The ESCAPE* Game

Group members: Vijay Prema, Mihailo Palevich, Greg Gilbert Supervisor: Dr. Burkhard Wuensche

* Working title

- First person "Escape" game?
 - You must escape from a building/location.
 - Enemies will be trying to capture you.
 - NO GUNS, must use objects in the environment ("physics puzzles") to overcome obstacles and/or slow down enemies.
 - Enemies will also use the environment and teamwork.
 - Aim for realism and immersion, while being playable and fun.

Development Plan

Development process: Iterative

- Iterative/cyclical design pattern, balanced with deadlines and milestones.
- Ideal for systems that require frequent modifications and/or changes in requirements.
- Our concept is relatively original and experimental.

Possible Game Theme

- "Zombie Escape"
- Player starts in a region, can move to other regions, but may need to use objects to gain access to them. (e.g. pile up boxes).
- Zombies (intelligent, slow moving and tough) pursue the player.
- Player must make it to the exit.

Gameplay Theory

Digital Games Research Association http://www.digra.org/

Game Studies <u>http://www.gamestudies.org/</u>

What Makes Things Fun

Physical Conditioning

Mental Patterning

Social Interaction

Structure and Flow

Difficulty Progression

Goal Awareness

Convexity

Our Game Play

Patterning in puzzles
Survival based
Incorporation of flow

Technical Aspects

Physics

- Realistic, real world physics modeling
 - Objects have position, velocity, orientation, angular velocity.
 - For realistic physics simulation: mass, inertia (distribution of mass), COM.
 - Forces act on objects to make them change velocity.
 - Objects must collide and interact realistically.
 We will use ODE (Open Dynamics Engine)

Player Interaction

- How will the player interact with world and objects?
- Player actions: pick-up/drop/push/pull/throw objects, run, jump, crouch etc.
- Models for object interaction:
 - "Gravity gun" simple but not realistic.
 - Virtual hands use mouse cursor to drag and drop objects around world.
- Some objects are heavy, can only push and pull these.

Half life 2 - gravity gun

Penumbra – virtual hand

Graphics

- Aim for a realistic look-and-feel.
- Reasonably detailed models and (photo realistic) textures.
- Basic special effects
 - Particles
 - Smoke
 - dynamic lighting
 - Water(?)

Enemy Al

- Al agents attempt to capture the player.
- May have simple weapons and tools (batons, tear gas).
- Use customized A* algorithm for path finding.
- Analyze possible decisions and chose the best one.
- React to player and use teamwork.
- Intelligently utilize objects and environment in a basic way.

Development Tools

Development Tools

Visual Studio 2005
 C/C++ implementation language
 Fast
 Good control over resources
 Group has better familiarity than with C#
 Optimizing compiler
 Use WinMerge for source control.

Game and Physics Engine

Irrlicht Cross-platform Built in graphics and I/O libraries. Comprehensive documentation ODE (Open Dynamics Engine) Require mesh-to-mesh collision detection. Simulates articulate rigid body physics Cross platform (C++) and compatible with other game engines/simulators.

Models and Textures

Blender (mesh modeling)

- 3D mesh modeling tool
- Able to create key frame animations
- Mesh texturing
- GIMP (textures)
 - Seamless texture feature
 - Powerful open source image editor

Seamless and non-seamless textures

Non-Seamless

Seamless

Map Construction

GTK Radiant

- Originally used for Quake maps
- Compiles BSP maps
- Powerful but primitive
- QuArK (Quake Army Knife)
 - High level
 - Doesn't compile BSP
 - Used for map editing in many games

Radaint vs. QuArK

QuArK

GTK Radiant

Project Plan

- Week 1: Research, initial concept.
- Week 2: Research technology, integrate engine components.
- Week 3-5: Develop AI, interaction model, apply physics engine.
- Week 6: Prepare interim presentation and tech demo (test maps)
- Week 7-11: Further refinement/development and creation of final game assets.
- Week 11-12: Prepare final presentations and demos

Learning Objectives

- Integration and utilization of game/physics engine.
- Development of AI which can respond dynamically to a complex environment and use teamwork.
- Exploring new and innovative gameplay concepts with iterative development.

TECH DEMO