
Page 1

CompSci 101 – Exercises

Some of these exercises may be demonstrated in class, others you will be expected to
practise on your own. Model solutions to these exercises will be made available on the
class website.

Event handling (ActionEvents)

Exercise 24.1

Complete the code for the program shown
in the screen shot to the right.

When the window first appears, a
JButton labelled "Draw" and a
JTextField initially containing the text
"Enter size" should be displayed.

A circle should also be drawn in the centre
of the window, with a radius of size 20
pixels. The width and the height of the
window is 300 pixels.

The user can change the size of the circle
that is drawn by entering a value in the
JTextField and pressing the "Draw"
button.

For example, in the screen shot to the right
the user has entered the value 90 and then
pressed the "Draw" button. The result of
this is that a new circle is drawn, still in
the centre of the window, but this time
with radius 90.

Page 2

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

ActionListener {

 private JButton bDraw;
 private JTextField tSize;
 private int size;

 public MyJPanel() {

 }

 public void actionPerformed(ActionEvent e) {

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 }
}

Page 3

Exercise 24.2

You need to complete the
actionPerformed() method for the
program shown on the right, which
consists of 3 JTextFields and a
JButton. The screenshot shows what
the window looks like when the program
first starts.

When the user enters values into the top
two JTextFields and then presses the
"Add" button, the sum of the entered
numbers should be displayed in the third
JTextField. An example of this is
shown in the screenshot on the left.

Complete the actionPerformed() method for this program below:

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

ActionListener {

 private JTextField tOne, tTwo, tResult;
 private JButton bAdd;

 public MyJPanel() {

 tOne = new JTextField(10);
 tTwo = new JTextField(10);
 tResult = new JTextField(10);
 bAdd = new JButton("Add");
 bAdd.addActionListener(this);
 add(tOne);
 add(tTwo);
 add(bAdd);
 add(tResult);
 }

 public void actionPerformed(ActionEvent e) {

 }
 }

Page 4

Event handling (MouseEvents)

Exercise 25.1

For this exercise, you should write an application which displays vertical lines on the
window at each location where the mouse button is pressed. When the program first
starts, as shown in the screenshot below, the window should be blank (the window is
300 pixels wide and 100 pixels high):

Each time the mouse button is pressed, a vertical line should be drawn on the window
from top to bottom. The screenshot below shows the program after the mouse has been
pressed five times:

There is a limit on the number of lines that can be displayed however. Only 10 lines
can be displayed on the window in total – this value 10 is given by the constant
MAX_LINES declared in the program.

For example, the screenshot below shows the window after the mouse has been pressed
another five times.

After this point, no further action takes place in the program when the mouse is pressed.

The instance variables have already been declared for you. Complete the rest of the
source code on the next page:

Page 5

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

MouseListener {
 private final int MAX_LINES = 10;
 private int[] lines;
 private int numLines;

 public MyJPanel() {

 }

 public void mousePressed(MouseEvent e) {

 }

 public void mouseReleased(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 }
}

Page 6

Points and Rectangles

Exercise 25.2

For this exercise, you need to complete the source code for the program described
below.

When the window first appears, the
outline of a rectangle is drawn in the
centre. When the mouse button is
pressed, if its location is inside the
rectangle, the rectangle will be drawn
filled with colour. If the location of the
mouse press is outside the rectangle, the
rectangle will be drawn in outline (as it
appears initially).

For example, when the program first
starts (or when the mouse is pressed
outside the rectangle), the rectangle is
drawn in outline as shown in the
screenshot to the right:

If the mouse is pressed inside the rectangle, it is drawn filled with colour, as shown
below:

The window is 300 pixels wide and 300 pixels high, and the rectangle is 100 pixels
wide and 100 pixels high and is positioned approximately in the middle of the window.

Complete the source code for this program on the next page. The instance variables
have been declared for you.

Page 7

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

MouseListener {
 private Rectangle rect;
 private boolean clickInside;

 public MyJPanel() {

 }

 public void mousePressed(MouseEvent e) {

 }

 public void mouseReleased(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 }
}

Page 8

Exercise 25.3:

a) What would the output of the following code segment be?

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyJPanel extends JPanel {

 Point p;
 Rectangle r1, r2, r3;

 public MyJPanel() {

 p = new Point(80, 100);
 r1 = new Rectangle(50, 75, 50, 30);
 r2 = new Rectangle(110, 90, 40, 40);
 r3 = new Rectangle(80, 120, 90, 20);

 System.out.println(r1.contains(p));
 System.out.println(r2.contains(p));

 System.out.println(r1.intersects(r2));
 System.out.println(r1.intersects(r3));
 System.out.println(r2.intersects(r3));
 }
}

Page 9

b) If the following paintComponent() method was added to the MyJPanel class
above, sketch what the graphical output of the program would look like in the window
below.

 public void paintComponent(Graphics g){
 super.paintComponent(g);

 g.drawRect(r1.x, r1.y, r1.width, r1.height);
 g.drawRect(r2.x, r2.y, r2.width, r2.height);
 g.drawRect(r3.x, r3.y, r3.width, r3.height);

 g.fillOval(p.x-2, p.y-2, 4, 4);
 }

Page 10

Exercise 25.4:

Complete the leftmost() method which is passed an array of Point objects as a
parameter and returns a reference to the Point in the array which has the smallest x
value (i.e. is the leftmost point).

If you complete the method correctly, then the code below:

 Point[] pts = new Point[5];
 pts[0] = new Point(10, 10);
 pts[1] = new Point(20, 50);
 pts[2] = new Point(5, 999);
 pts[3] = new Point(25, 25);
 pts[4] = new Point(10, -10);

 Point p = leftmost(pts);
 System.out.println(p.x + " , " + p.y);

would produce the output:

 5 , 999

Complete the leftmost() method in the space below:

 private Point leftmost(Point[] pts) {

 }

Page 11

Arrays of Points

Exercise 25.5:

The output of the following code segment:

 Point[] pts = new Point[3];

 pts[0] = new Point(200, 100);
 pts[1] = new Point(100, 200);
 pts[2] = new Point(300, 200);

 System.out.println(pts[0].x + " , " + pts[0].y);
 System.out.println(pts[1].x + " , " + pts[1].y);
 System.out.println(pts[2].x + " , " + pts[2].y);

is given below:

 200 , 100
 100 , 200
 300 , 200

What would be the output if the following code is added after the statements above:

 Point temp = pts[1];
 pts[1] = pts[2];
 pts[0].y = pts[1].x;
 pts[2].x = pts[0].x;
 pts[2] = temp;

 System.out.println(pts[0].x + " , " + pts[0].y);
 System.out.println(pts[1].x + " , " + pts[1].y);
 System.out.println(pts[2].x + " , " + pts[2].y);

Page 12

Exercise 25.6:

Complete the containsAll() method which is passed a Rectangle object and an
array of Point objects as parameters and returns true if all of the Points in the
array are contained inside the position of the Rectangle:

 private boolean containsAll(Rectangle rect,

Point[] pts) {

 }

Exercise 25.7:

Complete the intersectsAny() method which is passed a Rectangle object and
an array of Rectangle objects as parameters and returns true if the first
Rectangle intersects with any of the Rectangles stored in the array:

 private boolean intersectsAny(Rectangle rect,

Rectangle[] theRects) {

 }

Page 13

Exercise 25.8:

For this exercise you need to complete the source code for a program that behaves as
follows.

When the program first starts, a rectangle
should be drawn on the screen at some
random location, and with a random width
and a random height.

If the mouse button is pressed outside the
rectangle, nothing should happen – as
shown in the screenshot on the right:

However, if the mouse button is pressed anywhere inside the rectangle, the rectangle
should disappear. This is shown in the screenshot below:

Make sure that if the mouse button is
pressed after the rectangle has
disappeared, the code you write would not
generate any
NullPointerExceptions.

The constructor method has been written
for you – you need to complete the
mousePressed() and
paintComponent() methods.

Page 14

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyJPanel extends JPanel implements

MouseListener {
 private Rectangle rect;

 public MyJPanel() {

 int x = (int)(Math.random() * 200);
 int y = (int)(Math.random() * 200);
 int width = (int)(Math.random() * 200);
 int height = (int)(Math.random() * 200);

 rect = new Rectangle(x, y, width, height);

 addMouseListener(this);
 }

 public void mousePressed(MouseEvent e) {

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 }

 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
}

Page 15

Animation

Exercise 27.1:

For this exercise, you need to complete the source code for the MyJPanel class so that
the program performs exactly as described below.

When the window first appears, a rectangular
border is drawn near the edges of the window. In
addition, a filled-in circle is drawn so that it just
touches the top edge of this rectangular border.
The horizontal position of this circle is centred
exactly in the middle of the rectangular border.

The screenshot on the right shows what the
window should look like when it first appears.

When the mouse button is pressed anywhere
inside the window, this circle should start
moving down the screen as though it were

falling. For example the screenshot on the left below shows the program shortly after
the mouse button has been pressed.

The circle should continue to fall down the screen until it reaches the bottom edge of
the rectangular boundary, at which point it must stop as shown on the right below.

Notice, the paintComponent() method has been provided to you. You need to
complete the constructor method, the actionPerformed() method and the
mousePressed() method.

Page 16

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

ActionListener, MouseListener {
 private Timer t;
 private Point pos;

 public MyJPanel() {

 }

 public void mousePressed(MouseEvent e) {

 }

 public void actionPerformed(ActionEvent e) {

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 g.fillOval(pos.x-25, pos.y-25, 50, 50);
 g.drawRect(50, 50, 300, 300);
 }

 public void mouseReleased(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
}

Page 17

Exercise 27.2:

For this exercise you need to complete the MyJPanel
class for the program described below.

When the program first starts, a square is drawn near
the left hand edge of the window. This square should
start moving towards the right as indicated by the
arrow in the screen shot to the right.

When the square reaches the right hand edge of the
window, it should change direction and start moving
back towards the left, as shown in the screenshot on
the right.

The side length of the square should be 20 pixels, and
you can assume the window is 200 pixels wide.

You don't need to worry about what happens when the
square reaches the left hand edge of the window.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class MyJPanel extends JPanel implements

ActionListener {
 private Timer t;

private Rectangle theSquare;
private boolean movingLeft;

 public MyJPanel() {
 setBackground(Color.white);

 t = new Timer(100, this);
 t.start();
 }

Page 18

 public void actionPerformed(ActionEvent e) {

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 }

}

