
CS101 Lecture 7 1

Computer Science 101 S1

Lecture 7

2

Contents

More String instance methods
Defining methods: parameters,
return values, return statement

Coursebook: §10

3

Review

a
"abc"

String a, b;

a = new String("abc");

b = a;

a = b.substring(0,1);

System.out.println(a + b);

b

aabc

"a"

11010110

1100100

11010110

1100100

4

Review

We have seen static methods:

String s = Keyboard.readInput();

int number = Integer.parseInt(s);

int num1 = Math.max(23, 21);

int num2 = Math.max(2, 5);

int num3 = (int)(Math.random() * 3);

<Classname>•<methodName>(<parameters>)

5

Review

We have also seen instance methods:

int size1 = word1.length();

String word2 = word1.substring(3, size1-1);

int size2 = word2.length();

char c1 = word2.charAt(2);

int pos = word1.indexOf(‘e’);

<object variable>•<methodName>(<parameters>)

size1 is 7

word2 “com”

size2 is 3

c1 is ‘m’

pos is 1

String word1 = "Welcome";

6

Other String instance methods

toUpperCase()

String word1 = "happy";

String word2 = word1.toUpperCase();

System.out.println(word1 + " " + word2);

String word3 = "IMagINE";

String word4 = word3.toLowerCase();

System.out.println(word3 + " " + word4);

happy HAPPY

IMagINE imagine

toLowerCase()

CS101 Lecture 7 2

7

Other String instance methods
trim()

String word1 = " over and out ";

System.out.println("***" + word1 + "***");

int length1 = word1.length();

word1 = word1.trim();

int length1 = word1.length();

System.out.println("***" + word1 + "***");

System.out.println(length1 + ", " + length2);

*** over and out ***

over and out

16, 12

8

Strings

Applying a method to a String instance always creates a new

String object.

String word1 = " sing ";

word1 = word1.toUpperCase();

System.out.println("***" + word1 + "***");

word1 = word1.trim();

System.out.println("***" + word1 + "***");

word1

 " sing "

 " SING "

1100111

1101100

 "SING"

1100000

11001111100000

*** SING ***

SING

9

Methods

We know how to call methods that have already been

defined for us

String word = "Welcome";

int size = word.length();

int pos = word.indexOf("ME");

public class MyProgram {
public void start() {

 }
}

We know how to define one method called start()

in our programs

10

Why methods?

Consider a cook book which contains recipes

for making bread:

11

Recipe 1: Rectangular loaf

Put half of the water in a small bowl and add

the sugar. Stir until the sugar is dissolved.

Sprinkle the yeast over the water and leave

for 10 minutes. Combine the flour and salt

in a large bowl. Make a well in the flour and

add the yeast mixture. Mix thoroughly.

Place the dough in a greased bowl, cover

and store in a warm place for 30 minutes or

until the dough has risen. Knead for another

2 minutes. Divide the mixture in half and put

each half into a rectangular baking tin.

Wait 10 more minutes for the dough to rise

again and bake at 200 degrees for 40

minutes. The bread should be golden brown

and should sound hollow if you tap the crust.

12

Recipe 2: Round loaf

Put half of the water in a small bowl and add

the sugar. Stir until the sugar is dissolved.

Sprinkle the yeast over the water and leave

for 10 minutes. Combine the flour and salt

in a large bowl. Make a well in the flour and

add the yeast mixture. Mix thoroughly.

Place the dough in a greased bowl, cover

and store in a warm place for 30 minutes or

until the dough has risen. Knead for another

2 minutes. Divide the mixture in half.

Shape each half into a ball and place on a

baking tray. Wait 10 more minutes for the

dough to rise again and bake at 200

degrees for 40 minutes. The bread should

be golden brown and should sound hollow if

you tap the crust.

CS101 Lecture 7 3

13

Recipe 3: Long rolls
Put half of the water in a small bowl and add the

sugar. Stir until the sugar is dissolved. Sprinkle

the yeast over the water and leave for 10

minutes. Combine the flour and salt in a large

bowl. Make a well in the flour and add the yeast

mixture. Mix thoroughly. Place the dough in a

greased bowl, cover and store in a warm place

for 30 minutes or until the dough has risen.

Knead for another 2 minutes. Divide the mixture

into a dozen equally sized pieces. Shape each

piece like a sausage-roll and place them spaced

out on a baking tray. Wait 10 more minutes for

the dough to rise again and bake at 200 degrees

for 40 minutes. The bread should be golden

brown and should sound hollow if you tap the

crust.

14

Recipe 4: Round rolls
Put half of the water in a small bowl and add

the sugar. Stir until the sugar is dissolved.

Sprinkle the yeast over the water and leave for

10 minutes. Combine the flour and salt in a

large bowl. Make a well in the flour and add

the yeast mixture. Mix thoroughly. Place the

dough in a greased bowl, cover and store in a

warm place for 30 minutes or until the dough

has risen. Knead for another 2 minutes.

Divide the mixture into a dozen equally sized

pieces. Shape each piece into a ball and

place them spaced out on a baking tray. Wait

10 more minutes for the dough to rise again

and bake at 200 degrees for 40 minutes. The

bread should be golden brown and should

sound hollow if you tap the crust.

15

Recipe 5: Mouse loaf
Put half of the water in a small bowl and add

the sugar. Stir until the sugar is dissolved.

Sprinkle the yeast over the water and leave for

10 minutes. Combine the flour and salt in a

large bowl. Make a well in the flour and add

the yeast mixture. Mix thoroughly. Place the

dough in a greased bowl, cover and store in a

warm place for 30 minutes or until the dough

has risen. Knead for another 2 minutes.

Divide the mixture in half, place a dead mouse

in the base of each loaf, and place on a baking

tray. Wait 10 more minutes for the dough to

rise again and bake at 200 degrees for 40

minutes. The bread should be golden brown

and should sound hollow if you tap the crust.

16

How many 10 minute blocks?

Look at the following program which evaluates the number of

completed ten minute blocks given the number of hours and

minutes.

public class TenMinuteBlocks {

 public void start() {

 int hours = 5;

 int minutes = 34;

 int totalMins, tenMinBlocks;

 totalMins = hours * 60 + minutes;

 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");

 }

}

 33 blocks

17

The problem - Do calculation twice ...

public class TenMinuteBlocks {
 public void start() {

 int hours = 5;

 int minutes = 34;

 int totalMins, tenMinBlocks;

 totalMins = hours * 60 + minutes;

 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");

 hours = 11;

 minutes = 6;

 totalMins = hours * 60 + minutes;

 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");
 }

}

Repetition!

33 blocks

66 blocks

18

The problem - Do calculation three times

public class TenMinuteBlocks {
 public void start() {

 int hours = 5;
 int minutes = 34;
 int totalMins, tenMinBlocks;
 totalMins = hours * 60 + minutes;
 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");
 hours = 11;
 minutes = 6;
 totalMins = hours * 60 + minutes;
 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");
 hours = 2;
 minutes = 16;
 totalMins = hours * 60 + minutes;
 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");
 }
}

Repetition!

33 blocks

66 blocks

13 blocks

CS101 Lecture 7 4

19

The solution

Put half of the water in a small bowl and add the sugar. Stir until the sugar is dissolved.
Sprinkle the yeast over the water and leave for 10 minutes. Combine the flour and

salt in a large bowl. Make a well in the flour and add the yeast mixture. Mix thoroughly.
Place the dough in a greased bowl, cover and store in a warm place for 30 minutes or
until the dough has risen. Knead for another 2 minutes.

Making bread dough

Make the bread dough. Divide the mixture in half and put each half into a rectangular

baking tin. Bake the bread dough.

Recipe 1: Rectangular loaf

Wait 10 more minutes for the dough to rise again and bake at 200 degrees for 40 minutes. The
bread should be golden brown and should sound hollow if you tap the crust.

Baking bread dough

Make the bread dough. Divide the mixture in half. Shape each half into a ball and

place on a baking tray. Bake the bread dough.

Recipe 2: Round loaf

20

public class TenMinuteBlocks {

 public void start() {

 int hours = 5;

 int minutes = 34;

 int totalMins, tenMinBlocks;

 totalMins = hours * 60 + minutes;

 tenMinBlocks = totalMins/10;

 System.out.println(tenMinBlocks + " blocks");

 }

}

The solution
Identify sections of code that needs to be executed repeatedly:

then define that code in a method, and call the method whenever we

need the code executed.

21

Defining methods

A method is a self-contained section of code
for accomplishing a task. We can think of a

method as a mini-program.

The syntax for defining a method is

private returnType methodName(Formal Parameters){

 block of java statements

}

22

Method signature, header
An example of a method is:

private int getBlocks(int hrs, int mins) {

int totalMins, blocks;

totalMins = hrs * 60 + mins;

blocks = totalMins/10;

return blocks;
}

getBlocks(int hrs, int mins)

private int getBlocks(int hrs, int mins)

The signature of the method is the name and the list of
parameters, for example

The header of the method is the name and the list of
parameters, for example

23

Parameters
Parameters are used to pass information to a method

Parameters in the method are initialised when the method

is called

Each parameter must have a type

Each parameter in the list is separated by a comma

private int getBlocks(int hrs, int mins) {

int totalMins, blocks10;

totalMins = hrs * 60 + mins;

blocks10 = totalMins/10;

return blocks10;

}

List of parameters

method definition

Example

24

Calling a method

To execute the code in a method, the method needs to be
called.

To call a method you use the name of the method
followed by the list of values which you wish to pass to
the method, for example

private int getBlocks(int hrs, int mins) {

int totalMins, blocks;

totalMins = hrs * 60 + mins;

blocks = totalMins/10;

return blocks;

}

method definition

getBlocks(5, 34);

method call

getBlocks(2, 48);

A second method call

getBlocks(1, 55);

A third method call

CS101 Lecture 7 5

25

Parameters

Passing parameters is just like assigning values to

the variables declared in method signature. [The
parameters passed must have same type of

parameters and must be in the same order.]

private String getString(int num, double ave, String message) {
//add code

}

getString(x, 4.5, "Testing");

Passing parameters is like

initialising the variables:

num = x;

ave = 4.5;

message = "Testing";

26

Ex01 - parameter list

The following is a call to the getInfo() method:

Complete the method header for the getInfo()

method:

private String getInfo() {

//add code

}

String result = getInfo("Mia", 21, true);

private String getInfo(String name, int age, boolean isSingle){

27

Returning values

This allows a method to pass information back to the invoking

code.

The method header must state the type of value it is

returning.

A method can only return a single value (primitive or object).

private int getBlocks(int hrs, int mins) {

int totalMins, blocks;

totalMins = hrs * 60 + mins;

blocks = totalMins/10;
return blocks;

}

28

Return statement

Every method that returns a value must use the keyword

"return" as the last statement in the method.

The value returned must be the same type as declared in the

method header. For example

private int getBlocks(int hrs, int mins) {

int totalMins = hrs * 60 + mins;

int blocks = totalMins/10;
return blocks;

}

private String getName() {

return "Fred Fish";
}

29

Returning values

When a method call is executed then the returned value is

used in place of the method call

public class CallingMethods {

public void start() {

int numBlocks = getBlocks(3, 5);

numBlocks = getBlocks(6, 35);
}

private int getBlocks(int hrs, int mins) {
int totalMins, blocks;

totalMins = hrs * 60 + mins;

blocks = totalMins/10;
return blocks;

}
}

18

39

30

Returning values

The variable on the left hand side of the method call must be

of the same type as the return type of the method.

public class CallingMethods {

public void start() {

int blocks1 = getBlocks(3, 5);

int blocks2 = getBlocks(6, 35);
}

private int getBlocks(int hrs, int mins) {
int totalMins, blocks;

totalMins = hrs * 60 + mins;

blocks = totalMins/10;
return blocks;

}
}

CS101 Lecture 7 6

31

Ex02

Which of the following calls to the calculate() method will

compile?

public class Test02 {

 public void start() {

 double a = calculate(5 , 4); (a)

 double d = calculate(4.0); (b)

 int c = calculate(2 , 4.2); (c)

 int x = calculate(3.5, 1); (d)

 boolean b = calculate(3, 1.1); (e)

 }

}

(a), (c) are correct

private int calculate(int a, double b) {

int amount = (int)(a + b *2);

return amount;

}

32

Ex03

Which of the following are correct calls to the lots() method?

public class Test03 {

 public void start() {

 String result;

 result = lots(2 + 1, 3, "3"); (a)

 result = lots(2 + 1, 3, 4); (b)

 result = lots(22, "Hi", 4); (c)

 result = lots(8, 3.4, ‘x’); (d)

 result = lots(22, 1.2, "4"); (e)

 }

}

(a), (e) are correct

private String lots(int a, double b, String c) {

System.out.println(a + b + c);

return c + " " + a;

}

33

Ex04

What is incorrect with the following method definition?

public class Problem1 {

public void start() {

int b = calculate(3, 1.1);

}

private int calculate(int a, double b) {

double amount = a + b *2;

return amount;

}

}

The returnType and the

type of value returned do

not match.

34

Ex05

What is incorrect with the following method definition?

public class Problem2 {

public void start() {

int b = calculate(3, 1.1);

}

private int calculate(int a, double b) {

int amount = (int)(a + b * 2);

return amount;

amount = amount + 2;

}

}

The return statement

must be the last

statement in the method

35

Ex06 - Give the output
public class ProcessUserInput {

 public void start() {

 }

 private int getValueFromUser(String prompt) {

System.out.print(prompt);

String input = Keyboard.readInput();

int value = Integer.parseInt(input);
return value;

 }
}

The user enters the values 3341, 5568 and 150 when prompted

int pin = getValueFromUser("Pin number: ");

int amount = getValueFromUser("Amount: ");

int userId = getValueFromUser("User id: ");

System.out.println(userId + “: $" + amount);

2241: $150 36

Ex08 - Give the output
public class ProcessUserInput {

 public void start() {

 }

 private String convertAmt(String currency, int amt,

double perDollar) {

double amount = amt * perDollar;

String currString = currency + amount;
return currString ;

 }
}

NZ$100 = AU$85.0

NZ$200 = Euros 100

String outCurrency = convertAmt("AU$ ", 100, 0.85);

System.out.println("NZ$100 = " + outCurrency);

outCurrency = convertAmt("Euros ", 200, 0.5);

System.out.println("NZ$200 = " + outCurrency);

CS101 Lecture 7 7

37

Reasons for defining methods

Avoiding repetition of code is one important reason for using methods.

There are other good reasons:
• makes the code much clearer than a single, very long, start()

method

• makes programs easier to develop by clearly identifying individual

tasks

Each method should represent a single task

38

What you need to know

Defining methods: list of parameters, the returnType,
the return statement

Calling a method: the parameters must match in
order and type, the method call is replaced by the
value which is returned by the method, the variable
to which the method call is assigned must be of the
same type as the return type of the method

