
3/29/07 COMPSCI 101 - Lecture 103/29/07 COMPSCI 101 - Lecture 10 1

COMPSCI 101
Principles of Programming

Lecture 13

Arrays (chapter 15)



3/29/07 COMPSCI 101 - Lecture 10 2

Review
Looping is a common program activity. Loops normally can be
decomposed into four parts:
continuation test,
body,
updating the continuation test components,
initialisation.

We have seen how to use both while and for loops.

We have also seen how to use break statements to “exit” loop statements
and to use continue statements to “skip” the rest of the current iteration
of the loop and “continue” on to the next iteration.



3/29/07 COMPSCI 101 - Lecture 10 3

Arrays



3/29/07 COMPSCI 101 - Lecture 10 4

Why use arrays?
Let's say we wanted to store the prices of several books.  We might

declare three variables of type int:

int priceOfBook1;
int priceOfBook2;
int priceOfBook3;

How would we calculate the total cost of the books?

int totalPrice = priceOfBook1 + priceOfBook2 +
priceOfBook3;

priceOfBook1

priceOfBook2

priceOfBook3

50

75

13



3/29/07 COMPSCI 101 - Lecture 10 5

Why arrays?
What if we now have 1000 books?

int priceOfBook1;
int priceOfBook2;
int priceOfBook3;
....
int priceOfBook1000;

Now calculating the total cost of the books is very cumbersome:

int totalPrice = priceOfBook1 + priceOfBook2 +
priceOfBook3 + priceOfBook4 +

... + ... + ... + ...
+ priceOfBook1000;

priceOfBook1

priceOfBook2

priceOfBook3

50

75

13

priceOfBook1000 91



3/29/07 COMPSCI 101 - Lecture 10 6

Analogy
single variable array

8172 Green St 3 / 156 Green St

a a
0 1 2 3 4

Referred 
to as: a a[3]



3/29/07 COMPSCI 101 - Lecture 10 7

One dimensional arrays

numbers

An array:
• holds a sequence of elements of the same type
• each element in the array is associated with an index value
• index values start at 0
• every array has a length field which stores the number of elements

in the array
• arrays are objects



3/29/07 COMPSCI 101 - Lecture 10 8

Arrays of different types
An array of integers:

An array of Strings:



3/29/07 COMPSCI 101 - Lecture 10 9

Declaring an array variable
Formal syntax:

<type>[] <identifier>;

For example:

int[] numbers;
double[] taxes;
String[] words;

numbers

taxes

words

.

.

.

These declarations do not
set aside any space for the
elements of the arrays

After the declarations, these
variables store the value null
(which means they don't point
to anything)



3/29/07 COMPSCI 101 - Lecture 10 10

Creating an array
Formal syntax:

<identifier> = new <type>[<number of elements>];

For example:

numbers = new int[24];
taxes = new double[912];
words = new String[5];

numbers

words

choose carefully – we cannot
change the size of an array

once it has been created



3/29/07 COMPSCI 101 - Lecture 10 11

Initial values for elements
When we create an array, all the elements are initialised automatically
to standard default values:



3/29/07 COMPSCI 101 - Lecture 10 12

Using an array
The most important feature of an array is the ability to refer to a

specific element by using its index number:

numbers

numbers[0] numbers[11] numbers[23]

numbers[24] is a run-time error



3/29/07 COMPSCI 101 - Lecture 10 13

Arrays and loops
We can access every element in an array systematically using a

loop:

numbers[i]

i is a loop variable which counts from 0 up
to the last index of the array

numbers



3/29/07 COMPSCI 101 - Lecture 10 14

Arrays and loops
This is commonly done with a for loop like:

numbers

for (int i = 0; i < numbers.length; i++) {
System.out.println(numbers[i]);

}

this is how we access the
length field of an array



3/29/07 COMPSCI 101 - Lecture 10 15

The length field
Don't confuse accessing the length field of an array with calling

the length() instance method on a String:

a.length

a.length()

a must be an array,
and we are accessing
its length field to find

out how many
elements it stores

a must be an String,
and we are calling its
length() method to

find out how many
characters it has

the difference is obvious!



3/29/07 COMPSCI 101 - Lecture 10 16

Initialising an array
We can assign each element a value in turn:

numbers[0] = 2;
numbes[1] = 32;
.....
numbers[23] = -56;

Or, we can construct the array with an array initialiser statement:

int[] numbers = {2, 32, ....., -56};

numbers



3/29/07 COMPSCI 101 - Lecture 10 17

Processing arrays
Processing an array usually means performing some operation on

every element of the array.

Examples:
• summing the elements

int sum = 0;
for (int i = 0; i < nums.length; i++) {

sum += nums[i];
}

numbers

sum 07131516



3/29/07 COMPSCI 101 - Lecture 10 18

“Copying” array references
Consider the following code:

int[] a = {7, 6, 2, 0, 1};
int[] b;

b = a;

a

b

b[3] = 100;

100



3/29/07 COMPSCI 101 - Lecture 10 19

Aliasing (not in book)
If we say that “John Smith” is an alias for Walter Jones, we’re saying that

both the name “John Smith” and the name “Walter Jones” refer to the
same person!

If we say that the object variable “x” is an alias for the object variable “y”
then both names refer to the same object.

For example, in
int[] a = {7, 6, 2, 0, 1};
int[] b;
b = a;

After the assignment operation, both “b” and “a”
refer to the same array object and are therefore
aliases.



3/29/07 COMPSCI 101 - Lecture 10 20

Aliasing (not in book)
Aliasing can lead to some counter-intuitive

behaviour if you don’t understand that this is
going on.  For example, consider the following:

int [] a = {1,3,5,7};

int [] b = a;

System.out.println(a[2]);
What is printed out?

5
b[2] = 7;
System.out.println(a[2]);

What is printed out? 7

Aliasing can make your program harder to understand!!
Use it with care!!



3/29/07 COMPSCI 101 - Lecture 10 21

Copying array values
To actually duplicate an array, we actually have to create a new

array object and copy the values across from the old array to
the new one, we can use a loop to copy the values across.

int[] a = {7, 6, 2, 0, 1};
int[] b;
b = new int[a.length];
for (int i = 0; i < b.length; i++) {

b[i] = a[i];
}

a

b



3/29/07 COMPSCI 101 - Lecture 10 22

Arrays as parameters
There is nothing unusual about using arrays as parameters, or as

return types from a method:

Consider the addArrays() method given below:

public int[] addArrays(int[] a, int[] b) {

int[] sum = new int[a.length];

for (int i = 0; i < a.length; i++) {
sum[i] = a[i] + b[i];

}

return sum;
}



3/29/07 COMPSCI 101 - Lecture 10 23

Arrays as parameters
public int[] addArrays(int[] a, int[] b) {

int[] sum = new int[a.length];

for (int i = 0; i < a.length; i++) {
sum[i] = a[i] + b[i];

}

return sum;
}

0 1 2

23 1 5

0 1 2

20 1 2

x

y

0 1 2

43 2 7sum

int[] x = {23, 1, 5};
int[] y = {20, 1, 2};

int[] z = addArrays(x, y);

z

a

b



3/29/07 COMPSCI 101 - Lecture 10 24

Understanding Parameters - Review
public int add(int a, int b) {

int sum = a + b;

a = sum;
return sum;

}

x

y

int x = 23;
int y = 20;

int z = add(x, y);
System.println(x);

z

a

20b

23

23

20

43

43

23



3/29/07 COMPSCI 101 - Lecture 10 25

Understanding Parameters
public int[] addAs(int[] a, int[] b){

  int[] sum = new int[a.length];

  for (int i = 0; i < a.length; i++){
  sum[i] = a[i] + b[i];

  }
  a[0] = sum[0];
  return sum;
}

int[] x = {23, 1, 5};
int[] y = {20, 1, 2};

int[] z = addAs(x, y);
System.println(x[0]);

public int[] addAs(int[] a, int[] b){

  int[] sum = new int[a.length];

  for (int i = 0; i < a.length; i++){
  sum[i] = a[i] + b[i];

  }
  a = sum;
  return sum;
}

What difference (if any) will using the left version 
(instead of the right version) of “addAs” make when 
“x[0]” is printed by the above code? 



3/29/07 COMPSCI 101 - Lecture 10 26

Understanding Parameters
public int[] addArrays(int[] a, int[] b) {

int[] sum = new int[a.length];

for (int i = 0; i < a.length; i++) {
sum[i] = a[i] + b[i];

}
a[0] = sum[0];
return sum;

}

0 1 2

23 1 5

0 1 2

20 1 2

x

y

0 1 2

43 2 7sum

int[] x = {23, 1, 5};
int[] y = {20, 1, 2};

int[] z = addArrays(x, y);
System.println(x[0]);

z

a

b

43

43



3/29/07 COMPSCI 101 - Lecture 10 27

Understanding Parameters
public int[] addArrays(int[] a, int[] b) {

int[] sum = new int[a.length];

for (int i = 0; i < a.length; i++) {
sum[i] = a[i] + b[i];

}
a = sum;
return sum;

}

0 1 2

23 1 5

0 1 2

20 1 2

x

y

0 1 2

43 2 7sum

int[] x = {23, 1, 5};
int[] y = {20, 1, 2};

int[] z = addArrays(x, y);
System.println(x[0]);

z

a

b

23



3/29/07 COMPSCI 101 - Lecture 10 28

Summary
We have introduced the use of arrays for both primitive types and for

objects.
An array:
• holds a sequence of variables of the same type
• each element in the array is associated with an index value
• index values start at 0
• every array has a length field which stores the number of elements

in the array
• arrays are objects

numbers

int [ ] numbers = {7, 6, 2, 0, 1};



3/29/07 COMPSCI 101 - Lecture 10 29

Summary
We can access every element in an array systematically using a

loop:
This is commonly done with a for loop like:

numbers

for (int i = 0; i < numbers.length; i++) {
System.out.println(numbers[i]);

}

this is how we access the
length field of an array



3/29/07 COMPSCI 101 - Lecture 10 30

Summary
We discussed how aliasing works with object variables, and how it can

lead to confusing code.

We also showed how arrays can be passed as parameters or as return
values.

Lastly we examined how object parameters are a form of aliasing and saw
how an understanding of aliasing allows us to predict the effect of
“updating” object parameters.


