
1

35

Portals

A portal is a hole in the wall
Used for indoor environments
A portal gives access from one room to another
Portals for visibility:

only render the room the player is in
plus any rooms seen through portals
plus any rooms seen through portals seen through 
portals, plus …

36

Portals (cont.)

H

CB

E

D
F

A

G

37

Portals (cont.)

Two variations:
1. Pre-compute what rooms are visible from 

each room
2. Compute what rooms are visible from the 

current view position during game
Like PVS or raycasting, but at a coarser 
level

38

Portals (cont.)

Portals do not need to be bi-directional, or 
lead to adjacent rooms

Teleporters, TVs
Portals are usually represented in the 
world by a polygon
Portals can be any shape. Use a simple 
shape like a rectangle for visibility testing



2

39

Portals (cont.)
// Example room with portals structure

struct Portal

{

Polygon poly; // Polygon of portal

Room* otherroom; // The room on the other side

Polygon otherpoly; // Polygon of portal exit on the other side

};

struct Room

{

vector<Portal> portals; // Portals of the room

vector<Room*> visiblerooms;// Rooms visible from this room

};

40

Portals (cont.)

Room-to-room visibility
A room R1 is visible from room R0 if there is a 
ray from room R0 through one or more portals 
to room R1

Only need to check rays that go through 
portals of R0 and eventually exit a portal of R1

So actually checking portal-to-portal visibility

41

Portals (cont.)
Algorithm overview:
1. Create empty list L of rooms visible from room R
2. Add room R to L
3. For all portals P in room R

1. For all rays through portal P
1. Cast ray through portal P of room R

Cast ray through portal P of room R:
1. Let R’ be the room on the other side of P
2. Transform ray to room R’
3. Add R’ to list of visible rooms L
4. Trace ray through R’
5. If ray intersects a portal P’ in R’

1. Cast ray through portal P’ of room R’

May need to include protection against infinite recursion
Limit to total length of ray
Limit number of recursive Cast ray calls
Limit number of times a room can be visited

42

Portals (cont.)

R0

R1

R2

R4R3



3

43

Portals (cont.)

But there are an infinite number of rays!
Could organise world using a regular grid

Use raycasting as before
Compute PVS for each grid square at a portal in room 
R0 , keeping track of what rooms are being visited by 
the raycasting

Alternatively, can determine visibility by looking 
at the range of rays that go through a pair of 
portals, and clipping against subsequent portals

44

Portals (cont.)

R4R2 R3R1

R0

45

Portals (cont.)
1. Create empty list L of visible rooms

2. Add room R to L

3. For each portal P of room R

1. Let R’ be the room on the other side of P

2. Add R’ to visible list L

3. For each portal P’ of room R’

1. Find viewing extent V from P to P’

2. Find rooms visible from R’ through P’ using V

Find rooms visible from R through P using V:

1. Let R’ be the room on the other side of P

2. Add R’ to visible list L

3. For each portal P’ of room R’

1. Let V’ be the viewing extent V clipped to portal P’

2. If V’ is not empty

1. Find rooms visible from R’ through P’ using V’

46

Portals (cont.)

Portals define a depth sorted order:
Anything seen through a portal will never appear in 
front of something in the room

Render room:
1. Render polygons in room
2. For all portals in the room

1. Render room on other side of portal

View frustum culling for faster portal rendering
To render a room through a portal, set clipping to render only 
in the portal

glClipPlane() using camera position and edges of portal
glViewport() using bounding rectangle of projected portal
glScissor() using bounding rectangle of projected portal



4

47

Portals (cont.)

Portals as mirrors
Set the room on the other side of the portal to be the 
same room
Set a transformation to mirror any ray going through 
the portal

Portals do not need to appear as doors or 
windows

Can be used to divide the world into more 
manageable chunks
Invisibly transport the player to a different level

48

View frustum culling

The view frustum is the pyramid which defines the extent 
of the camera’s view

Defined by four planes, going through the camera’s centre of 
projection and each side of the view plane, plus a front and back 
clipping plane

49

View frustum culling (cont.)
Arbitrarily define the view frustum planes to be outward 
facing (normals pointing away from the view frustum)

The outside of a plane is the region where the normal is pointing 
towards. The other side is the inside.
Any point on the plane is considered inside

Anything outside of the view frustum will not be seen, 
and is therefore a candidate for culling
To check if a vertex is within the view frustum:

If vertex is on the inside of all six view frustum planes, vertex is 
inside view frustum
If vertex is on the outside of any of the planes, vertex is outside 
view frustum

50

View frustum culling (cont.)
Testing a vertex against a plane:

Plane equation:
ax + by + cz + d = 0

(a,b,c) is the normal N of the plane
-d is the distance of plane from the origin along N

To determine which side a vertex V = (x,y,z) is on, project it 
onto the plane normal N using dot product:

v’ = N . V = ax + by + cz
v’ is the distance of V along the normal N. The plane is at 
distance –d along the normal, so distance of V from plane is:

dV = v’ – (-d) = ax + by + cz + d
If dV = 0, V is on the plane
If dV < 0, V is inside the plane
If dV > 0, V is outside the plane



5

51

View frustum culling (cont.)

To test a polygon against the view frustum
WRONG: take each vertex and test it against the view 
frustum. Cull polygon if all are outside

52

View frustum culling (cont.)

To test a polygon against the view frustum
HALF-RIGHT: take all vertices and test them against 
each plane. If all are outside the same plane, cull 
polygon

53

View frustum culling (cont.)
Test polygon against view frustum:
1. For all view frustum planes

1. Test polygon against plane
2. If polygon is outside plane

1. Return polygon outside view frustum

Test polygon against plane:
1. For all vertices of polygon

1. Test vertex against plane
2. If vertex is inside plane

1. Return polygon is inside
2. Return polygon is outside

54

View frustum culling (cont.)

To test a polygon mesh against the view frustum
The slow way: like with polygons

For each view frustum plane, test mesh polygons against 
plane. If all polygons are outside that plane, mesh is outside 
view frustum

The fast way: use a simple bounding volume
Test bounding volume against view frustum. Cull mesh if 
bounding volume is outside view frustum
For example, given bounding sphere:

If distance of sphere centre to any frustum plane is larger than
the sphere radius, sphere is outside the view frustum, and 
hence the enclosed mesh is outside the view frustum



6

55

View frustum culling with quadtrees

Quadtrees are hierarchical
The bounding square of each child node is within the bounding 
square of its parent

Implies that if a node in the quadtree is not visible, then 
none of the children will be visible
Test the bounding square of the current quadtree node 
against the view frustum
If node is visible, recurse by going down the tree 
checking each of the four children
Optimisation: reuse the visibility computed for the grid 
points of the parent

56

View frustum culling with octrees

Same as with quadtrees, except the 
visibility test is between the 3D bounding 
box and the view frustum

57

Culling with BSP trees
If a partition plane does not intersect the view frustum, only the side 
that the camera is in will be visible

●

●

●

View Frustum Culling: View #1: A, B, D, 2 ; View #2: A, C, G, 7, 8 ; View #3: A, B, E, 4, C, F, 5

A

ED

CB

GF

-+

- -

-

- -

-+ +

+ + + +

3 4
21 5 6 7 8

B

A

C

E
F

G
D

- +
-

-

-
-

-

-

+

++

+

++

6

5

2

1

8

7

4 3

●
●

●
●

●
●

58

Culling with BSP trees (cont.)
Determine BSP visibility of node:
1. If node is a leaf node

1. Node is visible
2. Else

1. If partition plane of node does not intersect view frustum
1. If camera is on left side of partition plane

1. Entire right sub-tree is invisible
2. Determine BSP visibility of left child

2. Else
1. Entire left sub-tree is invisible
2. Determine BSP visibility of right child

2. Else
1. Determine BSP visibility of left child
2. Determine BSP visibility of right child



7

59

Culling with BSP trees (cont.)
Render BSP node:
1. If node is a leaf node

1. Render geometry in node
2. Else

1. If partition plane of node does not intersect view frustum
1. If camera is on left side of partition plane

1. Render BSP left child node
2. Else

1. Render BSP right child node
2. Else

1. If camera is on left side of partition plane
1. Render BSP left child node
2. Render BSP right child node

2. Else
1. Render BSP right child node
2. Render BSP left child node

60

Non-view frustum culling
Can generalise to culling to work with any object or 
polygon, not just the view frustum
To cull everything outside a given region:

Define a set of outward facing planes that enclose the region
Do visibility culling using that set of planes

Exactly like with the view frustum planes
To cull everything inside a given region:

Define a set of inward facing planes that enclose the region
Cull anything that is entirely outside all planes

Planes defined by e.g. camera position plus edges of a 
convex polygon, or the sides of a bounding box, or the 
player position and the sides of a portal


