
CS101 Lecture 1 1

Computer Science 101 S1

Lecture 3

2

Contents

Java Syntax

Displaying Output

Coursebook: §3, §4

3

Review

public class MyProgram {

public void start() {

System.out.println("Hello World");

}

}

public class MyApplication {

public static void main(String[] args) {

MyProgram p = new MyProgram();

p.start();

}

}

Write the source code for the application

(which starts the program).

MyProgram.java

MyApplication.java

instructions which

will be executed

Write the source code for the program:

4

Review

C:

CS101

MyFirstProgram

MyProgram.java
MyApplication.java

MyProgram.class
MyApplication.class

5

During lectures

We will only look at the program file:

public class MyProgram {

public void start() {

System.out.println("Hello World");

}

}

When we want to write a different program, we

will define different instructions

6

Java Syntax

We need to learn:

• the words which have special meaning

• the punctuation and symbols that are

required

• the combinations of words and symbols

that are allowed

The compiler is very picky

We must be very precise when writing our code

CS101 Lecture 1 2

7

Errors

You will make mistakes – don’t worry, this

helps you learn.

There are three types of errors:

• syntax errors

• runtime errors

• logic errors

8

Style

We are writing our programs for two different audiences:

• other people

• the computer

http://java.sun.com/docs/codeconv/

In this course, pay particular attention to indentation and

comments.

To improve consistency and readability:

• all programmers should follow the same conventions

for the layout and organisation of their code

• for the Java language, the document "Code

Conventions for the Java Programming Language"

describes these style guidelines:

9

Code conventions

http://java.sun.com/docs/codeconv/

10

The structure of a Java program

Our programs are made up of statements, which are contained

inside methods, which are contained inside classes:

public class MyProgram {

}

public void start() {

}

System.out.println("Hello World");

Class

Method

 Statement

11

Statement
Syntax

<instruction> ;

Description
A single instruction in Java

Always ends with a semicolon

Examples:

System.out.println("Hello");

int x;

j = 3;

12

Identifiers

An identifier is the name that we give to classes, methods

and variables in our programs.

• classes

• methods

• variables

public class MyProgram {

public void start() {

System.out.println("Hello World");
}

}

Valid identifiers:

 - only upper case and lower case letters, numbers and underscore

 - identifiers must not start with a number

 - identifiers must not be the same as a reserved Java keyword

CS101 Lecture 1 3

13

Class name identifiers

Class name identifiers:

 - start with an upper case letter

 - beginning of subsequent words should be upper case

 - all other characters lower case

MyProgram

LabOneProg

SpaceInvaders

Assignment1Program

public class MyProgram {

public void start() {

System.out.println("Hello World");

}

}

14

Program Layout

The compiler does not care

about the layout of our code:

public

class

MyFirstProgra

m

{

public

void

start

(

)

{

System

.

out

.

println

(

"Hello World"

)

;

}

}

public class MyFirstProgram { public

void start() { System . out . println (

"Hello World") ; } }

public class MyFirstProgram {

 public void start() {

System.out.println("Hello World");
 }

}

15

Program Layout - indentation

We should always organise our code so that it is

easy for us and others to read.

Indentation rule

Indent any code appearing between curly braces
(use tab)

Use this style all the time

public class IndentationExample {

 public void start() {
System.out.println("Hello World");

}
}

16

Comments

Comments
Ignored by the compiler

Aimed at people who read the code

Inline comments
All text until end of line is ignored e.g.

// comment goes here

Multi-line comments
All text between start and end of comment is ignored e.g.

/* comment goes

 here */

17

Comments

Remember, comments are ignored by the compiler.

Good code should be "self-documenting", so use

comments sparingly.
/*

 * Author: Adriana Ferraro

 * Date: March 2007

 * Purpose: To illustrate the use of comments

*/

public class MyFirstProgram {

public void start() {

// prints message

System.out.println("Ciao Mondo");
}

}

18

Case sensitivity

Java is case-sensitive.

System.out.println("hi");

is correct and will compile:

System.Out.println("hi");

is NOT correct and will NOT compile.

CS101 Lecture 1 4

19

Displaying output

System.out.println()

This statement can be used to print text to the

screen as output:

System.out.println("Some text");

• this prints out whatever is inside the speech

marks

• a newline character is printed at the end of

the line

• if nothing is inside the parentheses, a blank

line is printed

20

Displaying output

Example:

public class Printing {

public void start() {

System.out.println("abc");

System.out.println();

System.out.println("123");

}

}

produces:

abc

123

21

Literals
Integer: whole numbers (exact values) e.g.

3, -2045, 74

Floating point: numbers which include decimal point
(approximate) e.g.

 3.65, 0.0, -1267.692, 3.333333333

boolean: true or false e.g.

true, false

22

More Literals

Character: single symbol from Unicode character set
e.g.

'A', 'b!, "C!, "5!

String: sequence of characters surrounded by quotes
e.g.

"Hello world", " ", "", "BLING"

23

Printing literals

Use System.out.println()

Any literal value can be used in parentheses

public class PrintingLiterals {

public void start() {

System.out.println(-45);

System.out.println(0.034);

System.out.println(true);

System.out.println('g');

System.out.println("This is a

String");
}

}

-45

0.034

true

g

This is a String

24

Escape sequences

Suppose you want to print:

Hello, "World"!

Will the following work?

 System.out.println("Hello, "World"!");

To indicate we want to print the quotation mark, we

must put a backslash character in front of it:

System.out.println("Hello, \"World\"!");

CS101 Lecture 1 5

25

Escape sequences

Another common escape sequence is:

\n

which prints a new line.

Some other escape sequences:

\" quotation mark

\\ backslash

\n new line

\t tab

26

System.out.print()
Prints output (just like println())

Does NOT add a carriage return (newline) at the
end of the text.

public class PrintExample{

public void start(){

System.out.print("My name is ");

System.out.print("Adriana");

System.out.println("Where is this

printed?");

System.out.print("and this?");

}

}
My name is AdrianaWhere is this printed?

and this?

27

What you need to know

Java statements end with a semicolon.

Identifiers - names given to classes, methods and
variables. What is a valid identifiers.

Identifier for a class name.

Indentation rule.

Inline comments, multiline comments.

28

What you need to know

Java is case sensitive.

Types of literals: Integer, Floating-point, boolean,
character, String.

System.out.println() and System.out.print() are
used to print somthing to the standard output.

System.out.println() and System.out.print() can be
used to print any literal value to the standard
output.

Escape sequences inside a String.

29

Ex01 – What is the output
public class OutputProgram1 {

public void start() {

System.out.println(" 4");

System.out.println("plus 6.45");

System.out.println(" is 10.45");

System.out.println();

System.out.println(true);

}

}

30

Ex02 – What is the output

public class OutputProgram2 {

public void start() {

System.out.println("\"Chocolate\\");

System.out.println("\nnn\\n\"");

System.out.println();

System.out.println("Yum");

}

}

CS101 Lecture 1 6

31

Ex03 – What is the output
public class OutputProgram3 {

public void start() {

System.out.print("one");

System.out.print(" two");

System.out.println();

System.out.print(" three\n");

System.out.println("zero");

 }

}

32

public class {

public static void main(String[] args) {

 p = new ();

p.start();

}

}

33

public class {

public void start() {

}

}

34

