
VERSION 00000001 COMPSCI101

Page 1 of 23

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2017

Campus: City

COMPUTER SCIENCE

Principles of Programming

(Time Allowed: TWO hours)

Note:
• The use of calculators is NOT permitted.

• You should separate the Section A Question Booklet from the Section B Question/Answer

Booklet. You may keep the Section A Question Booklet. You must hand in the Section B

Question/Answer booklet and the Teleform sheet.

• Compare the exam version number on the Teleform sheet supplied with the version number

above. If they do not match, ask the supervisor for a new sheet.

• Enter your name and Student ID on the Teleform sheet. Your name and Student ID should be

entered left aligned. If your name is longer than the number of boxes provided, truncate it.

• Answer Section A on the Teleform answer sheet provided. For Section A, use a dark pencil to

mark your answers in the answer boxes on the Teleform sheet. Check that the question

number on the sheet corresponds to the question number in this question/answer book. Do not

cross out answers on the Teleform sheet if you change your mind. You must completely erase

one answer before you choose another one. If you spoil your sheet, ask the supervisor for a

replacement. There is one correct answer per question.

• Answer Section B in the space provided in the Section B Question/Answer Booklet.

• Attempt all questions. Write as clearly as possible. The space provided will generally be

sufficient but is not necessarily an indication of the expected length. Extra space is provided at

the end of the Question/Answer Booklet.

VERSION 00000001 COMPSCI101

Page 2 of 23

SECTION A

MULTIPLE CHOICE QUESTIONS

For each question, choose the best answer according to the information presented in lectures. Select
your preferred answer on the Teleform answer sheet provided by shading in the appropriate box.

Question 1
[2.5 marks] What is the output produced by the following code?

value = (13 / 3 // 2) ** (2 % 6 ** 2) * 4 - 1 + 2
print(value)

(a) 256.0
(b) 17.0
(c) 65.0
(d) 5.0
(e) None of the above.

Question 2
[2.5 marks] Given the code below:

import random
var1 = random.randrange(-2, 26 , 2)
var2 = random.randrange(51, -7, -6)
print(max(var1, var2))

which of the following values could be produced?
I -4
II 24
III 17
IV 0

(a) II and IV
(b) I, II, III, and IV
(c) I, II and III
(d) I and III
(e) II, III and IV

VERSION 00000001 COMPSCI101

Page 3 of 23

Question 3
[2.5 marks] What is the output produced by the following code if the user enters "i am legend" at
the prompt?

sentence = input("Enter a sentence: ")
new_sentence = ""
while sentence.rfind(" ") != -1:
 index = sentence.rfind(" ")
 new_sentence += sentence[index+1:] + " "
 sentence = sentence[:index]
new_sentence += sentence
print(new_sentence)

(a) i am legendi am legend
(b) legend am ii am legend
(c) i am legend
(d) legend am i
(e) No output will be produced as there is an error in the code

Question 4
[2.5 marks] What is the output produced by the following code?

def display_name(name):
 message = "Hello " + name + "."
 print(message, end = " ")

def display_date(date):
 message = "Today is " + date + "."
 print(message, end = " ")

def main():
 message = "Welcome!"
 print(display_name("Eddie"), end = " ")
 message = display_date("16 May 2017")
 print(message)

main()

(a) Hello Eddie. Welcome!
(b) Hello Eddie. None Today is 16 May 2017. None
(c) Hello Eddie. Today is 16 May 2017.
(d) Hello Eddie. Today is 16 May 2017. Welcome!
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 4 of 23

Question 5
[2.5 marks] What is the output produced by the following code?

def get_letter(score):
 if score >= 60:
 letter = "D"
 elif score >= 70:
 letter = "C"
 elif score >= 80:
 letter = "B"
 elif score >= 90:
 letter = "A"
 else:
 letter = "F"
 return letter

def main():
 print(get_letter(95), end = " ")
 print(get_letter(66), end = " ")
 print(get_letter(74), end = " ")
 print(get_letter(87), end = " ")
 print(get_letter(54), end = " ")

main()

(a) D D D D F
(b) A B C D F
(c) A D C B F
(d) D B D C F
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 5 of 23

Question 6
[2.5 marks] What is the output produced by the following code?

def fun_1(num):
 print("1.", num, end = " ")
 num += 20
 return (num - 10)

def fun_2(num):
 num = num – 15
 print("2.", num, end = " ")
 return (num + 10)

def main():
 num = 6
 num = fun_1(num)
 print("3.", num, end = " ")
 num = fun_2(num)
 print("4.", num, end = " ")

main()

(a) 3. 6 1. 26 4. 11 2. 9
(b) 1. 6 2. 1 3. 16 4. 15
(c) 1. 6 2. 16 3. 1 4. 20
(d) 1. 6 3. 16 2. 1 4. 11
(e) None of the above.

Question 7
[2.5 marks] What is the output produced by the following code?

a_list = [4, 5, 6, 3, 4, 5]
for index in range(len(a_list) - 2, 1, -2):
 if a_list[index] - a_list[index - 1] < 2:
 a_list.pop(index)

(a) [4, 5, 3, 5]
(b) [4, 5, 6, 3, 4, 5]
(c) [4, 5, 6, 4]
(d) [4, 6, 4]
(e) [5, 3, 5]

VERSION 00000001 COMPSCI101

Page 6 of 23

Question 8
[2.5 marks] Given the following code, which of the following correctly states the type of the three
variables, object1, object2 and object3?

a_tuple = (31, "5", 2.0)
a_list = [a_tuple[0], a_tuple[2], 'True']
a_dict = {'c': 14, 'b': 'False'}

object1 = a_tuple[2:3]
object2 = a_list[2] is a_tuple[1]
object3 = a_list[2] + a_dict['b']

(a) object1: list, object2: boolean, object3: boolean

(b) object1: tuple, object2: boolean, object3: string

(c) object1: tuple, object2: float, object3: boolean

(d) object1: float, object2: string, object3: string

(e) object1: list, object2: string, object3: boolean

Question 9
[2.5 marks] What is the output produced when the following main() function is executed?

def main():
 list1 = [3, 2, 1]
 print("BEFORE:", list1)
 fiddle1(list1)
 print(" AFTER:", list1)

def fiddle1(list1):
 list2 = list1
 list1.append(4)
 list2.append(5)
 list2 = list2[0: 2]
 list2.append(6)

(a) BEFORE: [3, 2, 1]

 AFTER: [3, 2, 1, 4, 5]

(b) BEFORE: [3, 2, 1]
 AFTER: [3, 2, 1, 4]

(c) BEFORE: [3, 2, 1]
 AFTER: [3, 2, 1]

(d) BEFORE: [3, 2, 1]
 AFTER: [3, 2, 1, 4, 6]

(e) BEFORE: [3, 2, 1]
 AFTER: [3, 2, 1, 4, 5, 6]

VERSION 00000001 COMPSCI101

Page 7 of 23

Question 10
[2.5 marks] What is the output produced when the following main() function is executed?

def main():
 list1 = [3, 2, 1]
 tuple1 = (6, 4, 5)
 print("BEFORE:", list1, tuple1)
 fiddle2(list1, tuple1)
 print(" AFTER:", list1, tuple1)

def fiddle2(list1, a_tuple):
 list2 = list(a_tuple)
 list2[0] = 5
 list1[0] = 5
 list1 = list2
 list1[1] = list2[0] + 6

(a) BEFORE: [3, 2, 1] (6, 4, 5)

 AFTER: [5, 11, 5] (6, 4, 5)

(b) BEFORE: [3, 2, 1] (6, 4, 5)
 AFTER: [5, 2, 1] (6, 4, 5)

(c) BEFORE: [3, 2, 1] (6, 4, 5)
 AFTER: [5, 11, 1] (6, 4, 5)

(d) BEFORE: [3, 2, 1] (6, 4, 5)
 AFTER: [3, 2, 1] (6, 4, 5)

(e) BEFORE: [3, 2, 1] (6, 4, 5)
 AFTER: [5, 2, 1] (5, 4, 5)

VERSION 00000001 COMPSCI101

Page 8 of 23

Question 11
[2.5 marks] What is the output of the following code fragment?

number = 4
for index in range(1, number + 1):
 print('.' * (number - index), end='')
 print(index)

(a) 1

2
3
4

(b) ...1
...2
...3
...4

(c) ...1
..2
.3
4

(d) .1
..2
...3
....4

(e) None of the above.

VERSION 00000001 COMPSCI101

Page 9 of 23

Question 12
[2.5 marks] Consider the following screenshot and code fragment:

root = Tk()
root.title("Create a window")
root.geometry(__________________) #Line A)
a_canvas = Canvas(root)
a_canvas.pack(fill=BOTH,expand=True)
a_rect = a_canvas.create_rectangle(_______________) #Line B)
root.mainloop()

Which of the following statements could be used to replace Line A) and Line B) above to create a
window of 400 pixels in width and 200 pixels in height and a rectangle at (20, 50) of size 50 pixels in
width and 100 pixels in height?

(a) root.geometry("200x400+50+100")
a_rect = a_canvas.create_rectangle(20, 50, 70, 150)

(b) root.geometry(400, 200)
a_rect = a_canvas.create_rectangle(20, 50, 70, 150)

(c) root.geometry("400x200")
a_rect = a_canvas.create_rectangle(20, 50, 50, 100)

(d) root.geometry("400+200")
a_rect = a_canvas.create_rectangle(20, 50, 50, 100)

(e) root.geometry("400x200+50+100")
a_rect = a_canvas.create_rectangle(20, 50, 70, 150)

VERSION 00000001 COMPSCI101

Page 10 of 23

Question 13
[2.5 marks] The get_non_zero_average() function below is not coded correctly. Four of the five
doctests fail (i.e., the result returned by the function does not match the expected answer) and one of
the five doctests passes. Which one of the doctest function calls below will pass, i.e., produces the
expected answer?

def get_non_zero_average(list_of_numbers):
 """ the average of NON-ZERO numbers
 >>> get_non_zero_average([9, 2, 3, 8])
 5.5

 >>> get_non_zero_average([2, 0, 6, 2])
 3.3333333333333335

 >>> get_non_zero_average([9, 0, 2, 2, 8, 2, 2])
 4.166666666666667

 >>> get_non_zero_average([0, 3, 9, 2, 2, 7, 0])
 4.6

 >>> get_non_zero_average([0, 3, 0, 5])
 4.0
 """

 return sum(list_of_numbers) / len(list_of_numbers)

(a) >>> get_non_zero_average([9, 2, 3, 8])
(b) >>> get_non_zero_average([9, 0, 2, 2, 8, 2, 2])
(c) >>> get_non_zero_average([0, 3, 9, 2, 2, 7, 0])
(d) >>> get_non_zero_average([0, 3, 0, 5])
(e) >>> get_non_zero_average([2, 0, 6, 2])

VERSION 00000001 COMPSCI101

Page 11 of 23

Question 14
[2.5 marks] Consider the following function:

def get_letter(words):
 my_dict = {}
 for ch in words:
 if ch != ' ':
 if ch in my_dict:
 my_dict[ch] += 1
 else:
 my_dict[ch] = 1

 my_list = []
 for letter, count in my_dict.items():
 my_list.append((count, letter))

 count, letter = max(my_list)
 return letter

What is the output of the following code fragment?

print(get_letter('computer systems'))

(a) ('s', 3)
(b) s
(c) 3
(d) [1, 2, 1, 3, 1, 2, 1, 1, 2, 1]
(e) None of the above.

VERSION 00000001 COMPSCI101
Question/Answer Sheet ID ……….…………

Page 12 of 23

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

VERSION 00000001 COMPSCI101

Page 13 of 23

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2017
Campus: City

Computer Science

Principles of Programming

(Time Allowed: TWO hours)

SECTION B Question/Answer Booklet

Answer all questions in this section in the space provided. If you run out of space then please use the
Overflow Sheet and indicate in the allotted space that you have used the Overflow Sheet.

Surname:

Forenames:

Preferred Name
(if different to forenames)

Student ID:

Login Name (UPI):

MARKERS ONLY

Q1 – Q14

(/35)

Q17

(/13)

 TOTAL

(/100)

Q15

(/13)

Q18

(/13)
Q16

(/13)

Q19

(/13)

VERSION 00000001 COMPSCI101

Page 14 of 23

Question 15 (13 marks)

a) Complete the censor_text() function below which takes two string parameters, text and

word. The function replaces all instances of word in text with a sequence of "*" characters
of the same length as the length of word. You can assume that text and word will be strings
containing only lowercase alphabetical characters, with a length of at least 1.

For example, when the following program is executed with the completed function, the output
is:

 **** this ****ed question

 hello world

def main():

 print(censor_text("darn this darned question", "darn"))

 print(censor_text("hello world", "drat"))

def censor_text(text, word):

(6 marks)
main()

 stars = "*" * len(word)

 while text.find(word) != -1:

 index = text.find(word)

 text = text[:index] + stars + text[index + len(word):]

 return text

VERSION 00000001 COMPSCI101

Page 15 of 23

b) The following program keeps prompting the user to guess a hidden number until the correct one
is entered. At each incorrect guess the program will let the user know if the guess is too high or
too low. Complete the following guess_number() function using a while loop, so that the
program will execute correctly. A sample input/output is shown below.

Guess a magic number between 1 and 99.
Enter your guess: 55
Your guess is too low.
Enter your guess: 78
Your guess is too low.
Enter your guess: 95
Your guess is too high.
Enter your guess: 90
Yes, the number is 90.

import random
def main():
 number = random.randrange(1,100)
 print("Guess a magic number between 1 and 99.")
 guess_number(number)

def guess_number(number):

(7 marks)
	 main()	 	

prompt = 'Enter your guess: '

feedback_low = 'Your guess is too low.'

feedback_high = 'Your guess is too high.'

feedback_exact = ' Yes, the number is'

guess = 0

while guess != number:

guess = int(input(prompt))

if guess < number:

print(feedback_low)

if guess > number:

print(feedback_high)

print(feedback_exact, guess,".",sep="")

VERSION 00000001 COMPSCI101

Page 16 of 23

Question 16 (13 marks)

The following program reads information from the input file, "NameMarks.txt", and writes the
program results to the output file, "OscarMark.txt".

• The input file contains lines of names followed by several numbers with a colon space after each
name (': '). Each line represents the name and assignment marks for one student.

• The output file displays the assignment marks and total for one student.

Below is an example of the "NameMarks.txt" file (on the left) and the "OscarMark.txt" file (on
the right) produced by the completed program:

a) Complete the get_list_of_information() function which is passed one parameter, the

name of a file which contains student names and marks with each student on a separate line.
This function returns a list of strings. Each element of the list returned is a string containing the
line of information for one student and contains no newline characters.

b) Complete the get_marks_tuple() function which is passed one parameter: a string

containing marks (integers) separated by spaces. The function returns a tuple made up of each
of the marks from the string. Each element of the tuple which is returned must be an integer.
You can assume that the string passed as a parameter contains only whole numbers separated by
blank spaces.

c) Complete the write_result() function which has three parameters: the name of the file, the

student's name and a tuple containing integers. This function writes the following information
(see the example output file above on the right) to the file:

• the string 'Assignment marks for " followed by the student's name,
• a numbered list of each of the marks from the parameter, marks_tuple,
• a blank line,
• the string 'Total mark: " followed by the total of all the marks.

def main():

 names_and_marks = get_list_of_information("NameMarks.txt")

 student_name = "Oscar"

 str_of_marks = get_student_marks_str(student_name, names_and_marks)

 tuple_of_marks = get_marks_tuple(str_of_marks)

 write_result("OscarMark.txt", student_name, tuple_of_marks)

VERSION 00000001 COMPSCI101

Page 17 of 23

def get_list_of_information(filename):

 input_stream = open(filename,"r")
 content = input_stream.read()
 content_list = content.split("\n")
 input_stream.close()
 return content_list

def get_marks_tuple(string_of_marks):

 list_of_marks = string_of_marks.split()
 mark_tuple = tuple()
 for mark in list_of_marks:
 mark_tuple += (int(mark),)
 return mark_tuple

def write_result(filename, student_name, marks_tuple):

 output_stream = open(filename,"w")
 output_stream.write("Assignment marks for " + student_name + "\n")
 count = 1
 total = 0
 for mark in marks_tuple:
 output_stream.write(str(count) + ". " + str(mark) + "\n")
 total += mark
 count += 1
 output_stream.write("\n" + "Total mark: " + str(total) + "\n")
 output_stream.close()

def get_student_marks_str(student_name, names_and_marks):

 for line in names_and_marks:

 if line.find(student_name) == 0:

 line_list = line.split(":")

 return line_list[1]

 return ""

main()

(13 marks)

VERSION 00000001 COMPSCI101

Page 18 of 23

Question 17 (13 marks)

a) Give the output produced when the following main() function is executed

def main():

 letters = '4-REAL'

 results = ''

 for character in letters:

 symbol = get_result_from_symbols_list(character)

 results = results + symbol

 print(letters, "-", results)

def get_result_from_symbols_list(letter):

 symbols_list = ['2ABC', '3DEF', '4GHI', '5JKL', '6MNO', '7PQRS',

 '8TUV', '9WXYZ']

 for symbols in symbols_list:

 if letter in symbols:

 return symbols[0]

 return letter

4-REAL - 4-7325

 (3 marks)

b) In the boxes below, show each element of a_list after the following code has been executed.
Use as many of the boxes as you need.

a_list = [1, 2, 5, 6, 2]

a_list.insert(3, 2)

number = a_list.pop(-2)

number = a_list.index(2)

a_list.insert(number, 8)

a_list.append(a_list.pop() * 2)

(3 marks)

1 8 2 5 2 4

VERSION 00000001 COMPSCI101

Page 19 of 23

c) Complete the get_percentage_correct() function which is passed two lists of strings as
parameters. The two parameter lists have the same length and each element is a single
uppercase letter. The first parameter is the list of correct answers and the second parameter is
the list of user answers. The function returns the percentage of the user answers which are
correct, rounded to the nearest whole number. For example, executing the following main()
function with the completed get_percentage_correct() function, prints:

1. 75%
2. 60%

def main():

 correct_answers = ['A', 'E', 'B', 'A']

 user_answers = ['A', 'E', 'B', 'E']

 result = get_percentage_correct(correct_answers,user_answers)

 print("1. ", result, "% ", sep='')

 correct_answers = ['A', 'E', 'B', 'A', 'C']

 user_answers = ['A', 'E', 'D', 'E', 'C']

 result = get_percentage_correct(correct_answers,user_answers)

 print("2. ", result, "% ", sep='')

def get_percentage_correct(correct_answers, user_answers):

 num_q = len(correct_answers)
 correct = 0

 for i in range(len(correct_answers)):
 if correct_answers[i] == user_answers[i]:
 correct += 1

 percentage = round(correct/num_q * 100)
 return percentage

 (7 marks)

VERSION 00000001 COMPSCI101

Page 20 of 23

Question 18 (13 marks)

a) Complete the build_city_country_dict() which takes a list of city:country strings as a
parameter and returns a dictionary. Each element of the parameter list is a string made up of
the city name, followed by a colon followed by the country name. The function processes the
list, adds the information to a dictionary and returns the dictionary. The key of each dictionary
item is the country and the value of each dictionary item is a list of cities in that country. For
example, the following code:

country_list = ['London:United Kingdom', 'Chicago:United States',
'Detroit:United States', 'Washington DC:United States',
'Tokyo:Japan', 'Fukushima:Japan', 'Wellington:New Zealand',
'Akaroa:New Zealand', 'Auckland:New Zealand',
'Bay of Islands:New Zealand', 'Bay of Plenty:New Zealand']

my_dict = build_city_country_dict(country_list)
print(my_dict)

may print:

{'United States': ['Chicago', 'Detroit', 'Washington DC'], 'New
Zealand': ['Wellington', 'Akaroa', 'Auckland', 'Bay of Islands', 'Bay
of Plenty'], 'Japan': ['Tokyo', 'Fukushima'], 'United Kingdom':
['London']}

def build_city_country_dict(country_list):	

my_dict = {}
for line in country_list:

line = line.strip()
line_list = line.split(":")
country = line_list[1]
city = line_list[0]
if country in my_dict:
 if city not in my_dict[country]:

 my_dict[country].append(city)
else:

 my_dict[country] = [city]

return my_dict

 (8 marks)

VERSION 00000001 COMPSCI101

Page 21 of 23

b) Complete the display_num_cities() function which takes a dictionary and a string as
parameters. The function searches the dictionary for the country (passed as a parameter) and
prints the number of cities which are in that country. If the country does not exist in the
dictionary, the function prints 'NOT FOUND'. For example, the following code fragment:

city_country_dict = {'United States': ['Chicago', 'Detroit',
'Washington DC'], 'New Zealand': ['Wellington', 'Akaroa', 'Auckland',
'Bay of Islands', 'Bay of Plenty'], 'Japan': ['Tokyo', 'Fukushima'],
'United Kingdom': ['London']}

 display_num_cities(city_country_dict, 'New Zealand')
 display_num_cities(city_country_dict, 'Canada')
 display_num_cities(city_country_dict, 'United Kingdom')

prints:

New Zealand - 5
Canada - NOT FOUND
United Kingdom - 1

def display_num_cities(city_country_dict, country):		

	
 if country in city_country_dict:
 list_of_cities = city_country_dict[country]
 print(country,"-",len(list_of_cities))
 else:
 print(country,"- NOT FOUND")
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

 (5 marks)

VERSION 00000001 COMPSCI101

Page 22 of 23

Question 19 (13 marks)

Consider the following Python program:

from tkinter import *

def main():

 window = Tk()

 window.geometry("600x600")

 a_canvas = Canvas(window)

 a_canvas.pack(fill=BOTH, expand=True)

 num_of_rows = 4

 left_hand_side = 10

 y_down = 10

 size = 10

 for row in range(num_of_rows):

 x_left = left_hand_side

 for col in range(row + 1):

 rect = (x_left, y_down, x_left + size, y_down + size)

 a_canvas.create_rectangle(rect) # Position A
 x_left += size

 points = [x_left, y_down, x_left + size, y_down,

 x_left + (size // 2), y_down + size]

 a_canvas.create_polygon(points) # Position B
 y_down += size

 window.mainloop()

main()

a) In total, how many times is the statement marked Position A in the program above executed

when the program is run?

row 0: executed ___1___ times

row 1: executed ___2___ times

row 2: executed ___3___ times

row 3: executed ___4___ times

Total =________10_________ times

(5 marks)

VERSION 00000001 COMPSCI101

Page 23 of 23

b) In total, how many times is the statement marked Position B in the program above executed
when the program is run?

row 0: executed ___1__ times

row 1: executed ___1__ times

row 2: executed ___1__ times

row 3: executed ___1__ times

Total =_________4________ times

 (3 mark)

c) As accurately as possible, in the window below, show what is drawn by the above program.
Grid lines have been drawn in the window to help you. The gap between adjacent gridlines is
10 pixels.

(5 marks)

10 20 30 40 50 60 70 80 90 100 110 120

10

20

30

40

50

60

70

