

CompSci 101 S1 C
– ASSIGNMENT THREE –

Assessment
Due: 3.00pm Monday, 7th May, 2007
Worth 4% of your final mark
There is no Peer review for this assignment.
The resources for this assignment can be found at the following URL:

 www.cs.auckland.ac.nz/compsci101s1c/assignments/

Aim of the assignment
The goals of this assignment are to get you to:

• Practise translating your mental model of a system into a set of classes.
• Declare object variables, create and manipulate objects, and to pass and return objects

to and from methods.
• Declare array variables, create and manipulate arrays of objects.

For this assignment you need to submit EIGHT Java source files:

• A3Application.java
• A3Program.java
• Graph.java
• EdgeSet.java
• Edge.java
• NodeSet.java
• Node.java
• Keyboard.java

Things to note:

You have been provided with the application, A3Application.java, the program
file, A3Program.java, and with a version of Keyboard.java

Your code MUST be broken down into methods. Each method should primarily perform one
task which is indicated by the method name.

CS101 Assignment 3, Page 2

Directed Graphs

A directed graph contains a set of nodes and a set of directed edges. A node is a primitive
entity and has an id. A directed edge is an ordered pair of nodes, where one is the source
node and the other is the destination node. The nodes mentioned in the graph’s set of edges
are all elements of the graph’s set of nodes. For this assignment, you may assume that all of
the graph’s nodes are involved in at least one of the graph’s edges.

You will need to develop classes that correspond to the above description, i.e., you will need
to develop a class for each of the following: graph, set of edges, edge, set of nodes, node.
The data type for node ids is String. Arrays must be used to store the elements of sets.

Program Functional Specification
Your program reads in a description of the graph in one format and writes out that graph in
“dot” notation. “dot” is a language for describing graphs and a number of different viewers
have been written to display graphs written in “dot”. The “dot” language manual will be
available on the assignment resource web page. Links to downloadable viewers can be found
via the following link http://www.graphviz.org/About.php graphviz is one of the viewers
available and can be used to view the output of your program.

Input Format: Your program reads in a directed graph (digraph) in the following format. All
blank lines are ignored. The graph input consists solely of pairs of non-blank lines
representing directed edges. Each line should have exactly one node id. The first line of each
pair contains the source node id and the second line contains the destination node id. If the
node id is more than one word it should be enclosed in double quotes (“).

Output Format: Your program writes out the directed graph in the following format:

1. Preamble.
2. Edges.
3. Postscript.

The preamble consists of the following string “digraph G {”. The postscript consists of the
string “}”, a line stating the number of nodes, and a line stating the number of edges in the
graph. Between the preamble and the postscript are lines describing the directed edges in the
graph. Edges are specifed in the following format, “source node -> destination node;”. The
edges are grouped by their source nodes, i.e., all the edges that have the same source node are
specified together.

CS101 Assignment 3, Page 3

Example:

Input:
M
X
M
X
X
Y

A

B
X
Z
A
C
M
A

Notes:

1. Regardless of how many times a node id appears in the input, it always represents the
same node (e.g., in this example there are only 7 nodes: M X A Y Z B C).

2. Regardless of how many times an edge appears in the input, it always represents the
same edge (e.g., in this example there are only 6 edges, even though there are 7 pairs of
lines with nodes, i.e., the edge M -> X appears twice in the input).

3. Blank lines are allowed to appear anywhere in the input.
4. In the output, all edges having the same source node are grouped together. For

example, in the input there are two edges with M as the source node, one that points to
X and one that points to A. These two edges appear as the first and as the last pairs of
lines respectively. However, both edges appear grouped together in the output.

Program Design

You have been provided with the full A3Program class. You are to write the Graph library
classes. Your implementation of the Graph library must have the five classes: Graph,
EdgeSet, Edge, NodeSet, and Node. A Graph object will have at least an instance variable
of type NodeSet and an instance variable of type EdgeSet. An EdgeSet object will have at
least an array of Edge objects. A NodeSet object will have at least an array of Node
objects. An Edge object will have two instance variables of type Node. The API’s for these
classes are shown in the appendix of this document.

Output:
digraph G {
M -> X;
M -> A;
X -> Y;
X -> Z;
A -> B;
A -> C;
}
nodes = 7
edges = 6

Graph displayed by vizgraph using
Hierarchical Layout

CS101 Assignment 3, Page 4

Running your A3Program
In order to help you test your implementation of a Graph library, I have provided TWO input
files: test.txt and graphG.txt. I have also provided a different version of the
Keyboard class; this version allows you to use file redirection. In order to run your
program you can run the application, A3Application, and enter data from the keyboard
or you can run the application with the user input taken from either of the two input files, for
example,

 > java A3Application <test.txt

will execute the application using the user input from the file, test.txt,
and produce the output shown above in “Program Specification”. To produce the dot file for
input to vizgraph, you would execute:

> java A3Application <test.txt > test.dot

You are expected to supply the input as a file via redirection as shown above. The input file
should be an ascii text file created by your favorite text editor.

Submitting Files

CS101 Assignment 3, Page 5

You should submit the following files for this assignment through the web-based Assignment
Dropbox:

A3Application.java
A3Program.java
Graph.java
EdgeSet.java
Edge.java
NodeSet.java
Node.java
Keyboard.java

MAKING MORE THAN ONE SUBMISSION
You can make more than one submission - every submission that you make replaces your
previous submission. Only your very latest submission will be marked.

DO NOT SUBMIT SOMEONE ELSE'S WORK:
• If you submit an assignment you are claiming that you did the work. Do not submit work

done by others.
• Do not under any circumstances copy anyone else’s work – this will be penalized heavily.
• Do not under any circumstances give a copy of your work to someone else.
• The Computer Science department uses copy detection tools on the files you submit. If you

copy from someone else, or allow someone else to copy from you, this copying will be
detected and disciplinary action will be taken.

Marking Schedule

Style
 Comment at the top of each class. (3)
 Good indentation. (3)
 Good identifier names. (3)
 Symbolic Constants used where appropriate. (3)
 All instance variables are private. (3) (2)

/15

Normal Processing
 Handling of blank lines:
 Blank lines separating edges. (5)
 Blank lines separating nodes within edges. (5)
 Total input all blank (10)
 Correct counting of edges. (10)
 Correct counting of nodes. (10)
 Correct stating of output preamble. (10)
 Correct stating of output edges.

CS101 Assignment 3, Page 6

 All outgoing edges for a node together (10)
 All nodes have their outgoing edges (5)
 Edges only appear once (10)
 Correct stating of output postscript. (10)

 /85

Grand Total

/100

Appendix – Class API’s
public Graph API
constructors:
 public Graph()

mutators:
 public void addNode(Node) ensures that Node is in Graph’s NodeSet by adding the Node
 if it is not already in the NodeSet
 public void addEdge(Edge) ensures that Edge is in Graph’s EdgeSet and ensures that the
 Edge’s nodes are in the Graph’s NodeSet

accessors:
 public NodeSet getNodeSet()
 public EdgeSet getEdgeSet()
 public int getNodeCount() returns the number of nodes in the graph
 public int getEdgeCount() returns the number of edges in the graph
 public EdgeSet getOutgoingEdges(Node sourceNode) returns an EdgeSet containing the
 node's outgoing edges

public class EdgeSet API:
constructor:
 public EdgeSet() the EdgeSet object is able to contain up to 40 Edge objects

accessors:
 public Edge getEdge(int index) returns the edge associated with "index"
 public String toString()
 public int length() returns the number of edges that are in this
 EdgeSet

mutator:
 public void addEdge(Edge edge) : adds edge to EdgeSet if not already present

CS101 Assignment 3, Page 7

public class Edge API:
constructor:
 public Edge(Node sourceNode, Node targetNode)

accessors:
 public Node getSourceNode()
 public Node getTargetNode()
 public String toString()
 public boolean equals(Edge other)

public class NodeSet API:
constructor:
 public NodeSet() is able to contain up to 20 Node objects

accessors:
 public Node getNode(int index): returns the node associated with "index"
 public int length() returns the number of nodes that are in this NodeSet

mutators:
 public void addNode(Node node)

public class Node API:
constructor:
 public Node(String name)

accessors:
 public String getName()
 public String toString()
 public boolean equals(Node other)

