
1

Lecture 21

Creating a
window

Chapter 16
Graphical User Interfaces

Text vs. GUI
So far, the Java programs we have written have been
text based

the input is typed at
the keyboard

output is printed as text

The programmer determines when input is required from the user

Text vs. GUI
Many applications present the user with a nice graphical
interface

The user determines when to
provide input to the program

Creating a window
How can we write a Java program that creates a
window?

We are going to organise
our code into three classes:

• MyApp
• MyJFrame
• MyJPanel

Why the three classes?

Creating a window
MyApp

the starting point for the program
creates an object of type MyJFrame:

new MyJFrame("My Window", 100, 100, 200, 200);

width, heightacross, down

Creating a window

MyJFrame
the main window with a border
and a title bar

MyJPanel
the actual content of the window

2

The MyJPanel class

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyJPanel extends JPanel {

}

The MyJPanel class is defined in a similar way to other
classes that we have defined:

public class MyJPanel {

}

there are several import
statements

and this basically means that our
class, MyJPanel, is a special type
of JPanel object (which is defined
by a standard Java class)

We will often refer to this as
simply the "JPanel class"

The JPanel class

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyJPanel extends JPanel {

public MyJPanel() {

}

public void paintComponent(Graphics g){
super.paintComponent(g);

}
}

this is the
constructor
method for this
class – it is
called just once,
when the JPanel
is first created

this method defines what will be drawn in
the window – it is called automatically

The paintComponent() method

public void paintComponent(Graphics g){
super.paintComponent(g);

}

The paintComponent() method is called automatically. It
is passed a parameter, which is of type Graphics.

We can make shapes appear in the window by calling
instance methods on this Graphics object.

The paintComponent() method
For example:

public void paintComponent(Graphics g){
super.paintComponent(g);

}

The paintComponent() method
For example:

public void paintComponent(Graphics g){
super.paintComponent(g);

g.drawOval(20, 10, 150, 150);

}

The paintComponent() method
For example:

public void paintComponent(Graphics g){
super.paintComponent(g);

g.drawOval(20, 10, 150, 150);

g.drawOval(60, 50, 20, 20);

}

3

The paintComponent() method
For example:

public void paintComponent(Graphics g){
super.paintComponent(g);

g.drawOval(20, 10, 150, 150);

g.drawOval(60, 50, 20, 20);
g.drawLine(110, 60, 130, 60);

}

The paintComponent() method
For example:

public void paintComponent(Graphics g){
super.paintComponent(g);

g.drawOval(20, 10, 150, 150);

g.drawOval(60, 50, 20, 20);
g.drawLine(110, 60, 130, 60);

g.drawRect(55, 110, 80, 10);

}

The paintComponent() method

public void paintComponent(Graphics g){
super.paintComponent(g);

g.drawOval(20, 10, 150, 150);

g.drawOval(60, 50, 20, 20);
g.drawLine(110, 60, 130, 60);

g.drawRect(55, 110, 80, 10);
g.drawRect(60, 105, 70, 5);

}

For example:

What do the numbers mean
in these method calls?

The coordinate system
Every pixel can be referred to by its horizontal and vertical
position.

(0,0)

The top, leftmost pixel in the JPanel is at position (0,0)

The coordinate system
The coordinates are specified as:

(35,6)

number of
pixels across
from the left

number of
pixels down
from the top,)(

Graphics instance methods

To draw a line between two points:

g.drawLine(int x1, int y1, int x2, int y2)

(x1, y1)

(x2, y2)

4

Graphics instance methods

To draw the outline of a rectangle:

g.drawRect(int x, int y, int width, int height)

(x, y)

width

height

Graphics instance methods

To draw the outline of an oval:

g.drawOval(int x, int y, int width, int height)

(x, y)

width

height

Graphics instance methods

To draw a filled rectangle:

g.fillRect(int x, int y, int width, int height)

(x, y)

width

height

Graphics instance methods

To draw a filled oval:

g.drawOval(int x, int y, int width, int height)

(x, y)

width

height

Graphics instance methods

To display text in the drawing window:

g.drawString(String text, int x, int y)

(x, y) Hello world

To change the drawing colour

g.setColor(Color c)

Color.black

Color.blue

Color.cyan

Color.darkGray

Color.gray

Color.green

Color.lightGray Color.magenta

Color.orangeColor.pink

Color.red

Color.white

Color.yellow

There are 13 predefined colours:

Graphics instance methods

5

And you can mix your own by creating an object of type
Color:

new Color(int red, int green, int blue)

where the parameters should be between 0 and 255.
For example:

Colours

public void paintComponent(Graphics g){
super.paintComponent(g);

g.setColor(new Color(33, 178, 90));
g.fillOval(20, 10, 150, 150);

}

Shapes appear in the order that you draw them

Order

g.setColor(Color.green);
g.fillOval(40, 60, 80, 80);

g.setColor(Color.blue);
g.fillOval(80, 60, 80, 80);

g.setColor(Color.blue);
g.fillOval(80, 60, 80, 80);

g.setColor(Color.green);
g.fillOval(40, 60, 80, 80);

The paintComponent() method
When does the paintComponent() method get called?

• when the window is first created and displayed
• when the window is resized by the user

This is the first of several methods we will
encounter which is called automatically

paintComponent(...)

imagine
someone
listening for
events that
would require
the window to
be refreshed

