list of strings as a parameter.
Each element in the parameter list is made up of a single name. This function returns a new list
containing all the unique names from the parameter list, i.e., the returned list contains no
duplicate strings.

c) Complete the write_to_file() function which has two parameters: the name of the
output file and a list of unique strings, the names of the players. This function writes all the
players' names from the parameter list in order, two players on each line. Each line is
numbered (starting from the number 1) and the names of the two players on the line are
separated by the string " - ". Note that each number is followed by ". ". See the screenshot of
the example output file above on the right.

Note: you can assume that there is always an even number of players in the parameter list of
players' names.

def main():

 players_list = get_players_list("Players.txt")

 players_list = get_uniques_list(players_list)

 write_to_file("RowsOfOpponents.txt", players_list)

VERSION 00000001 COMPSCI101

Page 15 of 21

 def get_players_list(filename):

 file_in = open(filename, "r")
 contents = file_in.read()
 file_in.close()
 names_list = contents.split()
 return names_list

def get_uniques_list(names_list):

 uniques_list = []

 for name in names_list:

 if name not in uniques_list:

 uniques_list.append(name)

 return uniques_list

def write_to_file(filename, players_list):

file_out = open(filename, "w")
 number = 1
 index = 0
 while index < len(players_list) - 1:
 line_of_info = str(number) + ". " +

players_list[index] + " - "
+ players_list[index + 1] + "\n"

 file_out.write(line_of_info)
 number += 1
 index += 2

 file_out.close()

main()
 (14 marks)

VERSION 00000001 COMPSCI101

Page 16 of 21

Question 18 (14 marks)

a) Complete the following main() function which adds 2 to the last element of all the value lists
corresponding to the keys in the a_dict dictionary. You can assume that all the value lists in the
dictionary contain at least one element. For example, the output of the completed code is:

1. {'a': [3, 4, 1, 6], 'b': [3, 1, 4], 'd': [1, 7], 'c': [5]}

2. {'a': [3, 4, 1, 8], 'b': [3, 1, 6], 'd': [1, 9], 'c': [7]}

def main():

 a_dict = {"a": [3, 4, 1, 6], "c": [5], "b": [3, 1, 4],

 "d": [1, 7]}

 print("1.", a_dict)

 for num_key in a_dict:
 value = a_dict[num_key]
 value[-1] += 2

 print("2.", a_dict)
(4 marks)

b) Give the output produced when the following main() function is executed:

def main():

 word = "CATS"

 result = ""

 a_dict1 = {'A': 4, 'T': 1, 'C': 2, 'R': 3, 'S': 5}

 a_dict2 = {7: 'N', 3: 'T', 2: 'X', 5: 'C', 4: 'E'}

 for letter in word:

 if letter in a_dict1:

 value = a_dict1[letter]

 print(letter, value)

 if value in a_dict2:

 result = result + a_dict2[value]

 print("Result:", result)

 C 2
 A 4
 T 1
 S 5
 Result: XEC

(4 marks)

c) Complete the get_dates_dict() function which is passed a list of strings as a parameter.
Each string is made up of a month name, followed by a space followed by a number (the day
number), e.g., "May 23". The function returns a dictionary where:

 • the keys are the month names,
 • the corresponding values are a sorted list of all the UNIQUE days (integers) for each

month.

VERSION 00000001 COMPSCI101

Page 17 of 21

Note that the parameter list may contain duplicate strings. Executing the main() function below
with the completed get_dates_dict() function prints:

 Important dates (April - June):

 April: [2, 3]

 June: [2, 12, 28]

 May: [4, 9, 18, 21, 26, 30]

def main():

 print("Important dates (April - June):")

 important_dates = ["April 3", "April 3", "June 12",

 "May 30", "June 2", "May 26",

 "May 9", "May 18", "June 28",

 "May 4", "April 2", "May 21", "May 21"]

 a_dict = get_dates_dict(important_dates)

 for month in a_dict:

 print(" ", month, ": ", a_dict[month], sep = "")

def get_dates_dict(dates_list):

 a_dict = {}
 for date_string in dates_list:
 date_list = date_string.split()
 month_name = date_list[0]
 day_number = int(date_list[1])

 if month_name in a_dict:
 if day_number not in a_dict[month_name]:
 a_dict[month_name].append(day_number)
 a_dict[month_name].sort()
 else:
 a_dict[month_name] = [day_number]
 return a_dict

(6 marks)	

VERSION 00000001 COMPSCI101

Page 18 of 21

Question 19 (12 marks)

For both Parts a) and b) of this question the grid lines have been drawn in the window to help you.
The gap between adjacent gridlines is 10 pixels.

a) Complete the draw_pattern() function which draws the following two shapes. Note: your

code MUST use the parameters size, top and left to draw the shapes.

1. a filled black circle of size 20 pixels (twice size), 30 pixels from the left of the window
(left) and 10 pixels from the top of the window (top),

and,
2. a white rectangle of size 10 pixels (size) which has the centre of the filled black circle

drawn in 1. above as a left top position.

The screenshot on the right shows the output
window with the two shapes produced
when the following main() function
is executed.
 from tkinter import *

def main():

 root = Tk()

 root.title("A Canvas")

 root.geometry("120x70+10+10")

 a_canvas = Canvas(root, bg="white")

 a_canvas.pack(fill=BOTH, expand=1)

 draw_pattern(a_canvas, 30, 10, 10)

 root.mainloop()

def draw_pattern(a_canvas, left, top, size):

 area = (left, top, left + 2 * size, top + 2 * size)
 a_canvas.create_oval(area, fill = "black")
 area = (left + size, top + size, left + 2 * size,

top + 2 * size)
 a_canvas.create_rectangle(area, fill = "white")

 main() (5 marks)

b) As accurately as possible, in the window on the next page, show what is drawn when the
main() function of the following program is executed.

left, top

VERSION 00000001 COMPSCI101

Page 19 of 21

from tkinter import *

def draw_pattern(a_canvas):

 size = 10

 pattern_dict = {1: [(30, 50), (20, 50), (40, 30)],

 2: [(40, 50), (20, 10)],

 3: [(20, 30), (30, 10), (50, 20), (10, 20)]

 }

 for shape_type in pattern_dict:

 list_of_points = pattern_dict[shape_type]

 for position_tuple in list_of_points:

 left = position_tuple[0]

 top = position_tuple[1]

 area = (left, top, left + size, top + size)

 if shape_type == 1:

 a_canvas.create_line(left, top, left + size, top + size)

 elif shape_type == 2:

 a_canvas.create_rectangle(area, fill='black')

 elif shape_type == 3:

 a_canvas.create_oval(area)

def main():

 root = Tk()

 root.title("A Canvas")

 root.geometry("125x85+10+10")

 a_canvas = Canvas(root, bg="white")

 a_canvas.pack(fill=BOTH, expand=1) #Canvas fills whole window

 draw_pattern(a_canvas)

 root.mainloop()

main()

(7 marks)

