
1

Lecture 30

Static methods
Static variables

Section 14.6
Static Variables

public void start() {

Student s1, s2, s3;

s1 = new Student("Ann");
s2 = new Student("Bob");
s3 = new Student("Charles");

System.out.println(s1.toString());
System.out.println(s2.toString());
System.out.println(s3.toString());

}
Ann, id: 0
Bob, id: 0
Charles, id: 0

A Student object stores a name and an
ID number.

How could the Student class be defined
so that the output is as shown?

output

public class Student {

private String name;
private int id;

public Student(String n) {
name = n;
id = 0;

}

public String toString() {
return name + ", id: " + id;

}
}

Solution We would visualise the three Student objects as follows:

name

Student

id 0

"Ann"

name

Student

id 0

"Bob"

name

Student

id 0

"Charles"

s1 s2 s3

public void start() {

Student s1, s2, s3;

s1 = new Student("Ann");
s2 = new Student("Bob");
s3 = new Student("Charles");

System.out.println(s1.toString());
System.out.println(s2.toString());
System.out.println(s3.toString());

}
Ann, id: 1
Bob, id: 2
Charles, id: 3

Now, define the Student class again.

This time, notice each student is
assigned a unique ID number, starting
from 1

output

Having trouble?
• Each time the constructor method is called,

we need to know how many other Student
objects have already been created

name

Student

id 1

"Ann"

name

Student

id 2

"Bob"

name

Student

id 3

"Charles"

s1 s2 s3

total 3

2

static
• static is a modifier which can be applied to a variable or

a method
• something that is static is associated with the class

itself, and not with an instance of the class

static variables

name

Student

id 3

"Charles"

total 3

The ID number is associated
with a specific instance or
object of the Student class

This is an instance variable
of the Student class

The total is not associated
with a specific Student
object – it is information
about the class in general

This can be a static
variable of the Student class

also called a class variable

class Student {
private String name;
private int id;

private static int total = 0;

public Student(String n) {
name = n;
total++;
id = total;

}

public String toString() {
return name + ", id: " + id;

}
}

This looks like an instance
variable, but it is NOT. It is
declared using the modifier
static

The static variable is
incremented each time an
object is created

Solution

name

Student

id 1

"Ann"

name

Student

id 2

"Bob"

name

Student

id 3

"Charles"

s1 s2 s3

total 3

The Student class

• There is one copy of the instance variables
for every object created

• There is only ONE class variable, regardless
of the number of objects created

static methods

String s;
s = new String("abc");

int len = s.length();

System.out.println(len);

We are very familiar with
instance methods, and how
to call them on objects:

int max;

max = Math.max(10, 20);

System.out.println(max);

We have also seen many
examples of static methods,
or class methods:

Let's look at an example involving a Circle class...

public class Circle {

private int radius;
private int x;
private int y;

public Circle(int r, int x, int y) {
radius = r;
this.x = x;
this.y = y;

}

public void setSize(int r) {
radius = r;

}

public String toString() {
return new String("(" + x + "," + y + ")

radius: " + radius);
}

}

instance
variables

instance
methods

3

radius

Circle

x

y 250

50

250

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

radius

Circle

x

y 100

100

100

c1

c2

radius

Circle

x

y 250

50

250

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

radius

Circle

x

y 100

100

100

c1

c2

We have created two Circle
objects. Each object is a
specific instance of the
Circle class

Each object has its own
copy of the instance
variables

radius

Circle

x

y 250

50

250

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

radius

Circle

x

y 100

100

100

c1

c2

Instance methods are
called on a specific object.
They use the instance
variables of that specific
object instance.

c1.setSize(99);

99

...
public void setSize(int r) {

radius = r;
}
...

The Circle class

radius

Circle

x

y 250

250

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

radius

Circle

x

y 100

100

100

c1

c2

Although we call the same
instance methods, we get
different results because
they are being called on
different instances

99

System.out.println(c1.toString());
System.out.println(c2.toString());

(250,250) radius: 99
(100,100) radius: 100

Output

Which Circle is bigger?
• Let's say we have two Circle objects, and we would like

to find out which one has the larger radius value.
• What method could we define in the Circle class to

achieve this?

radius

Circle

x

y 250

50

250

radius

Circle

x

y 100

100

100

c1 c2 int size = ????

we are going to
define a method
in the Circle
class, how will
we call it?

public class Circle {

private int radius;
private int x;
private int y;

public Circle(int r, int x, int y) {
radius = r;
this.x = x;
this.y = y;

}

public int biggerRadius(Circle other) {
if (other.radius > radius) {

return other.radius;
} else {

return radius;
}

}

public void setSize(int r) {
radius = r;

}

public String toString() {
return new String("(" + x + "," + y + ")

radius: " + radius);
}

}

int size = c1.biggerRadius(c2);

this is an
instance
method

4

public class Circle {

private int radius;
private int x;
private int y;

public Circle(int r, int x, int y) {
radius = r;
this.x = x;
this.y = y;

}

public int biggerRadius(Circle a, Circle b) {
if (a.radius > b.radius) {

return a.radius;
} else {

return b.radius;
}

}

public void setSize(int r) {
radius = r;

}

public String toString() {
return new String("(" + x + "," + y + ")

radius: " + radius);
}

}

???? . biggerRadius(c1, c2);

here is
another way
we could
write this
instance
method

but how would
we call this
method?

public int biggerRadius(Circle a, Circle b) {
if (a.radius > b.radius) {

return a.radius;
} else {

return b.radius;
}

}

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

this method
does not rely
on the state of
any instance
variables – all
the information
it needs is
passed to it
through the
parameters

it is irrelevant which object the method is
called on, because the method does not
refer directly to any instance variables

int size = c1.biggerRadius(c1, c2);

int size = c2.biggerRadius(c1, c2);

public static int biggerRadius(Circle a, Circle b) {
if (a.radius > b.radius) {

return a.radius;
} else {

return b.radius;
}

}

Circle c1, c2;

c1 = new Circle(50, 250, 250);
c2 = new Circle(100, 100, 100);

int size = Circle.biggerRadius(c1, c2);

as long as the method is declared with the
modifier static

this method is
associated with the
Circle class, but
not with a
particular instance
of the class

we can use the name of the class to call the method

public static int biggerRadius(Circle a, Circle b) {
if (a.radius > b.radius) {

return a.radius;
} else {

return b.radius;
}

}

This is a static method, or class method:

It is called using the name of the class:

Circle.biggerRadius(....);

static methods and variables

A static method cannot refer to any instance variables
defined in the class

A static method can refer to static variables defined in the
class

Student s1, s2, s3;

s1 = new Student("Ann");
s2 = new Student("Bob");
s3 = new Student("Charles");

System.out.println(Student.totalStudents());

Let's return to the Student class example, and say we
now want to print out the total number of Student objects
that have been created:

a static method has been defined in the Student class

5

class Student {
private String name;
private int id;

private static int total = 0;

public Student(String n) {
name = n;
total++;
id = total;

}

public static int totalStudents() {
return total;

}

public String toString() {
return name + ", id: " + id;

}
}

this static
method can
refer to the
static variable
total

class Student {
private String name;
private int id;

private static int total = 0;

public Student(String n) {
name = n;
total++;
id = total;

}

public static int totalStudents() {
return total + id;

}

public String toString() {
return name + ", id: " + id;

}
}

however this
code would
NOT compile,
because a
static method
cannot refer to
an instance
variable

Class constants
• Class constants are often useful
• A class constant uses the modifiers static and final
• It is OK to define a class constant public

public class Math {

public static final double PI = 3.14159;
....

}

• We can refer to this in other classes as:

Math.PI

Summary

Assume that class X contains the following method
definitions:

public class X {
...
public void yes() {...}
public static void no() {...}
...

}

To call method yes():

X thing;
thing = new X();

thing.yes();

To call method no():

X.no();

• static methods are also called class methods
• static methods are not allowed to refer to instance

variables of the class in which they are defined (this
should be obvious when you think about the fact that they
are not called on any particular instance of the class),
however they can refer to static variables

• static methods are mainly useful when you want to use
methods without needing to create an object first (the Math
class methods are good examples of this: eg. Math.max())

6

Assume that class X contains the following variable
declarations:

public class X {
private int yes;
private static int no;
...

}

And assume the following objects are created:

X a, b, c;

a = new X();
b = new X();
c = new X();

yes

X

0

a b

no

The X class

0

yes

X

0 yes

X

0

c

• static variables are also called class variables
• there is only one copy of a class variable, regardless of

how many objects are created
• an instance method in a class can refer to both the

instance variables and the static variables defined in the
class

• a static method in a class can only refer to static variables
defined in the class

• static variables are commonly used to record how many
instances of a class have been created

