
Computer Science 101 SS C
Lecture 15

Classes 1

2

Summary
We have introduced the use of arrays for both primitive types and for

objects.
An array:
• holds a sequence of variables of the same type
• each element in the array is associated with an index value
• index values start at 0
• every array has a length field which stores the number of elements

in the array
• arrays are objects

numbers

int [] numbers = {7, 6, 2, 0, 1};

3

Summary
We can access every element in an array systematically using a

loop:
This is commonly done with a for loop like:

numbers

for (int i = 0; i < numbers.length; i++) {
System.out.println(numbers[i]);

}

this is how we access the
length field of an array

4

Summary
We discussed how aliasing works with object variables, and how it can

lead to confusing code.

We also showed how arrays can be passed as parameters or as return
values.

Lastly we examined how object parameters are a form of aliasing and saw
how an understanding of aliasing allows us to predict the effect of
“updating” object parameters.

5

Contents
Java is an object oriented programming language
Representing real world objects in programs
Structure of a class definition
Instance variables
Constructors
Instance methods
Common Errors

Coursebook: pages §14.1 - §14.4.1

6

Java is Object Oriented
The world is made up of real world objects

e.g. students, dogs, cars, cats, books.

Objects are the things our programs deal
with.

7

State and behaviour
Each real world object has:

 state - information stored about an object.

and

 behaviour - functionality of the object i.e
 what can you do with that object.

8

Example 1 - state and behaviour
Consider a system managing university students. A
student object has:

state e.g.

behaviour e.g.

id, name, age, contact number, address, stage,
completed courses, current courses, faculty, …

add a new course, change
contact number, change
address, set faculty, …

9

Example 2 - state and behaviour
Consider a system managing university courses. A
course object has:

state e.g.

behaviour e.g.

id, name, faculty, list of current students, stage
number, list of lecture times, semester offered,
campus, test date, exam date …

add/remove student to course,
change test date, change lecture time,
set semester offered …

10

Ex01 - state and behaviour
Consider a system managing university lecture
rooms. A lecture room object has:

state e.g.

behaviour e.g.

11

Software objects - state and behaviour

A software object stores its state in one
or more

A software object implements its
behaviour with

variables

methods

12

Software objects - state and behaviour
Every object is a bundle of variables and
related methods.

Note: The term, object, is the same as the
term, instance.

13

Ex02 - String objects
In programs you have used String objects.
What is the state and behaviour of a String
object?
String word1 = new String("object");

String word2 = new String("instance");

word2 = word2.toUpperCase();

String letter = word1.substring(0,1);

int length = word1.length();

14

Java class
A class is the structure we use to define a
category of objects. A class defines the
state and behaviour of a category of objects.

A class corresponds to a Java type.

15

Class and objects
A class is a template for creating objects. Classes
are the blueprint defining the state and the
behaviour which any instance of that class will
have.

Analogies for class and object:
Cookie cutter and cookies.
Factory mold and products produced from that mold.
Form stamp and filled out forms.

16

Java class definition
Java class definitions have the following
structure:

public class ClassName {
instance variables

constructors

instance methods
}

17

Instance variables
Instance variables allow us to define what
information each instance of the class will store.

 These variables are defined under the class
 header OUTSIDE any method definition.

 The scope of an instance variable is the
 whole class.

(In CompSci 101 instance variables which we define
always have the modifier private.)

18

Example - instance variables
Consider defining a class to represent individual
chocolates. The instance variables represent the
information which all instances of the Chocolate
class will contain.

public class Chocolate {
 private int code;
 private String description;
 private double price;
}

19

What is a constructor?
Constructors are special methods defined inside a
class. Constructors are called whenever a new
instance of the class is required.

Continuing with the analogy of a class being like the
mold in a factory. Whenever we want to create a
new object from the mold, we make a call to the
constructor telling the factory we want to create a
new object from that mold.

20

Constructor - rules
The name of the constructor is the same
 as the class name.
The constructor does not have a return
 type in the header.
Constructor definitions are nearly always
preceded by the modifier public.

Constructors are often used to initialise the
 instance variables.
A class can contain more than one constructor.

21

Example 4 - constructor
public class Chocolate{
 private int code;
 private String description;
 private double price;

 public Chocolate(int c,String desc,double p){
 code = c;
 description = desc;
 price = p;

 }
}

22

Instance methods
Instance methods are used to define the
behaviour of an object i.e. what operations
are possible on objects of the class.

These methods are defined inside the
class.

We define methods the same way as we
have done in all our java programs.

23

Instance methods - which ones?
What do we want to be able to do with an
instance of this class?

getPrice(): get the price of a single
Chocolate object.
pricePer20(): get the price for 20 Chocolate
objects.
setDescription(): change the description of
the Chocolate object.

24

Example 5 - instance methods
public class Chocolate {
 private int code;
 private String description;
 private double price;
 public Chocolate(int c, String desc, double p) {

 code = c;
 description = desc;
 price = p;

 }

}

 public double getPrice() {
 return price;
 }
 public double getPrice20() {
 return price * 20 * 0.8;
 }
 public void setDescription(String desc) {
 description = desc;
 }

25

Chocolate class - creating instances

We are now able to use the Chocolate
class definition to create as many new
instances as are needed.

public class ProgramClassL14 {
 public void start() {
 Chocolate choc1, choc2;
 choc1 = new Chocolate(451,"Nut Dream",1.75);
 choc2 = new Chocolate(321,"Inner Yum",1.55);
 }
}

26

Visualising Chocolate class objects

choc1 and choc2, created in the start()
method (previous slide) have their own copy of
ALL the instance variables (code,
description, price). The choc1 and choc2
objects can be visualised:

code: 451
description: "Nut Dream"
price: 1.75

code: 321
description: "Inner Yum"
price: 1.55

choc1
choc2

27

Ex03 - creating instances
Write code which creates the instance shown below:

code: 101
description: "YumYum rush"
price: 1.95

choc3

public class ProgramClassL14 {
 public void start() {
 Chocolate choc3;

 }
}

28

Dot notation
Once an object has been created, we can call the
instance methods using that object (dot notation):

public class ProgramClassL14 {
 public void start() {
 Chocolate choc4;
 choc4 = new Chocolate(103, "Nuts", 1.95);

 System.out.println("$" + price1 + ", $"+ price20);
 }
}

 choc4.setDescription("Choccy Delight");

 double price1 = choc4.getPrice();

double price20 = choc4.getPrice20();

29

Ex04 - calling instance methods
What is the output?

public class ProgramClassL14 {
 public void start() {
 Chocolate choc4;
 choc4 = new Chocolate(102, "Divine",1);
 choc4.setDescription("Dark Mystery");
 double price1 = choc4.getPrice();
 double price20 = choc4.getPrice20();
 System.out.println("$" + price1 + ", $" + price20);
 }
}

code: 102
description: "Dark Mystery"
price: 1

choc4

30

Putting it all together
You are now working with THREE files or more e.g.

 The application file e.g. L14.java.
 The program class e.g ProgramClassL14.java.
 A class definition e.g Chocolate.java.

and sometimes, if you are using input from the user:
 The Keyboard class i.e. Keyboard.java.
and sometimes even more files, if you are using
instances of more than one class.

31

Putting it all together
The files
in your
directory

and after
they have
all been
compiled:

32

Putting it all together
In 101 we define each class in its own file. For
example the class definition for the Chocolate
class is stored in a file called Chocolate.java.

After all the classes have been compiled, the
application is executed. To run the application:

> java L14
....

33

Ex05 - Constructor problem
Using the Chocolate class defined on the previous slides,
what is the problem with the following code?

public class ProgramClassL14 {
 public void start() {
 Chocolate choc5;
 choc5 = new Chocolate(333, "Nutaholic");
 }
}

34

Ex06 - instance method problem
Using the Chocolate class defined on the previous slides,
what is the problem with the following code?

public class ProgramClassL14 {
 public void start() {
 Chocolate choc6;
 choc6 = new Chocolate(334, "Creamy", 1);
 String desc = choc6.setDescription("MMM!");
 }
}

35

Ex07 - instance method problem
Using the Chocolate class defined on the previous slides,
what is the problem with the following code?

public class ProgramClassL14 {
 public void start() {
 Chocolate choc7;
 choc7 = new Chocolate(337, "ChocOoze", 1);
 double price20 = choc7.getPrice20(1.5);
 }
}

36

What you need to know
Objects have state (instance variables) and behaviour

(instance methods)
Class vs objects

Structure of a class definition
Instance variables
Constructors
Instance methods

How to create instances of a class
How to draw a diagram of an instance

37public class Chocolate {
 private int code;
 private String description;
 private double price;

 public Chocolate(int c,String desc,double p){
 code = c;
 description = desc;
 price = p;

 }

}

 public double getPrice() {
 return price;
 }
 public double getPrice20() {
 return price * 20 * 0.8;
 }
 public void setDescription(String desc) {
 description = desc;
 }

