
1

COMPSCI 101
Principles of Programming

Lecture 12

Return statements
Comparing Strings

Assignment 3 Preview

2

Review of If Statements

3

Choosing between 2 options
Choose one option or the other, but not both.

Waterfall

Cave

Village

Birds

4

if-else statements
Discussed so far:

• If “something” is true then do “this”

Using an optional else clause
• If “something” is true then do “this” otherwise do “that”

public void start() {
System.out.println(“Waterfall”);

if (likesBirds) {
System.out.println(“Birds”);

} else {
System.out.println(“Cave”);

}
System.out.println(“Village”);

}

5

Syntax for if-else
if statements have an optional else

Formal Syntax:

if (condition) {
statement_A1;
...
statement_An;

} else {
statement_B1;
...
statement_Bn;

}

If the condition is true, then
statements in block A will

be executed

If the condition is false,
then statements in block B

will be executed

6

“Return” statements allow methods
to act like functions

7

Return
Returning values

• Allows a method to pass information back to the invoking code
• Can only return a single value (primitive or object)
• Method is executed then the return value is used in place of the

method call

Formal Syntax
private <returnType> methodIdentifier(… parameters …) {

.. code goes here
return <value>;

}

private String getName() {
return "Fred Fish";

}

the value returned must be
the same type as the one
declared in the method
header

8

Methods that return values
Must return the same type as the type declared in the method header

Every method that returns a value must use the keyword "return"
• Value returned must be same type as declared in signature

private int getAge() {
return "23";

}
Incorrect

types don't match

private int getAge() {
System.out.println(23);

}

Incorrect
does not return value

9

Example
Calculating the average of two integers

• Pass the integers as parameters to the method
• Calculate the average
• Return the solution

private double getAverage(int a, int b) {
double result = (a + b) / 2.0;
return result;

}

private double getAverage(int a, int b) {
return (a + b) / 2.0;

}

These are two different ways of writing the same method. Any expression of the
correct type can follow the keyword "return" (e.g. a variable or a formula)

10

Calling a method that returns a value
Given the following method definition:

private double getAverage(int a, int b) {
return (a + b) / 2.0;

}

We would NOT call the method like this:

public void start() {

getAverage(10, 15);
}

this is equivalent to writing
the statement:

12.5;

which does not make senseWe should do something with
the value that is returned

12.5

11

Calling a method that returns a value

When we call the getAverage method, we need to process the result
in some way. We can process the result in any way that we could
process a value of the same type as the return type of the method.

For example, we can assign the result to a variable of the correct
type:

double result;
result = getAverage(10, 15);

12.5

12

Calling a method that returns a value

Or we could use the result as part of some expression:

System.out.println(100 * getAverage(10, 15));
12.5

13

Temperature conversion
The convertFahrenheitToCelsius() method definition is not as

general as it could be:

public class MyProgram {

private void convertFahrenheitToCelsius() {
System.out.print("Enter temperature (F): ");
int input = Integer.parseInt(Keyboard.readInput());
int output = (int)((5.0/9)*(input - 32));
System.out.print("Celsius = " + output + "\n");

}

public void start() {
convertFahrenheitToCelsius();

}
} • input must come from the keyboard

• output always goes to the screen

14

Temperature conversion
We can make the convertFahrenheitToCelsius() method more

general by passing input to it via parameters, and receiving output
from it as a return value:

private int convertFahrenheitToCelsius(int degF) {
int degC = (int)((5.0/9)*(degF - 32));
return degC;

}

Now, the input value can come from anywhere and the output value
can be processed in any way we like.

15

Checking whether two String variables
“contain” the same string of characters.

16

Comparing Strings

public class MyProgram {

 public void start() {

String a = "put";
String b = "computer";

String c = b.substring(3,6);

System.out.println(a + " " + c + " " + (a == c));

 }
}

What is the output of the following code?

put put false

17

Comparing Strings
Why?

“String” in Java is not a primitive data type, rather it is a class.

When we create an instance of String, it is an object.
When we declare an object variable, we don’t reserve space for that
object, rather we reserve space for a pointer.

String c;

When we create an object, then we actually reserve space for that
object.

String.new(“hi”)

When we assign an object to an object variable, we cause the variable
to point to the object.

c = “hi”;

c

h i

c h i

18

Comparing Strings
“a == c” asks whether a points to the same object as c points to.

a

b

c

"computer"

"put"

"put"

String c = b.substring(3,6);

a = = c is false

String a = "put";

String b = "computer";

19

Comparing Strings

To compare two String variables character by character, we must use
the .equals() instance method

a

b

c

"computer"

"put"

"put"
a = = c is false

a.equals(c) is true

20

Assignment 3 Preview

In assignment 3, you will be writing classes for graphs, nodes, and edges.
You will be reading in a simplified notation for graphs and writing out
a description of the graph in a language called “dot”. There are a
number of freeware programs that reads in “dot” descriptions of
graphs and displays the described graphs.

Graphs are an important mathematical structure (a la graph theory) and
an important data structure. You will learn a lot more about graphs
and their properties in CS 220.

In CS220 you will learn much more efficient ways of representing graphs
than the way you will be asked to represent them in this assignment.

21

Background to Assignment 3
Graphs you are probably familiar with:

There are data points and lines connecting the points.

22

Abstract Graphs
In math and computer science, a graph is a collection of nodes and a

collection of edges which connect pairs of those nodes.
Graphs can either be directed or undirected. In directed graphs, the

edges have a directionality, in undirected graphs, they don’t.

Graphs can either be weighted or unweighted. In weighted graphs, the
edges have a weight, in unweighted graphs, they don’t.

3

1 7 2 3
5

23

Examples of Graphs
1. A directed graph can be used to represent prerequisite information for

papers. Nodes would represent papers and edges would directed
from a paper to its prerequisite papers. One way of reducing the
number of edges is to remove edges that are redundant. For example,
if paper A requires both papers B and C, and paper B requires paper
C, then only the edges from A to B and from B to C are necessary as
the information that paper A requires paper C can be inferred from the
other two edges (A -> B and B -> C).

2. A weighted undirected graph could be used to represent the “air
miles” between airports. The nodes would represent the airports, the
edges would represent pairs of airports which have direct flights
between them. The weights of the edges would be the air miles
between those airports. Note that in this graph, you cannot remove
edges as you did in the example above. Just because there are direct
flights from A to B and from B to C, that does not mean there are
direct flights from A to C.

24

Examples of Graphs
3. A directed graph could be used to represent method calls. The nodes

are methods and edges represent the presence of a method call. The
source node represents the calling method, and the target node
represents the called method.

