
1

COMPSCI 101
Principles of Programming

Lecture 13

While & for loops (chapter 13)
Break & Continue statements (extra)

2

Review

3

Return
Returning values

• Allows a method to pass information back to the invoking code
• Can only return a single value (primitive or object)
• Method is executed then the return value is used in place of the

method call

Formal Syntax
private <returnType> methodIdentifier(… parameters …) {

.. code goes here
return <value>;

}

private String getName() {
return "Fred Fish";

}

the value returned must be
the same type as the one
declared in the method
header

4

Comparing Strings

To compare two String variables character by character, we must use
the .equals() instance method

a

b

c

"computer"

"put"

"put"
a = = c is false

a.equals(c) is true

5

5

x

y

x == y is true

5

Looping

6

Repeating a task
We can use a loop to repeatedly execute a statement (or a block of

statements).

Formal Syntax

The syntax of a while loop is similar to that of an if statement:

while(condition) {
statement_1;
...
statement_n;

}

7

While loop

• First, the condition is tested.
• If the condition is true, then the statements (known as the body of

the loop) are executed.
• After the statements are executed, control returns to the top of the

loop, and the condition is tested again.
• As long as the condition is true, the statements will be executed

while(condition) {
statement_1;
...
statement_n;

}

The syntax of a while loop is similar to that of an if statement:

8

Flow of control

Is the condition
true?

Statement before
the loop

Body of the loop

Statement after the loop

YES

NO

9

Example
For example, the following program simulates paying for parking:

int numberOfCoins = 4;
while(numberOfCoins > 0) {

numberOfCoins--;
System.out.println("Insert a coin");

}
Insert a coin
Insert a coin
Insert a coin
Insert a coin

10

Designing a loop

Is the condition
true?

Statement before
the loop

Body of the loop

Statement after the loop

YES

NO

Initialisation

Continuation test

Body of the loop

Update of continuation
test components

11

Designing a loop example

Initialisation

Continuation test

Body of the loop

Update of continuation
test components

isValid = false

 ! isValid

s = getInput();
isValid = check(s);

No

Next Sentence

Yes

12

Common situations
Loops commonly occur in situations such as:

• validating input
• processing until done - hammering a nail
• counter - dealing cards
• reading an unspecified number of values - paying bills
• iterating through a data structure - adding arrays

13

Aces

2

2

A

A

3

3

A

A

A

A

2

2

A

A
2 11 1123

Total = 51
= 41
= 31
= 21

1
11
1

11
1

int total = 51;
int numberOfAces = 4;

14

Aces
if (total > 21) && (numberOfAces > 0) {

total = total – 10;
numberOfAces--;

}

if (total > 21) && (numberOfAces > 0) {
total = total – 10;
numberOfAces--;

}

....

while (total > 21) && (numberOfAces > 0) {
total = total – 10;
numberOfAces--;

}

one way we could calculate the
total of the hand would be to use

several if statements

another way would be
to use a loop

15

Blocks of code – variable scope
Variables only exist in the block of code in which they are

declared

public class LectureExample{
public void start() {

double cost = 53.0; //Cost in dollars
final double GST = 0.125; //Tax percentage

int age = (int)(Math.random() * 100 + 1);
if (age <= 12 || age >= 65){

double discount = 0.15;
System.out.println("Eligible for discount");

}

double price = cost * (GST + 1) * (1 - discount);
System.out.println(price);

}
}

scope

illegal

16

For loop
A for loop is another type of loop:

• more compact than a while loop
• otherwise equivalent

Formal Syntax

for(initialisation; condition; update) {
statement_1;
...
statement_n;

}

17

Comparison of while and for loops

int counter = 0;
while (counter < MAX) {
 System.out.println(counter);
 counter++;
}

for (int counter = 0; counter < MAX; counter++) {
 System.out.println(counter);
}

18

Scope of variables

for (int i = 0; i < 10; i++) {
int count = 0;
count = count + i;
System.out.println(count);

}

Any variables declared in the initialization section of the for loop only
exist inside the for loop – and cannot be referred to outside of the loop.

Any variables declared inside the body of a loop are also local to the
loop body only

• the scope of both i and count is inside the loop body
• they cannot be referred to by code outside the body of the loop

19

The following material

is not in the book.

20

Breaking Out of the Loop
In both the while and the for statements, the test to stop looping has to be

at the start of the loop, but often the test comes naturally in the
middle. Happily, Java provides a way of leaving loops early: the break
statement.

“break” is used as follows:
<loop header> {

… <code>
if (test2) break; // exit from while loop

 … <code skipped if “break” executed>
}

The “break” statement causes us to jump out of the loop completely!

21

Break Example
For example:
inputIsValid = false;
while (! inputIsValid) {

System.out.println("Type in command”);
s = Keyboard.readInput();
inputIsValid = isValid(s);
if (! inputIsValid) System.out.println(“Bad command”);

}
Could be re-written as:
while (true) {

System.out.println("Type in command”);
s = Keyboard.readInput();
if (isValid(s)) break;
System.out.println(“Bad command”);

}

22

Skipping the Rest of One Iteration
Sometimes however, we don’t want to break out of the loop, we simply

want to skip the rest of the current iteration. For example:

while(test1) {
<code to get some input>
if (! inputIsComment) {

<code to process the input>
}

}

If the input is just a comment, i.e., doesn’t need processing, then we want
to skip all the processing code and loop back to getting more input
and processing that.

To skip the rest of the current iteration, we use the “continue” statement.

23

Continue Looping
For example,
while(test1) {

<code to get some input>
if (! inputIsComment) {

<code to process the input>
}

}
could be re-written as:
while(test1) {

<code to get some input>
if (inputIsComment) continue;
<code to process the input>

}

24

Summary
Looping is a common program activity. Loops normally can be

decomposed into four parts:
• continuation test,
• body,
• updating the continuation test components,
• initialisation.

We have seen how to use both while and for loops.

We have also seen how to use break statements to “exit” loop statements
and to use continue statements to “skip” the rest of the current
iteration of the loop and “continue” on to the next iteration.

