
© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 1

6. Physically-Based Modelling
6.1 Overview
6.2 Non-Physically Based Models
6.3 Professional Modelling and Animation Packages
6.4 Physically-Based Modelling
6.5 Particle Systems
6.6 ODE Solvers
6.7 Finite Difference Method (FDM)
6.8 Finite Element Method (FEM)
6.9 Rigid Body Modelling

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 2

Non-physically based models
Kinematic Models (positions controlled directly by animator)

Implicit surfaces
Spline (parametric) surfaces and subdivision surfaces

Physically-based models (positions determined by dynamics)
Particle Systems
Mass-spring systems
Continuum mechanics

Finite-difference methods
Finite-element methods

Rigid Body models

6.1 Overview

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 3

6.2 Non-physically based 3D Models

Traditional 3D Models
Often use 3D surface models
Usually animated by hand to “look real” (eg. “Toy Story”)
rendered at regular intervals

Typical applications
3D games e.g. Doom, Quake, Unreal

Very basic geometry, BSP-trees for Visible surface preprocessing,
depend on texture mapping

VRML 2.0
Professional Animation Packages (⇒ movie industry)

e.g. 3D Studio Max, Maya
Flight Simulators (for pilot training)

Very expensive special-purpose hardware systems

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 4

Implicit Surfaces
Many “non-geometric” objects best defined by implicit surfaces
An implicit surface is an iso-valued surface in a scalar field
f(x,y,z), i.e. all points satisfying f(x,y,z) = k

e.g. a sphere is the surface x2+y2+z2=r2

ISs are usually rendered with ray tracing or by polygonization
methods like Marching Cubes (see Volume Visualization notes)
Usually have to solve for ray-object intersection with numerical
techniques (i.e. root finding)

Sphere example is different - have an explicit ray-object
intersection solution

Can model “soft” objects as a particular contour of a "force field"
surrounding a set of points whose individual fields are added
Can model by pulling points around & adding and deleting points

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 5

Example-”Blobby Objects”
Model created by union of skeleton
objects (points, lines, etc) with a density
field fitted around them such that density
is 1 at the skeleton surface and 0 at a
distance of R. The model is defined by the
c-isosurface of the density field (0<c<1).

Bloomenthal and Wyvill “Interactive techniques
for implicit modelling” [Computer Graphics,
24(2), 1990, pp. 109-116]

Bryan Wyvill “The great train rubbery”
[SIGGRAPH 88 Electronic Theatre and Video
Review, Issue 26]

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 6

6.3 Professional Modelling and
Animation Packages
Build “computerised puppets” usually by using spline surfaces and
subdivision surfaces.
Controlled by skilled modellers/animators, via large number of control
points (parameters)
e.g. Toy Story

Number of control points for Woody: 712
Control points for Woody’s face: 212
Control points for Woody’s mouth: 58
Control points for Sid’s backpack: 128

Large repertoire of “special effects” tools, e.g. particle systems for
animating hair or modelling burning torches
May interface to “motion capture” systems for “first hack” at control
parameter sequences

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 7

Example – 3D Studio Max
A high-quality modeller/renderer with animation controls

Construct world at t = 0, move time slider to next key-frame time,
adjust model/camera as reqd, step to next key-frame time etc
System interpolates all parameters (in-betweening)

Can plug in different interpolators/path controllers

Lots of fancy features
Inverse Kinematics system
Free-form deformations (FFDs) and other space warps
Rigid-body dynamics simulations (rudimentary??)
Particle systems (for rain, snow, water, explosions, crowds, ….)

Motion-capture interface available

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 8

Controlling the Animation

Hard-code it!
Need artists who are also good programmers!

Scripts
Usually low-level description
e.g. POV, VRML2

Manual control
Next slide

Interactive control (real-time animations)
Slide after next

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 9

“Manual” control
Usually hierarchical models
Controlled by set of parameters (e.g. joint angles, facial muscles)
Need parametric states of objects at each key frame
Do “In-betweening” by smoothly interpolating parameters

Discontinuities a problem (e.g. bouncing ball)
May need to add extra key frames and/or velocity information

Such methods are called kinematic methods
Kinematics: study of motion in terms of positions, velocities and
accelerations)
c.f. Dynamics: study of motion in terms of forces, torques and their effect

May have Inverse Kinematics (IK) system
Move one part of hierarchy, system moves the rest to match (subject to
joint constraints, spring controls etc)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 10

Interactive methods

Ultimate in interactive methods is “Motion
capture” ⇒ Have user directly controlling puppet

Video methods
Most common: add coloured sequins to
different parts of body, illuminate brightly, filter
to extract just sequin positions
Emerging: image processing of unadorned
human

Mechanical gadgetry attached to user
e.g. “data glove”

E.g. racing-car games -- user(s) explicitly control objects in scene
Need collision detection
Often incorporates other physically-based animation controls

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 11

6.4 Physically-based Modelling

Goal: compute motions according to the laws of physics
Use dynamics (forces, torques) to determine kinematics

Involves solving differential equations (DE)
Collisions need to be detected, and interrupt DE solution
Physically-based animation

Advantages
reduces/eliminates need for human animators
models can be reused in different applications
models can react appropriately to any user input

Disadvantages
mathematically & computationally more complex

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 12

Four main methods:
Particle systems

Fluids, mist, clouds, weather
Usually require large number of particles

Mass-spring systems
soft and/or flexible objects

Finite Difference Method (FDM)
Engineering simulations of fluid dynamics

Finite Element Method (FEM)
Engineering simulations of deformable solids

Rigid body methods
Solid objects, Mechanical constructions (robots, etc)

Physically-based Modelling (cont’d)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 13

6.5 Particle Systems
Have a set of particles, sometimes with masses {mi}

e.g. representing water drops/splashes
May have forces (outside forces and forces between particles)

e.g. gravity, electromagnetic fields ⇒ particles can attract and
repel each other

Have known initial state (position, velocity, and
acceleration/forces) for all particles
Run a simulation loop. At each time step:

Compute force on each particle
Adjust position according to current velocity and velocity

according to current acceleration (due to force)
Display (e.g. as a single textured object)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 14

Example: 2D orbiting mass: 2 “particles”
with mass, velocity and acceleration.

1 2
2 12

2
1
2

, if we can consider particle

1 as stable and can compute the orbit of particle 2

by using gravitation centripital

m mg m m
r

m vg
r r

=

= = =

f

a a

Particle Systems (cont’d)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 15

In general we might have millions of particles exerting
forces on each other. The change of position of a
particle at time t depends on the force acting on this
particle, which depends on the position of all other
particles at time t. Hence particle movements are
computed by solving an ordinary differential equation
(ODE):

2

2

/

dx v
dt

d x f dv a
dt m dt

a f m

=

= ⇔ =

=

Solution methods are
explained in the next sections.

Particle Systems (cont’d)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 16

Mass-spring Systems

Special case of a particle system: only particles
connected by a spring exert forces on each other.
The basic idea
A simple algorithm
The problem
The mid-point method
A more-general formulation
Other issues

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 17

The basic idea
Have a set of point masses, {mi}

e.g. representing sample points on a single elastic object
Pairs of masses are connected by springs

Each spring has known rest length and spring constant (force per unit
compression/expansion from rest length)

May have other forces
e.g. gravity, viscous damping

Have known initial state (position and velocity) for all masses
Run a simulation loop. At each time step:

Compute force on each mass
Compute mass’s acceleration a = F/m
Adjust position according to current velocity and velocity according to
current acceleration
Display (e.g. as a single textured object)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 18

A simple algorithm
Particle mass mi is connected to mj by a spring with rest length
rij and force constant kij

Let xi, xj be the position vectors of particles mi and mj resp.
Spring force law (Hooke’s law, F = -kx) on particle mi due to
particle mj is

For each time step t=t+∆t and each particle i:

ji

ji
ijjiijij rk

xx
xx

xxF
−
−

−−−=)(

i i j i
j

i i i

i i i

m

t
t

=

= + ∆
= + ∆

∑a F

v v a
x x v

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 19

ODE Solvers

The above simple minded d.e. solving method is called Euler’s
Method
Errors accumulate steadily
Can be unstable

e.g. imagine too long a time step
Spring goes from a compression of d to an expansion of >d
in one time step
Problem blows up!

Need to use very small step sizes to get tolerable results
Expensive and inefficient

Need a better differential equation solving method

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 20

The mid-point method
Can write x(t + ∆t) as a Taylor expansion

Euler’s method takes 1st 2 terms on RHS. Improve by taking
more.
If take three, get mid-point method:

In words:
compute Euler step to get first guess at x(t+∆t)
Determine mid point x(t)+x(t+∆t)
Evaluate x’=dx/dt (i.e. forces, accelerations etc) at this point

Represents an estimate of average rate of change over the whole step
Use that new estimate of rate of change to compute a new step from the
starting point

2 2

2() ()
2

d t dt t t t
d t d t

∆+ ∆ = + ∆ + +x xx x

() () ((())
2

where (())

tt t t t f f x

df t
dt

∆+ ∆ = + ∆ +

=

x x x

xx

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 21

A more-general formulation
Can define state of a particle as S=(x, v)
and then have dS/dt = (v, a)
More generally can define state of whole system as a vector of
all (x, v) pairs, or just as a big vector of floats, 6 per particle.
Want to keep d.e. solver logic separate, so pass it:

A function that returns how many floats are in the state vector
(i.e. 6 * n)
A function to return the current state vector (i.e. all x and v
values in one 6*n vector)
A procedure to accept a new state vector
A function to return the derivative of the state vector (i.e.
compute all forces and accelerations; return all (v, a) pairs as
a 6*n vector)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 22

Other issues
Even mid-point method often not good enough

Use even higher-order methods, e.g. fourth order Runge-Kutta
Need adaptive step sizes for best efficiency - use long time steps when
things are moving slowly, short ones when changes are rapid.
Easy to incorporate forces other than springs.

Usually include some viscous drag for numerical stability
When collisions occur, have to stop system, back off to collision point,
reverse appropriate velocities, restart
Fundamental limitation of mass-spring systems: “stiffness”.

Can’t use very stiff springs to maintain “constraints” (e.g. to try to make
a particle follow a particular path)
Reason: stiff springs cause things to happen very fast, so require very
short time steps. Gets too expensive

In theory can simulate anything. In practice can only simulate soggy stuff.

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 23

6.7 Finite Difference Method (FDM)
A simple method to solve complex physical models
described by partial differential equations.

partial differential equations are equations where the
unknown variable is a function in one of several variables
Example: Heat equation: The change of the temperature
distribution T(x) in an object is described by the formula

Popular in computational
fluid dynamics

2 2

2 2

T T T
x y t

∂ ∂ ∂+ =
∂ ∂ ∂

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 24

Example
Daniel Nixon’s Master thesis “A fluid based soft
object model” (1998)

Goal was to model soft objects such as a cushion or a
balloon filled with treacle.
Model consists of two components

an elastic surface modeled by a mass-spring system.
An incompressible fluid enclosed by the surface
modelled by a finite difference method approximating the
Navier-Stokes equation for fluid flow.

In contrast to non-physically based models volume of the
object is maintained and surface tension is a natural feature
of the model.

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 25

Example (continued)

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 26

FDM: Solution steps

Describe problem
Problem domain
Governing equation
Boundary conditions

Discretize the solution domain
Replace partial derivatives with finite differences
Compute unknown variable for all time steps
starting with initial values for time step t0.

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 27

Example

Compute the distribution of a pollutant in a
lake Ω with boundary Γ

Source of pollutantΩ
Γ

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 28

Problem Description
Problem domain is Ω
The governing equation is the diffusion equation, which
describes the change in concentration c(x) of a material in a
fluid:

In order to get a unique solution boundary conditions must be
specified:

For the start time t0 we need the concentration at all points of the domain.

For all other times we need the change of the concentration in normal
direction at the boundary

2 2

2 2 (1)c c cD
t x y

 ∂ ∂ ∂= + ∂ ∂ ∂ 

0 0(,) for (2)c t c= ∈ Ωx x

0
c = for (3)
n

γ∂ ∈ Γ
∂

x

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 29

Discretizing the Solution Domain
Approximate the domain with a mesh of points. Want
to compute concentration at all mesh points (i,j)
and for all time steps tn.

Source of pollutantΩ
Γ

cij

δ
δ

n
ijc

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 30

Discretizing the governing equation

We discretize the governing equation (1) by replacing
partial derivatives with finite differences.

1
, ,

1, , , 1,
2

1, , 1,
2 2

, 1 , , , 1
2

, 1 ,
2

For mesh point (,) at time step this gives

(,)

2(,)

2(,)

n

n n
i j i jn

n n n n
i j i j i j i j

n n n
i j i j i jn

n n n n
i j i j i j i j

n
i j i jn

i j t

c cc t
t t

c c c c
c c cc t

x
c c c c

c cc t
y

δ δ
δ δ

δ δ
δ

+

+ −

+ −

+ −

+

≡

−∂ =
∂ ∆

− −
− − +∂ = =

∂
− −

− −∂ = =
∂

x

x

x

x , 1
2

n n
i jc

δ
−+

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 31

Discretizing the governing equation (cont’d)
The governing equation (1) becomes

and therefore

Note that if a boundary point ci,j does not have a neighbour the
corresponding finite difference expression must be replaced
with the boundary condition at that point.

1
, , 1, , 1, , 1 , , 1

2 2

1, 1, , 1 , 1 ,
2

2 2

4

n n n n n n n n
i j i j i j i j i j i j i j i j

n n n n n
i j i j i j i j i j

c c c c c c c c
D

t

c c c c c
D

δ δ

δ

+
+ − + −

+ − + −

 − − + − +
= + ∆   

+ + + −
=

1, 1, , 1 , 1 ,1
, , 2

4
 (4)

n n n n n
i j i j i j i j i jn n

i j i j

c c c c c
c c tD

δ
+ − + −+ + + + −

= + ∆

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 32

Compute the solution

Compute the pollutant concentration for all time steps
and all mesh points by starting with the initial
concentrations (2) and by computing equation (4) for
all time steps.
The presented solution is relatively unstable. A more
advanced method (Crank-Nicolson method) replaces
spatial derivatives with expressions dependent on
both and . The concentrations for a new time step
are now computed by solving a linear system of
equations which can be solved iteratively with the
Gauss-Seidel method.

0
ijc

n
ijc 1n

ijc +

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 33

6.8 Finite Element Method (FEM)
Became popular in the 1960’s as a tool to solve problems in
structural mechanics
Now common in fields as diverse as medicine (bioengineering)
and computer graphics.
approximates domain with a (frequently irregular) mesh. The cells
of the mesh are called finite elements.
uses finite element interpolation functions to interpolate the
unknown variable at the mesh vertices over the domain.
the governing equation is converted to an integral equation, which,
when computed over an element results in an equation dependent
on the unknown variable at the element vertices. Combining the
equations for all elements yields a linear system of equation,
whose solution are the unknown variables at the mesh vertices.

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 34

Example- Virtual Face
Finite elements
fitted to skull data.
Uses theory of
large deformation
elasticity.
Unknown variable
is the
displacement
vector at each
mesh point.
Volume textures
added for realism.

© 2001, Bioengineering Institute, University of Auckland

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 35

6.9 Rigid Body Modelling
Objects totally inelastic (no deformation)
Involves extremely complicated mathematics
Have to consider force, and linear and angular velocity
and acceleration, impulse and momentum
Behaviour of an object is dependent on its centre of
gravity and and its inertia tensor, which describes the
distribution of mass in the body.

f f

© 2004 Burkhard Wuensche & Lew Hitchner http://www.cs.auckland.ac.nz/~burkhard Slide 36

Example
RobinOtte’s Master thesis “Physically Based Modelling
and Animation of Rigid Body Systems” (1999)

