
1

Shadow & Light
Shadows

Shadow is composed of two 
regions

Umbra
Penumbra

Umbra is the solid region
Light completely blocked

Penumbra is the transition 
around the umbra

Light partially blocked
Only happens with 
extended light sources

Shadow is a volume
Cross-section of shadow 
volume is a projection of the 
object as seen from the light 
source

2

Shadow & Light
Hard shadows

Umbra only
Assumes point light sources

Soft shadows
Umbra and penumbra

Shadows easily rendered using raytracing
For every point, trace ray to light and check for intersection with 
intermediate objects
For extended light sources, trace multiple rays to various points on the 
light source and shade according to the number of rays not blocked

But polygon rendering does not do raytracing, so how to render 
shadows with OpenGL and the like?

Various methods which work in various cases, some hard shadows, 
some soft shadows, some fast, and some slow
There is no perfect shadow algorithm (yet) that always works

3

Shadow & Light
Projective shadow textures

Easy but quite limited
Texture is an image containing the projection of the object as 
seen from a light direction
Create a texture which looks like the shadow of an object

Texture can be pre-computed or pre-made if relative position of light 
to object remains constant, and object doesn’t change
Otherwise, could use render-to-texture methods to render view of 
object from light direction

Shadow texture has alpha set to opaque for shadow, transparent 
for the rest
To project the shadow onto another object, use projective 
texturemapping
Can fake smooth shadows by using a low-resolution texture

Texture interpolation between opaque and transparent areas of 
texture creates a fake penumbra effect

4

Shadow & Light

Projective texturing:
Use glTexGen*() to let OpenGL compute texture 
coordinates based on vertex position 
(GL_OBJECT_LINEAR)
Use texture matrix to scale and position the 
shadow texture to match the object position, and 
orient the shadow texture to match the light 
direction



5

Shadow & Light
For example: shadows of objects on terrain

Render terrain as normal, with textures etc.
Enable alpha blending
For each object

Make shadow texture of object current
Set projective texturemapping parameters for object position
Re-render terrain polygons which are likely to intersect the shadow, without any texture, purely 
black or gray

Render all objects on terrain
Advantages of projective shadow textures:

Fast and easy
Smooth shadows
Good for shadows on terrain, floors, walls

Disadvantages:
No self-shadowing
Projective shadow applied to both sides of an object
Shadow applied to all objects, even if between light and shadowing object

6

Shadow & Light
Could improve on projective texture shadows if we can figure out if a 
point is in front or behind a shadow-casting surface as seen along 
the light direction
The shadow mapping idea:

Assume spotlight or directional light
Render scene from a light position
Store depthmap in a texture (“shadow map”)
Render scene from camera

Project shadow map onto scene from light position
For each pixel being rendered, figure out distance to light

Use texture coordinate generation to set texture coordinates based on distance 
from light position instead of distance from origin

Compare distance with value from projected shadow map
If pixel↔light distance is less than shadow map distance, render pixel as 
normal, otherwise render shadowed

7

Shadow & Light

Indexed shadow mapping
Instead of creating a shadow map with depths, store 
a unique item ID for each object seen by the light
When rendering scene from camera, for each pixel 
compare ID of object being rendered with ID in 
shadow map
If ID match, object is seen by light at that pixel, and 
hence pixel is lit
No self-shadowing

8

Shadow & Light

Texture-mapping based shadows suffer from 
resolution problems
Can we do shadows with geometry instead of 
textures?
Yes: shadow volumes

A shadow is a volume
Construct that volume
Somehow figure out for each point being rendered if it 
is inside or outside a shadow volume



9

Shadow & Light
Constructing a shadow volume

Shadow volume is formed by extruding the outer edges of an illuminated 
surface
The outer edges are called “silhouette edges”

Silhouette edges for convex objects are edges between a polygon which 
faces towards the light and a polygon which faces away from the light

10

Shadow & Light

Silhouette edges found by computing angle between 
polygon normals and vector from polygon to light 
using a dot product

If > 0 for one polygon of edge, and < 0 for other polygon of 
edge, edge is a silhouette edge

For each silhouette edge, extrude a quad from edge 
vertices to infinity (or far enough) away from light 
along rays from light to edge vertices
Volume is capped at the front by the polygons facing 
the light

11

Shadow & Light

Assume camera is outside of the shadow volume
Finding if a point is inside or outside shadow volume:

Take a ray from the point to the camera
Count how many times ray intersects shadow volume boundary
If odd, point is inside shadow; otherwise outside

12

Shadow & Light

Counting can be done in hardware by OpenGL
Only need to figure out for unoccluded points visible from 
camera
Only need to count boundaries between point and camera
Counting of boundary crossings can be done in any order
Consider the shadow volume as an object being rendered as 
part of the scene
For each pixel, count how many boundaries are drawn in front of 
the point when seen from camera
Actually, don’t need the count, only the difference between 
number of times ray from point to camera enters shadows an 
number of times ray exits shadow

If difference is zero, point outside shadow, else inside shadow
Remember that camera is assumed to be outside shadow



13

Shadow & Light
1. Draw the scene objects using only ambient lighting

Entire scene is in shadow
2. Disable colour and depth map writing, but keep depth testing on
3. Enable writing to the stencil buffer
4. Render front-facing polygons of shadow volume

Increment stencil buffer for every pixel rendered
5. Render back-facing polygons of shadow volume

Decrement stencil buffer for every pixel rendered
6. Enable colour buffer writing, disable stencil buffer writing
7. Enable depth testing to pass only equal depth
8. Enable stencil buffer testing to pass only pixels where stencil value is equal to 0
9. Draw the scene objects using the light

Overwrites pixels not in shadow with lit pixels

Can extend to multiple lights by repeating for each light, and combining the results 
by accumulating the renders in an accumulation buffer, or with additive blending
Can also start off with fully lit scene, then only overdraw pixels in shadow with 
ambient light only
OpenGL2.0 allows separate stencil functions for front- and back-facing polygons, 
so steps 4 and 5 can be done in one pass 

14

Shadow & Light
Problem: near clipping plane may remove shadow 
volume boundaries near the camera

Results in wrong count, and hence either a missing shadow or a 
false shadow
Happens for shadows near the camera
Stuff near the camera is also the most important

15

Shadow & Light
Fixing this is difficult

Several methods have been proposed
All have problems (don’t work in some cases, precision problems,
computationally expensive)

This shadow mapping method is called “z-pass”, as it counts the 
shadow boundaries that pass the usual depthmap test

That is, shadow boundaries between point and camera
But for point-in-polyhedron testing, counting the boundaries along 
any ray from the point will work

Use the ray from the point away from the camera
No more near clipping plane problem!

Instead of counting boundaries which pass the depth test (between 
point and camera), count boundaries which fail the depth test 
(between point and infinity away from the camera)

Called the “z-fail” method, or “Carmack’s reverse”
Added advantage: also works for camera inside shadow volume

16

Shadow & Light

But, ray-volume intersection may be very far 
away, beyond far clipping plane

Same problem as z-pass, but this one is solvable
First step: cap the volume at the far end



17

Shadow & Light

Cap the shadow volume at the far end of the 
volume

Make cap by projecting polygons of shadow-casting 
object which face away from the light
Place cap far away enough so that all points which 
should be in shadow are within the now capped 
volume
Cap must be no further than the far clipping plane

Wouldn’t it be nice if the far clipping plane could 
be set at infinity…

But it can!

18

Shadow & Light
Standard projection matrix as made by glFrustum() or 
gluPerspective():

Note: typically frustum is now skewed, so Right+Left = Top+Bottom = 0
Find the limit when Far goes to infinity:

19

Shadow & Light
How to specify a vertex at infinity?

Remember homogeneous coordinates?
Vertex given by v = (x,y,z,w)
Normally would set w to 1

Vertex set at infinity by setting w = 0
v = (x,y,z,0), apply projection matrix, v’ = (x’,y’,-z,-z)
Homogeneous division: v_window = (-x’/z, -y’/z, 1) where 1 is the value that is put in the 
depthmap (range [0..1])

What about depthmap precision
Far clipping plane normally used to limit the depth range which is to be mapped 
to depthmap range (typically 16 or 24 bits)
Depthmap range stretched over the range of non-homogeneous (after 
homogeneous division) z values
How much extra does the depthmap have to be stretched by to include point at 
infinity compared with using a far plane?
Window depth for (0,0,-1,0) using normal projection P: Far/(Far-Near)
Window depth for (0,0,-1,0) using infinite projection PINF: 1
So for example if Near = 1, Far = 100, depthmap precision squeezed by only 1%
Effect on depthmap precision is very small!

20

Shadow & Light

Soft shadows with shadow volumes
Point in shadow volume test gives a pass or fail, resulting in hard 
shadows
For soft shadows, repeat the process with the light position 
changed slightly every time
Accumulate the results from each pass
Can cause a staircase effect in the penumbra of the shadow due 
to the discrete sampling of the light position



21

Shadow & Light

Advantages of shadow volumes:
More accurate than texture-based methods
Self-shadowing

Disadvantages:
More geometry to render
Must find silhouette edges
Must construct shadow volume
Must be careful not to get gaps in volume boundary 
due to numerical precision errors
Expensive soft-shadows

22

Shadow & Light
Can actually construct shadow volume using a vertex shader

Vertex shaders can not create new vertices
As a pre-process, replace each edge of a potentially shadow-casting 
object with a zero-sized quad
Assign the normal of the polygons adjacent to edge of quad to the 
vertices of the quad edge
In vertex shader, compute dot product of vertex with vertex→light vector

If < 0, extrude vertex to infinity away from light

23

Shadow & Light
Bump mapping

Polygons are flat
Any texture applied to a polygon is going to look flat
Bump mapping fakes bumps on a surface by slightly changing the 
normal per pixel
Consider a texture on a polygon as a height field
The change in the normal at a point from the polygon normal is given by 
the slope of the height field
Closely related to normal maps

Normal map contains the direction of the normal as perturbed by the bumps

slope = s

s

24

Shadow & Light
Now quite simple to do in a fragment shader
Previously used multi-texturing, for example:

Assume a diffuse lighting model
Light intensity is dot product of normal vector with vector to light

When creating a vertex, compute vertex→light vector
Use the vector as texture coordinates for texture unit 0
OpenGL will interpolate texture coordinates over polygon. If we interpret the 
interpolated texcoords as a vector, it will most likely no longer be normalised
Correct for loss of normalisation by putting a normalisation cubemap in texture 
unit 0

Cubemap contains texture whose RGB values are the components of the normalised
vector as a function of vector direction

Compute normal map from bumpmap
Put grayscale normalised normal map in texture unit 1
Set texture unit 1 to do a dot product of the normal map with the result from 
texture unit 0 (the normalised interpolated vector to the light)
Put a colour texture in texture unit 2
Set texture unit 2 to modulate the texture with the intensity result from unit 1

Also note the existence of the GL_NORMAL_MAP texture coordinate 
generation mode in OpenGL1.3



25

Shadow & Light
Bump mapping uses the wrong texture coordinates
Can be fixed by using a fragment shader to compute per-
pixel texture offset

“Parallax mapping”

Polygon

Implied heightfield

Texture coordinates
used by bumpmapping Expected texture coordinates

26

Shadow & Light

http://www.infiscape.com/rd.html

27

Shadow & Light
Parallax mapping fails when 
height range is large, or at shallow 
viewing angles
The ultimate solution: use 
raytracing to find intersection of 
ray with heightfield

Optimise a bit: do a binary search 
along the ray over the heightfield
map to find texel where ray 
intersects heightfield
Assumes there is only one 
reasonable intersection point
“Relief mapping”
Can do the same thing to compute 
shadows

Use ray from light to point on 
surface being shaded

http://www.paralelo.com.br/arquivos/ReliefMapping.pdf

28

Shadow & Light
Can place a heightfield at both sides of the polygon, 
and mask out uninteresting areas



29

Shadow & Light

Environment mapping
Makes things look nice and shiny by reflecting the world
Create a cubemap of the environment

Static texture
Created dynamically with render-to-texture

Let OpenGL compute the texture coordinates for reflecting object
using the GL_REFLECTION_MAP texture coordinate generation 
mode

Sets texture coordinates of vertex to eye-space reflection vector
Modulate with the object’s base colour
Probably also want to add some specularity to the object surface 
material properties

30

Shadow & Light

31

Shadow & Light
Lens flares

Lens flares only happen with real cameras
Lens flares are centred on a line that goes from the projected light 
position through the middle of the screen
Lens flares always appear in front of everything else, as they originate 
inside the camera
Compute the projected position of the light
If the light is visible, draw some quads textured with various lens flares 
along the line

Set spacing between quads proportional to the distance between the 
projected light position and the middle of the screen
Draw with alpha blending on top of the rendered scene (turn off depth 
testing)

For added effect, blend in screen-sized white quad according to how 
much of the light is visible for a haze effect

32

Shadow & Light



33

Shadow & Light
Finding if the light is visible, and by how much

Render the scene
Compute projected light position
Read back area around light from colour or depth buffer
Count how many pixels which should overlap with light are not 
painted on by scene
Light intensity is proportional to fraction of pixels not covered by 
the scene

But read-back can be slow
Introduces a stall, as your program has to wait for OpenGL to 
finish rendering the scene
Alternatively, compute visibility on CPU

34

Shadow & Light
Glows

Render objects that need to glow
Use alpha channel to indicate glow source intensity from 0 (no glow) to 1 (lots of glow)
Render with blending set to multiply source colour with source alpha

Read back colour buffer
Or use render-to-texture

Blur the read back buffer
Run a blur filter over the image
Or if using render-to-texture, render to a low resolution texture so that scaling it up will blur it due to 
interpolation

Render the scene as normal
Place blurred glow image in texture (if not in texture already)
Blend the blurred glow image with the render by drawing screen-sized quad with blurred 
glow texture

Instead of blurring the glow image, can use the unblurred glow texture and draw the quad multiple 
times, each slightly offset

http://www.gamasutra.com/features/20040526/james_01.shtml


