
CS101 Lecture 8 1

Computer Science 101 S1

Lecture 8

2

Contents

Practice with writing methods

void return type

Coursebook: §10

3

Ex01 - Define getLongerLength()

This method has two parameters both of type String. The

method returns the length (an int) of whichever of the two

parameter strings contains more characters.

These are two different ways of writing the same method.

Exactly the same value is returned in each case.

public class CallingMethods {

 public void start() {

int len1 = getLongerLength("Hi", "BOO");

String word = "stop now";

int len2 = getLongerLength("Very", word);

 }

}

 private getLongerLength(){

 }

3

8

4

Ex02 - Define getChange()

The getChange() method has two parameters of type double.

The first parameter is the amount paid and the second parameter

is the cost. The method returns the difference between these two
amounts. The value returned by the method is of type double.

public class CallingMethods {

 public void start() {

double change1 = getChange(100, 33.5);

double change2 = getChange(50, 22.5);

 }

}

 private getChange(){

 }

66.5

27.5

5

Ex03 - Define timeInMinutes()

The timeInMinutes() method has two parameters both of

type int. The first parameter is the number of hours and the

second parameter is the number of minutes. The method
returns the total number of minutes (an int).

These are two different ways of writing the same method.

Exactly the same value is returned in each case.

public class CallingMethods {

 public void start() {

int mins1 = timeInMinutes(3, 40);

int min2 = timeInMinutes(2, 15);

 }

}

 private timeInMinutes(){

 }

6

Ex04 - Define getRandom()

The getRandom() method has one parameter of type int.

The method returns a random number less than the parameter
number (an int).

These are two different ways of writing the same method.

Exactly the same value is returned in each case.

public class CallingMethods {

 public void start() {

int num1 = getRandom(7);

int num2 = getRandom(5);

 }

}

 private getRandom(){

 }

CS101 Lecture 8 2

7

Ex05 - Define removeLetter()

The removeLetter() method is passed a String

parameter and returns the same String with a

single (randomly chosen) letter removed from it.
public class CallingMethods {

 public void start() {

String s1 = removeLetter("MARVELLOUS");

String s2 = removeLetter("TANGO");

 }

}

 private removeLetter(){

 }

8

No parameters
Sometimes we do not need to pass any information
to the method. In this case we define methods
which have no parameters. For example

public class CallingMethods {

 public void start() {

char c1 = getRandomLetter();

char c2 = getRandomLetter();

System.out.println("Letters: " + c1 + " " + c2);
 }

}

 private char getRandomLetter() {

 String alpha = "abcdefghijklmnopqrstuvwxyz";

 int len = alpha.length();

 int charPos = (int) (Math.random() * len);

 return alpha.charAt(charPos);

 }

9

No parameters - Ex06

The getRandomDie() method should return a

random int value between 1 and 6 inclusive.

public class CallingMethods {

 public void start() {

int die1 = getRandomDie();

int die2 = getRandomDie();

System.out.println("Dice total: " + (die1 + die2));

 }

}

 private getRandomDie(){

 }

10

No return value - void
void is the return type we use if a method is not

returning a value i.e. when the method does a job but it

does not return any result. For example

public class CallingMethods {

 public void start() {

showMenu();

String input = Keyboard.readInput();

int selection = Integer.parseInt(input);

System.out.println("User chose " + selection);
 }

}

 private void showMenu() {

System.out.println("1. RESET GAME: ");

System.out.println("2. MAKE A MOVE: ");

System.out.println("3. QUIT: ");

 }

11

No return statement - void
For a method with a void return type, there is no need for a

return statement. The following two versions of the

showMenu() method behave in exactly the same way.

private void showMenu() {

System.out.println("1. RESET GAME: ");

System.out.println("2. MAKE A MOVE: ");

System.out.println("3. QUIT: ");

return;
}

private void showMenu() {

System.out.println("1. RESET GAME: ");

System.out.println("2. MAKE A MOVE: ");

System.out.println("3. QUIT: ");

}

12

Example: Madlibs

A madlib is the name for a simple game. The idea is to take a sentence
and remove some words. You then ask someone to enter some
words which fit the same general category and see what new
sentence is created.

[Mary] had a little [lamb], its fleece was [white] as [snow].

Everywhere that [Mary] went, the [lamb] was sure to [go].

[NAME] had a little [ANIMAL], its fleece was [COLOUR] as
[PLURAL_NOUN]

Everywhere that [NAME] went, the [ANIMAL] was sure to [ACTION]

Write a method which takes 5 Strings and prints out the above
sentence with the Strings inserted into the appropriate places. The
code which uses the method is shown on the next slide.

CS101 Lecture 8 3

13

Exercise: Madlibs

public class MadLib {

 public void start() {

 String s1 = getWord("Enter a name: ");

 String s2 = getWord("Enter an animal: ");

 String s3 = getWord("Enter a colour: ");

 String s4 = getWord("Enter a plural noun (things): ");

 String s5 = getWord("Enter an action: ");

 }

 private showMadlib(){

 }

showMadlib(s1, s2, s3, s4, s5);

 private String getWord(String prompt){

 System.out.print(prompt);

 String input = Keyboard.readInput();

 return input;

 }

}

14

No return value - Ex07

The printStars() method should print the number

of stars given by the parameter value.

public class CallingMethods {

 public void start() {

printStars(5);

printStars(3);

printStars(7);

 }

}

 private printStars(){

 String stars = "*********************************";

 }

15

What you need to know

Methods may have no parameters.

Methods may have no return type. In this case the return type in the
method header is void. For a method which has a void return type
we do not need to have a return statement as the last statement in
the method.

