
1

Gaggle topology

World server World server

World server World server

Player client

Player client

Player client

Worlds and Players

A World server runs a game
Players interact with the World to play in the game
World can be connected so that Players can move from 
World to World
The World controlled by a server is called that server’s 
Home World, to distinguish it from any other Worlds the 
server may know about
The Player controlled by a client is called that client’s 
Home Player, to distinguish it from any other Players in 
the game

Worlds

A World contains Players, Objects, and a Layout 
(the static walls, floors, and ceilings)
A World implements a game by controlling how 
Players and other Objects interact with each 
other
A World can connect to one or more other 
Worlds so that Players can move from World to 
World

Players

A Player can be connected to at most one 
World at a time
A Player interacts with a World by sending 
messages asking to do Actions, such as 
moving
The World to which the Player is 
connected is the authority about the 
Player’s state, such as position and speed



2

Objects, Models, and Textures
Objects are instances of Models and Textures
Models are polygon meshes
Texture are…textures
Each Object has one Model and one Texture
The same Model or Texture may be shared by multiple 
Objects
Model and Texture do not form a pair. Two Object may 
share the same Model but have different Textures, or 
vice versa
Models and Textures do not change over the life of the 
World. Objects do not change their Model or Texture 
during the life of the Object

Players and Objects
Players are a type of object
A Player has a Model and a Texture
Players are indistinguishable from Objects to other 
Players in the World
Players can ask the World about what Objects are in the 
World, what the Models and Textures are for those 
Objects
Players can ask the World for the polygon description of 
each Model, and the image for each Texture in the World
Players send their Model and Texture to the World when 
they join

Worlds and Objects
Except for the Models and Textures provided by Players, 
the World is responsible for supplying Models and 
Textures
On request, the World sends information about the 
Objects, Models, and Textures in the World
A World can distinguish between Players and Objects, 
but on communicating Object info to Players, Players are 
treated like any other Object
A World can create, move, and destroy Objects that are 
not Players
A World can move any Player in the World. The World is 
in charge of the Player state, like it is in charge of all 
Objects

Models

There are two formats of Models:
Static Models
MD2 Models

Static Models are static vertex arrays, 
used for Objects which are not animated
MD2 Models are animated, based on the 
MD2 format used in e.g. QuakeII, and can 
be loaded from disk



3

MD2 Models

MD2 Models contain an array of vertex arrays
One vertex array for every frame of animation
The array of frames contains multiple animations
What range of frames is used for what type of animation 
(e.g. walking, dying) is defined by the MD2 standard
The World will inform the Player about what range of 
frames the animation should be looped over
Two ways of rendering MD2 Models:

As a collection of individual triangles
Using the array of OpenGL “commands”

MD2 Models

Death fall back slow197190

Death fall forward189184

Death fall back183178

Crouch death177173

Crouch pain172169

Crouch attack168160

Crouch walk159154

Crouch stand153135

Point134123

Wave122112

Fall back11195

Salute9484

Flip8372

Jump7166

Pain C6562

Pain B6158

Pain A5754

Attack5346

Run4540

Stand390

Anim typeLast frameFirst frame

Rendering Objects
Objects should be rendered based on their Model and 
Texture, the Object position and heading
If the Model is an MD2Model, the appropriate animation 
frame should be used, possibly with interpolation
There are exceptions to the position and heading 
requirements:

If the Object is fixed to the camera position, the Object is at the 
position of the camera (good for skyboxes)
If the Object is fixed to the camera rotation, the Object is rotated 
relative to the camera rotation (good for billboards)
If the Object is fixed to both the camera position and rotation, the 
Object is fixed to both the camera position and rotation (good for 
faking a HUD?)

Textures

A Texture is a 2D array of RGB bytes
Textures can be loaded from disk (uses 
the SDL_image library)
Note that a texture may not be square or 
have a power of two size



4

UIDs
Each Object, Model, and Texture in a World has a unique ID (UID)
UIDs are integers
UIDs are only valid within the World that defined them
Players ask a World about Objects, Models, and Textures using the 
UIDs
A World is free to implement UIDs in whatever way they like, as long 
as the IDs are unique. Players can not make any assumption about
how UIDs are assigned (i.e. don’t use them as array indices)
There is one special pre-define UID: UNASSIGNED_UID

Used when a UID has not been assigned yet, or the UID is not 
important

When a World asks a Player about its Model or Texture, no UID is
required (as a Player only has one Model and Texture). A UID is 
only needed for Objects, Models, and Textures which Players can 
ask about

World Layout
The Layout is a 2D map describing where the walls, floors, and 
ceilings are in the World, and what their texture is
The Layout is communicated to Players as a regular grid. It does not 
need to be implemented as such
The Layout for a World can be any size and scale
Players can ask about any rectangle of grid squares
Worlds can reply with any rectangle of grid squares
Each grid square has four walls, and may have a floor and a ceiling
Walls are located on the square sides, the floor and ceiling extend 
over the entire square
Walls can be partially or fully open
Each wall, floor, and ceiling of a square can have its own texture
Walls are single-sided, not shared between squares, and face 
inwards
Walls in a square are numbered from 0 to 3, counter-clockwise 
starting at the +Z side

World Layout

+Z

+X

0
1

2
3

World Layout

Each wall is split into three sections stacked vertically
Each wall section can be set to be open (see-through) or 
closed
The Y coordinates of each wall section, floor, and ceiling 
is determined by heights specified at each grid point
Each grid point has four heights:

Height of the floor
Height of the top of the first wall section
Height of the top of the second wall section
Height of the top of the third wall section and ceiling

The heights at the grid points are shared among the grid 
squares



5

World Layout

h[0]

h[1]

h[2]

h[3]
World Layout

The h[0] heights at the points of a grid square form the floor of that 
grid square
The h[3] heights at the points of a grid square form the ceiling of that 
grid square
A floor or ceiling may be omitted by setting its texture UID to 
UNASSIGNED_UID
The textures on the walls, floors, and ceilings are repeated. The 
texture coordinates at each vertex is computed by a per square 
scale and offset applied to the vertex position in world coordinates 
(not grid coordinates). See the gaggle.h header file
Each wall, floor, and ceiling can be brightened or darkened by a light 
value. How to use this light value is up to the renderer

Motion
Objects have a 3D position in the World
Objects have a heading in the World, with 0 pointing at +Z following the right hand 
screw rule (positive rotation is from +Z towards +X)
Players request to be moved; Worlds tell the Players how they (and other Objects) 
are moving
Each Object has a State, which defines where an Object is at a given time, and how it 
is expected to move over some period of time after that
A State contains:

starttime, endtime : the time period over which the movement is made
pos : position at starttime
dpos : change in pos (i.e. velocity) at starttime
ddpos : change in dpos (i.e. acceleration) at starttime
heading : heading at starttime
dheading : change in heading at starttime
startframe : first animation frame to use for animated Models
endframe : last animation frame to use for animated Models
animfps : how many frames per second the animated Model animates at
animstarttime : the starting time of the animation

Motion
The motion during the time period of a state is computed 
using the equation of motion with gravity:

pos(t) = pos + dpos * dt + ½ * ddpos * dt2
dpos(t) = dpos + ddpos * dt
heading(t) = heading + dheading * dt

where dt is current time minus starttime
If the current time is after the endtime, the endtime is 
used, effectively stopping the Object
The state of an Object may be updated by the World 
before the current time reaches endtime
All this is already implemented in gaggle_object.cpp



6

Messages
Players and World communicate with each other through network 
messages
Players can send messages to the World they are in. Worlds can 
send messages to Players playing in it, and to connected Worlds
When a message arrives, it is unpacked into an appropriate 
structure or object
Most messages will result in some method of HomeWorld or 
HomePlayer being called
Other than the rendering, most of the work in this assignment is
implementing those methods (see main.cpp for an example)
See gaggle.h for the format of the messages
Messages are one-way. They are not replied to directly
Responses to message may not arrive in the same order as the 
original messages were sent (e.g. if you ask for a Model and then a 
Texture, you may first get a Texture back and then a Model)

Messages

Messages sent by Worlds
JoinWorldMessage to World to join
WelcomeWorldMessage to World after receiving JoinWorldMessage
WelcomePlayerMessage to Player when ready to start playing
ObjectStateMessage to Players when an Object changes state
AskTextureMessage to Player to ask for its Texture
TextureMessage to Player after receiving AskTextureMessage
AskModelMessage to Player to ask for its Model
ModelMessage to Player after receiving AskModelMessage
ObjectsMessage to Player after receiving AskObjectsMessage
TextMessage to Players to send a text message
WorldIntroMessage to Player after receiving JoinPlayerMessage
WorldLayoutMessage to Player after receiving AskWorldLayoutMessage
ChangeWorldMessage to Player to ask it to move to a different World
ScoreMessage to Player to give some sort of scoring info

Messages

Messages received by Worlds
JoinWorldMessage from World asking to join

handled by JoinPeerWorld() method
WelcomeWorldMessage from World after sending JoinWorldMessage

handled by JoinPeerWorld() method
PlayerActionMessage from Player asking to change state

handled by PlayerAction method()
AskTextureMessage from Player asking for a texture

handled by AskTexture() method
TextureMessage from Player after sending AskTextureMessage

handled by PlayerTexture() method
AskModelMessage from Player asking for a model

handled by AskModel() method
ModelMessage from Player after sending AskModelMessage

handled by PlayerModel() method
AskObjectsMessage from Player asking for the Objects

handled by AskObjects() method
TextMessage from Player sending a text message

handled by PlayerTextMessage()
AskWorldLayout from Player asking for part of the World Layout

handled by AskWorldLayout() method
PlayerReadyMessage from Player indicating readiness to start playing

Messages

Messages sent by Players
JoinPlayerMessage to World asking to join
PlayerActionMessage to World asking to change state
AskTextureMessage to World asking for a Texture
TextureMessage to World after receiving AskTextureMessage
AskModelMessage to World asking for a Model
ModelMessage to World after receiving AskModelMessage
AskObjectsMessage to World asking for the Objects in World
TextMessage to World giving it a text message
AskWorldLayoutMessage to World asking for part of the World Layout
PlayerReadyMessage to World indicating readiness to start playing



7

Messages

Messages received by Players
WelcomePlayerMessage from World when ready to start playing

handled by JoinedWorld() method
ObjectStateMessage from World when an Object changes state

handled by ObjectState() method
AskTextureMessage from World asking for Player’s Texture

handled by AskTexture() method
TextureMessage from World after sending AskTextureMessage

handled by WorldTexture() method
AskModelMessage from World asking for Player’s Model

handled by AskModel() method
ModelMessage from World after sending AskModelMessage

handled by WorldModel() method
ObjectsMessage from World after sending AskObjectsMessage

handled by WorldObjects() method
TextMessage from World giving us some text message

handled by WorldTextMessage() method
WorldIntroMessage from World after sending JoinPlayerMessage

handled by WorldIntro() method
WorldLayoutMessage from World after sending AskWorldLayoutMessage

handled by WorldLayout() method
ChangeWorldMessage from World asking Player to move to a different World

handled by ChangeWorld() method
ScoreMessage from World giving some sort of scoring info

handled by WorldScoreMessage() method

Classes

Identified

ModelData Object

Texture Model

StaticModel MD2Model

Player

HomePlayer

World

HomeWorld

Implementing a World server
Sub-class HomeWorld to handle the response to various messages 
and events and keep the game state
Probably sub-class Player to add whatever extra you need to handle 
Players in your HomeWorld

Create an instance and return it in JoinPlayer()
Gaggle passes that instance into methods dealing with Player 
messages
Destroy instance in PlayerHasLeft()

Maybe sub-class World to add whatever extra you need to handle 
Worlds connected to your HomeWorld

Create instance in JoinPeerWorld()
Gaggle passes that instance into methods dealing with World messages
Destroy instance in LeftPeerWorld()

Implementing a Player client

Sub-class HomePlayer to handle the response 
to various messages and events and keep track 
of the game state
Sub-class StaticModel and MD2Model to include 
rendering methods

Make instances of sub-classes when model is 
received in WorldModel()

Add user interaction subsystem, windowing 
subsystem, World Layout and Object rendering 
subsystem


