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Preface
Computer or machine vision pursues the goal of describing and understanding natural 3D
scenes using one or more 2D images. Vision guided control in industrial automation or
robotics based on image acquisition and understanding but involves specific requirements
such as (i) low cost, (ii) reliable operation, (iii) fundamental simplicity, (iv) real-time
image analysis, and (v) easiness of scene illumination. These requirements are often
diametrically opposed to many known computer vision results.

Table 1: Today’s industrial and robotic vision systems.
Manufacturer Country Application areas
Adept Technology USA robot control, inspection
Cognex Corp. USA inspection, assembling
DS GmbH Germany industrial vision software
DVT Canada inspection, automation
Evolution Robotics USA mobile robotics
Imagis Canada security (face recognition)
ISRA Vision USA loading / unloading (2D/3D vision)
Keyence USA inspection
KLA - Tencor USA inspection
Machine Vision Products USA assembling
MobilEye Israel car cruise control
Newton Research Labs USA mobile robotics
Robotic Vision Systems USA inspection, assembling
Viisage USA security (face recognition)

From the very beginning of the research domain of computer vision and image anal-
ysis, the prospect of vision-guided control has been “just around the corner”. After al-
most four decades of the world-wide efforts, that “corner” is still ahead and no really
satisfactory general-purpose machine vision system has been developed. Nonetheless
starting from the nineteen eighties, various commercial and experimental special-purpose
machine vision systems have appeared, e.g. a “Videospray” system for paint spraying
(Hayden Drysys International, UK), VS-100 vision system (Machine Intelligence Corp.,
USA) for industrial robots PUMA (Unimation Inc., USA), “Consight-I” structured-light
industrial vision system (General Motors of Canada, Canada), and so on. But only a few
of them have been justified by several years of operating experience in industrial environ-
ment. Some most known at present industrial firms producing machine vision systems
are listed in Table 1 . For more information, see the Computer Vision industry web page
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of Prof. David Lowe, University of Brithish Columbia, Canada:

http://www.cs.ubc.ca/spider/lowe/vision.html

Part 1 of these lecture notes covers in brief topics on mono and stereo image acquisi-
tion, 2D/3D vision geometry, camera calibration, colour detection and classification, and
binary image vision (quantisation and segmentation). More details can be found in many
available books and journal articles on computer and machine vision. These books and
articles use different notation for the same quantities, so that it is little wonder that our
notation below may differ from the one more familiar to you. Sometimes, when this cre-
ates no difficulties, the same character may denote different quantities, but in any case the
notation involved is explicitly explained in each chapter.

c© P.Delmas, G. Gimel’farb: 2005
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Chapter 1

2D/3D Vision Geometry

1.1 Homogeneous coordinates
Not only a projective transformation of 3D points to a 2D plane, but also the simplest
translations of 2D or 3D points are non-linear in terms of their Cartesian co-ordinates. To
be able to represent basic 2D and 3D geometric transformations such as translations, ro-
tations, scaling, and projections in mathematically convenient linear (i.e. matrix – vector)
form, so-called homogeneous coordinates of 3D and 2D points are involved.

Below vectors and matrices are boldfaced and their transpositions are indicated by
superscripts T or T. We assume only column vectors but, for convenience sake, represent

them sometimes as transposed row vectors, e.g. (x, y)T ≡
(

x
y

)
.

Each 2D point p = [x, y]T or 3D point P = [X, Y, Z]T can be represented in the
homogeneous coordinates by the following 3- or 4-component vectors (px, py, p)T and
(PX, PY, PZ, P )T, respectively where t and T are arbitrary scalar factors. Each homoge-
neous vector is converted to the initial 2D or 3D Cartesian co-ordinate vector by dividing
the first two or three components by the last one: (h1, h2, h3)T → (x = h1/h3, y = h2/h3)
or (h1, h2, h3, H4)T → (x = h1/h4, y = h2/h4, z = h3/h4).

Example: the 3D point (5, 3, 2)T has the homogeneous representation (5τ, 3τ, 2τ, τ)T with
an arbitrary factor τ $= 0, e.g., (5, 3, 2, 1)T, or (15, 9, 6, 3)T, or (−55,−33,−22,−11)T and so
on. Conversely, the homogeneous vector (30, 10, 15, 5)T represents the point (6, 2, 3).

In homogeneous coordinates projective transformations as well as affine transforma-
tions (e.g. translations, rotations, scaling) are specified by linear equations.

Translation of a 2D point p1 = (x1, y1)T to a new position p2 = (x2 + δx, y2 + δy)T ≡
p1 + ∆ where∆ = (δx, δy)T is represented in homogeneous coordinates as x2

y2

1

 =

 1 0 δx

0 1 δy

0 0 1


 x1

y1

1


5
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Translation of a 3D point p1 = (x1, y1, z1)T to position p2 = (x2 = x1 + δx, y2 +
δy, z2 = z1 + δz)T ≡ p2 = p1 + ∆ where∆ = (δx, δy, δz)T has a very similar represen-
tation in homogeneous coordinates :

x2

y2

z2

1

 =


1 0 0 δx

0 1 0 δy

0 0 1 δz

0 0 0 1




x1

y1

z1

1



Rotation of a 2D point p1 to a counter-clockwise (or left) angle θ around a given center
p0 is represented in homogeneous coordinates as: x2

y2

1

 =

 Rθ
δx

δy

0 0 1


 x1

y1

1



where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is the 2 × 2 rotation matrix and the offsets δx and δy

are as follows in accord with the diagram below: δx = x0(1 − cos θ) + y0 sin θ and
δy = −x0 sin θ + y0(1− cos θ).

Rotation of a 3D point is specified with three angles, namely, swing (κ), pan (φ),
and tilt (ω) angles of rotation around the z-, y-, and x-axis, respectively. In the general
case, the 3D rotation around the co-ordinate origin of the left-hand co-ordinate frame is
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decomposed to three successive rotations around the coordinate axes x, y, z, the rotation

matrix being Rκ,φ,ω = Rz(κ)Ry(φ)Rx(ω) where Rz(κ) =

 cos κ sin κ 0
− sin κ cos κ 0

0 0 1

 for

the rotation from y- to x-axis, Ry(φ) =

 cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ

 for the rotation from z-

to x-axis, andRx(ω) =

 1 0 0
0 cos ω − sin ω
0 sin ω cos ω

 for the rotation from y- to z-axis.

The following resulting matrixRκ,φ,ω = cos φ cos κ sin ω sin φ cos κ + cos ω sin κ − cos ω sin φ cos κ + sin ω sin κ
− cos φ sin κ − sin ω sin φ sin κ + cos ω cos κ cos ω sin φ sin κ + sin ω cos κ

sin φ − sin ω cos φ cos ω cos φ


defines such a rotation in homogeneous coordinates:

x2

y2

z2

1

 =

 Rκ,φ,ω

0
0
0

0 0 0 1




x1

y1

z1

1



Scaling of a 2D point p2 = Sp1 involves a 2 × 2 scale matrix S =

(
sx 0
0 sy

)
so that

x2 = sxx1 and y2 = syy1. In homogeneous co-ordinates such a scaling is as follows: x2

y2

1

 =

 sx 0 0
0 sy 0
0 0 1


 x1

y1

1
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Scaling of a 3D point in homogeneous coordinates is quite similar (using a 3 × 3 scale
matrix S: 

x2

y2

z2

1

 =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1




x1

y1

z1

1



Projection onto a line or plane. An arbitrary point p = (x, z)T of the 2D plane x0z
projected along the z-axis onto the line z − f = 0 parallel to the x-axis produces the
projected point pp = (xp = fx/z, zp = f)T.

This projective transformation becomes linear in homogeneous coordinates: xp

zp

1

 =

 f 0 0
0 f 0
0 1 0


 x

z
1

 ≡
 xf

zf
z


A 3D projection of an arbitrary point p = (x, y, z)T along the z-axis onto the plane

z = f parallel to the co-ordinate plane x0y is similar to the 2D one both in Cartesian and
homogeneous co-ordinates: the projected point pp = (xp = fx/z, yp = fy/z, zp = f)T

suggests the following projective transformation in homogeneous co-ordinates:
xp

yp

f
1

 =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


x
y
z
1

 =


fx
fy
fz
z





Part 1: P. Delmas, G. Gimel’farb 9

1.2 Straight lines and segments
This section deals mostly with the Cartesian coordinates of points. Both 2D and 3D lines
and straight-line segments have a very simple and convenient parametric representation:
pt = p0 + t∆ where p0 and∆ are a particular starting point and a co-ordinate increment
of the line, respectively, and t is a variable specifying each current position pt along the
line. If a segment is determined with two end points, p0 and p1, the increment is defined
as∆ = p1 − p0. Points along the line pt = p0 + t (p1 − p0) containing such a segment
are easily partitioned into interior points such that 0 < t < 1, end points with t = 0 and
t = 1, and exterior points with t < 0 and t > 1. The same parametric representation can
be rewritten as

x− x0

x1 − x0
=

y − y0

y1 − y0
or

x− x0

x1 − x0
=

y − y0

y1 − y0
=

z − z0

z1 − z0

where each ratio is equal to t.

A closed-form equation for a 2D line x sin θ − y cos θ + d = 0 exploits a signed
distance d from the co-ordinate origin (0, 0) to the line and an angle θ between the line
and the x-axis. In terms of the above parametric representation with p0 = (x0, y0)T and
∆ = (∆x, ∆y)T, the closed-form parameters are as follows: θ = tan−1 (∆y/∆x) and d =

− (x0 sin θ − y0 cos θ), or d = (y0∆x − x0∆y) /
√

∆2
x + ∆2

y, cos θ = ∆x/
√

∆2
x + ∆2

y,
and sin θ = ∆y/

√
∆2

x + ∆2
y The unit normal vector n = (sin θ,− cos θ)T is orthogo-

nal (perpendicular) to the line, and the distance between an arbitrary point to the line is
measured in the direction of the normal vector.

Distance to a segment The Cartesian distance from a given point to a 2D or 3D seg-
ment is equal to the distance to the closest point in the line if this latter point called the
projection lies within the segment. Otherwise the distance to a segment is the distance to
the closest end of this latter. When the segment is specified with its end points p0 and p1,
then the position of the projection pp of an arbitrary point p is obtained by minimising
the distance d(p,pt) from p to the line points pt, t ∈ (−∞,∞):

t∗ = arg min
t

d(p,pt) = arg min
t

|p− (p0 + t(p1 − p0)|2
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0 1t*

t=t*

It is easily shown that t∗ =
(
(p− p0)T(p1 − p0)

)
/

(
(p1 − p0)T(p1 − p0)

)
. Thus,

in the 2D case
t∗ =

(x− x0)(x1 − x0) + (y − y0)(y1 − y0)
(x1 − x0)2 + (y1 − y0)2

and in the 3D case

t∗ =
(x− x0)(x1 − x0) + (y − y0)(y1 − y0) + (z − z0)(z1 − z0)

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

The distance from p to the segment with the ends p0 and p1 is equal to the inter-point
distance d(p,p∗) where p∗ = p0 if t∗ ≤ 0, p0 + t∗(p1 − p0) if 0 < t∗ < 1, and p1 if
t∗ ≥ 1.

Intersection of two 2D lines is specified with the following system of equations: pi =
p0,1 + ti,1(p1,1− p0,1) and pi = p0,2 + ti,2(p1,2− p0,2) where pi is the intersection point.
The intersection point can be interior or exterior with respect to each segment.

The above equation system for the intersection suggests that p0,1 + ti,1(p1,1−p0,1) =
p0,2 + ti,2(p1,2 − p0,2). If both unknown t-factors are represented as the 2 × 1 vector
ti = (ti,1, ti,2)T, this relationship leads to a vector-matrix equation with 2× 2 matrix and
2× 1 vectors: (p1,1 − p0,1,p0,2 − p1,2) ti = p0,2 − p0,1, or(

ti,1
ti,2

)
=

(
x1,1 − x0,1 x0,2 − x1,2

y1,1 − y0,1 y0,2 − y1,2

)−1 (
x0,2 − x0,1

y0,2 − y0,1

)
The intersection exists if the matrix is non-singular (i.e. the segments are not parallel).

Exercise: derive explicit relationships for the factors ti,1 and t2,2 specifying the the inter-
section point.
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Intersection of two 3D lines may not exist and is approximated in that case by the closest
pair of line points, one per line. These points are found by minimising the Cartesian
distance d(pt1 ,pt2 = |pt1 − pt2|2 between the points in both the lines pt1 = p0,1 +
t1(p1,1 − p0,1) and pt2 = p0,2 + t2(p1,2 − p0,2).

Positioning factors ti,1 and ti,2 for the closest pair of the points are obtained by solving
the following distance minimisation problem:

(ti,1, ti,2) = arg min
t1,t2

|p0,1 + t1(p1,1 − p0,1)− p0,2 − t2(p1,2 − p0,2)|2

Solution of this problem (after partial derivatives of the above quadratic form by the de-
sired factors are set equal to zero) reduces to the following linear equation(

∆T
1 ∆1 −∆T

1 ∆2

−∆T
1 ∆2 ∆T

2 ∆2

) (
t1
t2

)
=

( −∆T
dif∆1

∆T
dif∆2

)

where∆j = p1,j − p0,j; j = 1, 2, and∆dif = p0,1 − p0,2. If the matrix is non-singular,
the closest pair forming or approaching the intersection is as follows:

(
ti,1
ti,2

)
=

(
∆T

1 ∆1 −∆T
1 ∆2

−∆T
1 ∆2 ∆T

2 ∆2

)−1 ( −∆T
dif∆1

∆T
dif∆2

)

Exercise: derive explicit relationships for the factors ti,1 and ti,2 for the above closest
pair of 3D points forming or approaching the intersection point.

1.3 Back projection of a pixel
In the simplest projection case, the optical axis coincides with the spatial Z-axis and is
projected to the principal point xpr = 0, ypr = 0 of the image. In this case, a 3D projecting
ray from a given image pixel xpr, ypr back to the 3D space is easily obtained by reversing
the projection, that is, by representing the 3D co-ordinates X and Y of the ray points
as functions of Z. Because X = xpr

f Z and Y = ypr

f Z these back-projected points are
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represented in homogeneous co-ordinates as follows:


X
Y
Z
Z

 =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1
f 0 0 0
0 1

f 0 0
0 0 1

f 0
0 0 1

f 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


xpr

ypr

f
1

 =


xpr

f
ypr

f

1
1



The same back-projection scheme holds in the general case with respect to the cen-
tred image coordinates about the principal point and centred world coordinates about the
optical centre (i.e. x̃pr = xpr − xpr,0, X̃ = X −X0, etc):

X̃
Ỹ
Z̃
Z̃

 =

∣∣∣∣∣
∣∣∣∣∣ RT

κ,φ,ωS
−1 0

0T 1

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1
f 0 0 0
0 1

f 0 0
0 0 1

f 0
0 0 1

f 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


x̃pr

ỹpr

f
1


where the first matrix specifies the inverse rotation and scaling that reduce the centred
world co-ordinate frame to the simplest projection case. Because the rotation matrix is
orthogonal, its inversion is equivalent to transposition.

Let P = (qij)i=1,2,3;j=1,...,4 be a general-case projection matrix:

 txpr

typr

t

 =

 q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34




x
y
z
1


The optical centre C = (X0, Y0, Z0, 1)T is given by the relationship PC = 0, or X0

Y0

Z0

 = −
 q11 q12 q13

q21 q22 q23

q31 q32 q33


−1  q14

q24

q34


Coordinates of the points along every projection ray are represented asC+ t∆ where the
increment ∆ = (∆x, ∆y, ∆z)T depends on the centred projected image point (xpr, ypr).
A derivation of how the coordinates of the ray points depend on the projection parameters
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is given below (a simpler derivation exploiting an infinitely far point along the projecting
ray is given in Chapter 2).

Let the increment∆ be normalised: ∆2
x + ∆2

y + ∆2
z = 1 . Then it is easily shown that

x̃pr =
q11∆x + q12∆y + q13∆z

q11∆x + q12∆y + q13∆z

ỹpr =
q21∆x + q22∆y + q23∆z

q11∆x + q12∆y + q13∆z

Therefore,

(q11 − x̃prq31)∆x + (q12 − x̃prq32)∆y + (q13 − x̃prq33)∆z = 0
(q21 − ỹprq31)∆x + (q22 − ỹprq32)∆y + (q23 − ỹprq33)∆z = 0
∆2

x + ∆2
y + ∆2

z = 1

Let ∆x = cos φ cos ψ, ∆y = sin φ cos ψ, and ∆z = sin ψ to satisfy the normalising
condition. Let ξ1j = q1j− x̃prq3j and ξ2j = q2j− ỹprq3j for j = 1, 2, and 3. Then the above
equations can be rewritten as follows:

ξ11 cos φ cos ψ + ξ12 sin φ cos ψ = −ξ13 sin ψ
ξ21 cos φ cos ψ + ξ22 sin φ cos ψ = −ξ23 sin ψ

Let cos ψ = 0. In this singular case ξ13 = ξ23 = 0 so that∆x = ∆y = 0 and∆z = 1. This
projection ray corresponds to Z-axis ortogonal to the image plane, i.e. to the simplest, or
ideal projective geometry.

Considering cos φ and sin φ as the components of an unknown 2 × 1 vector, one
obtains: (

cos φ
sin φ

)
= −

(
ξ11 ξ12

ξ21 ξ22

)−1 (
ξ13

ξ23

)
tan ψ

= − 1
ξ11ξ22 − ξ12ξ21

(
ξ22 −ξ12

−ξ21 ξ11

) (
ξ13

ξ23

)
tan ψ

Therefore,
cos φ =

ξ12ξ23 − ξ13ξ22

ξ11ξ22 − ξ12ξ21
tan ψ

sin φ =
ξ13ξ21 − ξ11ξ23

ξ11ξ22 − ξ12ξ21
tan ψ

so that
φ = tan−1 ξ13ξ21 − ξ11ξ23

ξ12ξ23 − ξ13ξ22

ψ = tan−1
ξ11ξ22 − ξ12ξ21√

(ξ12ξ23 − ξ13ξ22)2 + (ξ13ξ21 − ξ11ξ23)2
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Using these values, one can easily find the desired increments:

∆x = cos φ cos ψ =
ξ12ξ23 − ξ13ξ22√

(ξ12ξ23 − ξ13ξ22)2 + (ξ13ξ21 − ξ11ξ23)2 + (ξ11ξ22 − ξ12ξ21)2

∆y = sin φ cos ψ =
ξ13ξ21 − ξ11ξ23√

(ξ12ξ23 − ξ13ξ22)2 + (ξ13ξ21 − ξ11ξ23)2 + (ξ11ξ22 − ξ12ξ21)2

∆z = sin ψ =
ξ11ξ22 − ξ12ξ21√

(ξ12ξ23 − ξ13ξ22)2 + (ξ13ξ21 − ξ11ξ23)2 + (ξ11ξ22 − ξ12ξ21)2

1.4 Least squares line fitting
The least squares criterion is to minimise the total or mean square distance from a given
set of points to the line l(α, β, γ) = αx + βy + γ such that α2 + β2 = 1:

(α∗, β∗, γ∗) = arg min
α,β,γ : α2+β2=1

D(α, β, γ)

whereD(α, β, γ) denotes the total distance that accumulates the individual distances d2
n =

(αxn + βyn + γ)2 from the points pn = (xn, yn) to the line:

=
N∑

n=1

d2
n ≡

N∑
n=1

(αxn + βyn + γ)2

Unconstrained minimisation of D(α, β, γ) by γ is performed by setting to zero the
corresponding partial derivative:

∂D(α, β, γ)

∂γ
= 0→ ∂

∂γ

N∑
n=1

(αxn + βyn + γ)2 = 2
N∑

n=1

(αxn + βyn + γ) = 0

so that the optimum γ∗ = −(αx̄ + βȳ) where x̄ and ȳ are the mean coordinates:

x̄ =
1

N

N∑
n=1

xn; x̄ =
1

N

N∑
n=1

yn
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After substituting the γ∗ value, the constrained Lagrange minimisation ofD(α, β, γ∗)
by α and β is performed as follows: (α∗, β∗) = arg min

α,β
Φ(α, β) where

Φ(α, β) =
N∑

n=1

[α(xn − x̄) + β(yn − ȳ)]2 − λ(α2 + β2 − 1)

and λ is the Lagrange factor. By setting to zero the partial derivatives of Φ(α, β):

∂
∂αΦ(α, β) = 2

N∑
n=1

[α(xn − x̄) + β(yn − ȳ)] (xn − x̄)− 2λα = 0

∂
∂βΦ(α, β) = 2

N∑
n=1

[α(xn − x̄) + β(yn − ȳ)] (yn − ȳ)− 2λβ = 0

the minimisation is reduced to the following eigen-vector problem:(
µxx µxy

µxy µyy

) (
α
β

)
− λ

(
α
β

)
= 0 or

(
µxx − λ µxy

µxy µyy − λ

) (
α
β

)
= 0 (1.1)

where µxx = 1
N−1

∑N
n=1(xn−x̄)2 and µyy = 1

N−1

∑N
n=1(yn−ȳ)2 are the variances of the x-

and y-coordinates, respectively, and µxy = 1
N−1

∑N
n=1(xn−x̄)(yn−ȳ) is the covariance of

the coordinates of the points to be approximated with the line. To solve the minimisation
problem, the eigen-vector corresponding to the smallest eigen-value has to be computed.
In this 2× 2 case it is easily found analytically:(

α∗

β∗

)
=

1√
µ2

xy + (λ∗ − µxx)2

(
µxy

λ∗ − µxx

)

where λ∗ = 1
2

(
µxx + µyy −

√
(µxx − µyy)2 + 4µxy

)
.

Exercise: Obtain the above relationship from the initial equation 1.1.

1.5 Line detection with Hough transform
Each straight line l(x, y|θ◦, p◦) = x cos θ◦ + y sin θ◦ − p = 0 is represented by the point
(θ◦, p◦) in the 2D space (or plane) of parameters (θ, p). Each point (xA, yA on that line in
principle may belong to an infinite subset of other straight lines. As shown in Fig. 1.1, all
the lines passing through a point (xA, yA) relate to a wave-like trajectory on the parameter
plane:

h(θ, p|xA, yA) = xA cos θ + yA sin θ − p = 0

Ideally, the trajectories for the points of the same line l(x, y|θ◦, p◦) intersect in the
same point θ◦, p◦ of the parameter space (see Fig. 1.2). In practice, the intersections may
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Figure 1.1: Hough transform.

be inexact due to noisy positions of the points in a digital image and of their trajectories.
A proper quantisation of the parameter space accounts for possible inexact intersections.
Then the search for the intersection point can be replaced with the search for a spatial
cluster of the points along all the trajectories for a given set pn = (xn, yn); n = 1, . . . , N ,
of points.

Algorithm of line detection in an image g with the Hough transform assuming that
their candidate points are edge ones with relatively large signal gradients is as follows:

1. Quantise the parameter space between appropriate maximum and minimum values
p and θ, e.g. θ ∈ [0, π] and p ∈ [0, pmax =

√
x2

max + y2
max].

2. Given the quantisation steps δθ and δp, form an accumulator array [A(i, j)]I,J
i,j=0,0 of

size IJ where I = π/δθ and J = pmax/δp, whose elements are initially set to zero:
A(i, j) = 0.

3. For each edge point (x, y) in the image g, that is, the point where the gradient mag-
nitude exceeds a given threshold, increment all the accumulator elements A(p, θ)
along the corresponding curvilinear trajectory, i.e. A(p, θ)← A(p, θ) + 1 for p and
θ satisfying the trajectory equation x cos θ + y sin θ− p = 0 to within the precision
of parameter quantisation.
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Figure 1.2: Hough transform: intersecting trajectories.

4. Find local maxima in the accumulator array that now correspond to collinear edge
points in the image (usually, the accumulator A is first smoothed, and then peaks
are determined as values greater than a threshold).

5. After the peaks are obtained, detemine the parameter pairs for each line as the centre
points of the peaks and find the line corresponding to each determined parameter
pair (θ, p) by examining the edge points near the line in the image (see Fig. 1.3).

The above Hough transform can be simplified by using edge directions because the
trajectory dimension in the parameter space is reduced when the direction is also as-
signed to the edge points by an edge operator. The equation of the straight line passing
through the point (xA, yA) along the direction θA is uniquely determined as x cos θA +
y sin θA − (xA cos θA + yA sin θA) = 0. Therefore, the line is transformed to the single
point (θ, xA cos θA +yA sin θA) in the parameter space of the Hough transform. The calcu-
lation of the accumulator array in this case is very simple, and the peaks are much easier
found by analysing point clusters exemplified by Fig. 1.4.
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Figure 1.3: Implementation of the Hough transform.

Figure 1.4: The edge-based Hough transform.



Chapter 2

Camera Calibration

2.1 Pin-hole camera model
The two key questions in understanding image formation for a 3D scene are where some
point of the scene appears in the image and what determines its brightness or colour.
The first question is answered with a geometric camera model that gives a precise mathe-
matical description of geometric relationships between the real 3D world and the images
perceived. Most typically the 3D scenes are projected onto the 2D images by projective
perspective transformations. The second question involves a radiometric model that takes
account of general illumination and optical properties of visible surfaces having both dif-
fuse and specular reflection components. Different points on an object in front of the
visual sensor produce different values in the pixels, depending on the amount of inci-
dent radiance, how they are illuminated, how they reflect light, how the reflected light is
collected by a lens system, and how the sensor responds to the incoming light (Fig. 2.1).

Figure 2.1: Light reflection.

Pin-hole camera geometry. Let us consider the box in Fig. 2.2 with a small hole
punched in the front face. Some of the light rays, emitted or reflected by 3D objects,
pass through the hole and form an inverted image of these objects on the back face. The
operation creating the inverted image is called a perspective projection. Such an ideal
pinhole projection is the simplest geometric camera model which also holds for fixed-
focus cameras having general-purpose lens systems. As underscored in [4], the pinhole

19
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camera accurately models the geometry and optics of most of the modern cameras. The
pinhole is the camera’s optical, or focal centre with the coordinates O = [X0, Y0, Z0] in
a certain real-world co-ordinate system 0XY Z. The optical centre can be also denotedC
below.

Figure 2.2: Pin-hole camera.

The image is formed in the image, or retinal plane through a perspective projection.
The camera’s optical axis crossing the optical centre is perpendicular to the image plane.
The distance from the optical centre to the image plane along the optical axis is the cam-
era’s focal length, or focal distance, or camera constant f . The plane that contains the
optical centre and is parallel to the image plane is called the focal plane.

Figure 2.3: Pin-hole projection.

Every 3D point S = [X,Y, Z] in the field of view is projected onto a corresponding
point s = [x, y] on the image plane. Let a 3D point S being at the depth Z from the optical
centre be projected through this centre (Fig. 2.3). Then it is projected into the point that is
a trace of the line OS in the image plane R. Geometrically, a projection of an object onto
a plane placed at the focal distance in front of the focal plane is similar to the rectified
projection obtained in the image plane as shown in Fig. 2.4. Traditionally, the image plane
is drawn in front of the focal point.
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Figure 2.4: Pin-hole camera model.

Camera reference frame. There might be an infinite variety of 3D world reference
frames (WRF) giving Cartesian co-ordinates of spatial points with respect to different
origins and orientations of coordinate axes and in different linear units (µm, mm, inches,
light years, parsecs, etc). In the image reference frame, 2D image points are typically
measured in pixels. Each pixel (or picture element) is of the size of a camera’s photore-
ceptor (e.g. about 15 × 15 µm in a conventional CCD camera). Generally, a geometric
transformation that maps Cartesian point coordinates in one reference frame onto co-
ordinates in another frame involves an Euclidean motion (translation and rotation) and
scaling (see Fig. 2.5). In the simplest case, the scale of the coordinates is the same in
the both reference frames, and the transformation involves only rotation and translation.
The corresponding transformation matrix maps a 3D point in the WRF, (x, y, z, 1)T in ho-
mogeneous coordinates, into its counterpart, (x′, y′, z′, 1)T in the camera reference frame
(CRF). This 4×4matrix combining rotation and translation in homogeneous co-ordinates
is written as:


x′

y′

z′

1

 =

(
R3×3 T3×1

0 0 0 1

) 
x
y
z
1



Here, the matricesR andT describe, respectively, the orientation and position of the CRF
relative to the WRF. These characteristics are called extrinsic camera parameters.

The camera model has the simplest form when the image and spatial coordinates are
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Figure 2.5: World and image reference frames.

given in the CRF:

 tx
ty
t

 =

 1 0 0 0
0 1 0 0
0 0 − 1

f 0




TX
TY
TZ
T

 , or x = f
X

Z
; y = f

Y

Z

Generally, we need to determine the CRF with respect to a particular WRF, given
the camera coordinates s = [x, y]T of the observed perspective projection points and the
world coordinates Sw = [Xw, Yw, Zw]T of the corresponding 3D object points.

Let lens distortions can be ignored. Let the unit vectors Xc, Yc, Zc define the X ,
Y , or Z-axis of the camera reference frame, respectively, in the world coordinates. Let
(x0, y0) be the coordinates of the principal point in the image assuming that the origin
does not coincide with the trace of the optical axis. Then the camera model with respect
to the world reference frame is as follows:

x− x0

f
=

(Sw −O) • Xc

(Sw −O) • Zc
;

y − y0

f
=

(Sw −O) • Yc

(Sw −O) • Zc

where • denotes the dot product of vectors. The above dot products give the co-ordinates
X , Y , or Z in the CRF for the point S projected onto the image point s = [x, y].

2.2 More on image and focal planes
As outlined above, an optical image is formed by a perspective projection of an optical
3D surface onto the image plane of a sensor via an optical centre O located at the focal
distance f of the optical system. The projection s = [x, y]T of a 3D point S = [X, Y, Z]T
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is formed by intersecting the projecting ray SO with the image plane. The focal plane
contains the centreO and is parallel to the image plane.

Perspective projection is a relationship between the image and 3D spatial coordinates in
the standard CRF (coordinate system of the camera):

− f

Z
=

x

X
=

y

Y
.

The standard CRF has the X- and Y -axes parallel to the x- and y-axes of the image,
respectively. TheZ-axis coincides with the optical axis of the camera that is perpendicular
to the image plane and goes through the optical centre.

In an arbitrary WRF, the perspective projection in homogeneous coordinates S̃ =
[X, Y, Z, T ]T and s̃ = [x, y.t]T is as follows: PS̃ = s̃ where P is a particular 3 × 4
projection matrix. The matrix has a simple geometric interpretation. Its row vectors qiT;
i = 1, . . . , 3, specify the projective planes with the point equation qT

i S = 0 corresponding
to points in the image plane with x = 0, y = 0, and t = 0, respectively.

The plane of the equation qT
3 S = 0 yielding t = 0 corresponds to image points at

infinity, that is, it represents the focal plane. The intersection qT
i S = 0; i = 1, 2 of the

two other planes is the line going through the optical centreO and the coordinate origin o
in the image plane. The optical centre O is defined as the intersection of the three planes
qT

i S = 0; i = 1, 2, 3, and can be obtained by solving the system of three linear equations.
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Optical centre and projecting ray. The projection matrix can be rewritten as P =
[Q q] where

Q =

 q11 q12 q13

q21 q22 q23

q31 q32 q33

 ; q =

 q14

q24

q34


If the matrixQ is of rank 3 then the optical centre is obtained by solving the linear system
PÕ = 0, that is,

O = −Q−1q.

The optical ray defined by a pixel s is going through the optical centreO and the point at
infinity, D̃, with homogeneous (or projective) coordinates [DT, 0]T that satisfies equation
s = PD. Therefore,D = Q−1s, and a point on the ray is given by

Q−1(−q + λs) = O + λQ−1s

where −∞ < λ <∞.

Optical and digital coordinates In the standard camera geometry, the origin of the
image coordinates coincides with the principal point, or the trace (intersection point) of
the optical axis serving as the axis Z, and the 3D and 2D point coordinates X, Y, Z, x, y
and the focal length f are given in the length units (e.g., millimeters). Intrinsic camera
parameters for sensing digital images include the origin, (cx,0, cy,0), of the pixel positions
with respect to the principal point, where cx and cy denote the row and column pixel
position, respectively, and the scale factors, kc,x and kc,y, expressed in the relative units
(pixel / meter) and inversely proportional to the horizontal and vertical size of the pixel.
The intrinsic camera parameters f, kc,x, kc,y, cx,0, cy,0 specify digital image coordinates,
that is, pixel positions in a digital image, as follows:

cx = kc,xx + cx,0 = −fkc,x
X

Z
+ cx,0; cy = kc,yy + cy,0 = −fkc,y

Y

Z
+ cy,0.

Thus the projection equation for a digital image (in terms of pixels) is spix = Ks:

 cx

cy

1

 =

 kc,x 0 cx,0

0 kc,y cy,0

0 0 1


 x

y
1

 =

 −fkc,x 0 cx,0 0
0 −fkc,y cy,0 0
0 0 1 0




X
Y
Z
1


An Euclidean transformation of the 3D space consisting in rotation of the old co-

ordinate system followed by translation changes the co-ordinates of the points.
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The matrix R and the vector t describing the orientation and positioning of the cam-
era with respect to the new WCF (world co-ordinate frame) are called extrinsic camera
parameters.

General form of the matrix P is as follows.

By combining co-ordinate transformations and projection in the camera coordinate sys-
tem, one obtains a general perspective projection matrix for projecting a 3D point in the
world coordinates onto the digital image:

Pnew =

 kc,x 0 cx,0

0 kc,y cy,0

0 0 1


 −f 0 0 0

0 −f 0 0
0 0 1 0




r1 tx
r2 ty
r3 tz
0 1


where ri is the i-th row of the rotation matrixR specifying the camera orientation.
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2.3 Camera calibration
Camera calibration is a process of determining parameters of the imaging process, that
is, of the projective transformation that maps a 3D point in a given WRF, onto its 2D im-
age with co-ordinates measured in pixel units. Such a transformation, when determined,
relates the image measurements to the spatial structure of the observed scene. The cali-
bration determines both the external, or extrinsic, parameters relating theWRF to the CRF
and internal, or intrinsic, parameters of the camera. Rays back-projected from image pix-
els into the 3D space have the following properties: (i) an angle between two rays relates
to respective positions of two pixels, (ii) a ray and a depth value provide the position of
a 3D point, and (iii) rays from two cameras viewing the same 3D scene intersect at a 3D
position of each point depicted in the both images. Let a 3D point in the standard CRF of
a pinhole camera model be projected into the image plane placed at the focal distance f
from the origin of the CRF (optical centre). Let the centre of image 2D co-ordinates be in
the principal point, or trace of the optical axis. Then in homogeneous image co-ordinates
a perspective projection is given by the following 4× 4 matrix (see Fig. 2.6):

 sxp

syp

s

 =

 f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
1

 ; s $= 0

Figure 2.6: Perspective projection.
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Standard projective geometry and image distortions. In image processing, the ori-
gin of the image reference frame is usually at the top left of the image, x-axis and y-axis
pointing rightward and downward, respectively. Image coordinates are measured in pix-
els, and their metric counterparts can be obtained by accounting for the size of photosen-
sors transforming the light rays into electrical signals. As shown in Fig. 2.7, the sensors
are not necessarily square. Let dx and dy be the x- and y-size of the rectangular sensor,
that is, the center-to-center horizontal or vertical distance between the adjacent sensing
elements, respectively. Then the coordinates of an image point in the pixel-based image
reference frame are as follows: x

y
1

 =

 −dx
−1 0 xc

0 −dy
−1 yc

0 0 1


 xc

yc

1


The values dx and dy are usually provided by the camera manufacturers. dy should be
doubled if only even or odd fields are used instead of the full size frames.

Figure 2.7: Pixel coordinates.

Today’s CCD cameras have different sizes, numbers, sampling rates, and other char-
acteristics of sensing elements. The camera parameters include also the numbersNc,x and
Nc,y of the sensing elements in the horizontal and vertical direction that specify the image
size (the total number of the sensed pixels) as well as the number Nf,x of pixels in a line
sampled by the computer. A more general representation of the coordinates of an image
point in the pixel-based image reference frame is:

Xf = sx
Xd

d′x
+ Cx; Yf =

Yd

dy
+ Cy

where d′x = dx
Nc,x

Nf,x
and sx is a scale factor accounting for uncertainty due to a framegrab-

ber horizontal scanline resampling and acquisition timing error. A 1% error in characteris-
tics of the sensing elements may yield errors up to 3 to 5 pixels in a full frame image [13].
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Most of the existing calibration methods assume that the optical and geometrical cam-
era design follows the pinhole camera model. Possible deviations of actual camera char-
acteristics from the pinhole model are taken into account in some calibration methods by
using additional parameteric models of image distortions:

Standard calibration procedures account for only a first order radial lens distortion de-
scribed by non-linear model with a single distorting parameter, κ1. The coefficient κ1

relates the distorted (true) and undistorted (ideal) image coordinates as follows:

Xd(1 + κ1(X2
d + Y 2

d)) = Xu

Yd(1 + κ1(X2
d + Y 2

d)) = Yu

Projective geometry: general case. Generally, the projection matrix P depends on
both the intrinsic and extrinsic camera parameters:

Pnew =

 −kc,xfr1 + cx,0r3 −kc,xftx + cx,0tz
−kc,yfr2 + cy,0r3 −kc,yfty + cy,0tz

r3 tz


where the vectors ri are the row vectors of the rotation matrix R. If kc,x and kc,y are not
zero, the matrix Pnew is of rank 3.

To estimate the intrinsic and extrinsic parameters of a camera, one has first to estimate
the projection matrix P ≡ Pnew. Then, if necessary, the camera parameters should be
derived from P. Special constraints on the projection matrix P hold.

Theorem 1 (O. Faugeras) Let P be a 3× 4 projection matrix of rank 3:

P =

 qT
1 q14

qT
2 q24

qT
3 q34

 .

There exist four sets of extrinsic and intrinsic parameters such that P can be
written as

P =

 −kc,xfr1 + cx,0r3 −kc,xftx + cx,0tz
−kc,yfr2 + cy,0r3 −kc,yfty + cy,0tz

r3 tz


if and only if the two constraints are satisfied: ||q3|| = 1 and (q1×q3)•(q2×q3) = 0.
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Here, || . . . ||, • and× denote the vector norm, the vector dot product, and the vector cross
product, respectively. Geometric interpretation of the theorem is as follows. The direction
of the line cx = 0 or cy = 0 in the image plane is that of the intersection of the focal plane
qT

3 S = 0 with the plane qT
1 S = 0 or qT

2 S = 0, respectively. This direction is given by the
vector cross product q1×q3 or q2×q3, respectively. The dot product (q1×q3)•(q2×q3)
specifies the cosine of the angle (defined modulo π) between those two lines. The image
plane can be placed either behind or in front of the optical centre.

Number of parameters. If physically the sensor axes cx = 0 and cy = 0 are orthogo-
nal, there are the two constraints for the projection matrix, and 10 intrinsic and extrinsic
camera parameters have to be estimated. If the axes may have an arbitrary angle, θ, there
is only one constraint ||q3|| = 1, and 11 camera parameters, including the intrinsic angle
θ, have to be estimated. There are only four equivalent variants of the estimates differing
in that the origin of coordinates is in front of the camera (tz > 0) or behind it (tz < 0) or
the axes cx = 0 and cy = 0 are direct or inverted in the image plane.

Linear calibration methods. Calibration data contain N 3D reference points Si =
[Xi, Yi, Zi] and corresponding 2D image coordinates si = [cx,i, cy,i]. The following linear
relationship between the 3D and 2D coordinates holds:

qT
1 Si − cx,iq

T
3 Si + q14 − cx,iq34 = 0; qT

2 Si − cy,iq
T
3 Si + q24 − cy,iq34 = 0

Every reference point Si gives two linear equations in the unknowns qT
m and qm4; m =

1, 2, 3, and the N reference points result in an over-determined system of 2N homoge-
neous linear equations Aq = 0. The latter can be solved by the least-square method:
min ||Aq||2 whereA is a 2N × 12 matrix depending on the 3D and 2D reference coordi-
nates and q is the 12 × 1 vector q = [qT

1 , q14,qT
2 , q24,qT

3 , q34]T. The vector q is defined
up to a scale factor, and the rank ofA is equal 11 in general when the reference points are
not co-planar. Also, the points should not form a specific twisted cubic curve in the space
to avoid a singular case but this is highly unlikely for randomly chosen calibration points.

Least-square solution. The constraint ||q3||2 = 1 is invariant to changes in the WRF.
Under this constraint, there exists the almost closed-form solution based on finding eigen-
vectors of a 3×3matrix and inverting a 9×9matrix. The constraint (q1×q3)•(q2×q3) =
0 is also invariant to changes in the WRF. But this constraint does not allow for the closed-
form solution.

The linear approach does not minimise the distance in the image between the 2D
points si and the reprojected 3D points Si. The nonlinear minimisation criterion involves
the total Cartesian distance explicitly:

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣qT

1 Si + q14

qT
3 Si + q34

− cx,i

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣qT

2 Si + q24

qT
3 Si + q34

− cy,i

∣∣∣∣∣
∣∣∣∣∣
2



30 COMPSCI.773 S1 T Lecture Notes

The total distance should be numerically minimised with respect to q subject to the con-
straint(s). Another way is to directly minimise it by the intrinsic and extrinsic parameters
rather than the coefficients of the matrix P.

The linear approach is very simple if it involves only the single constraint ||q3||2 = 1
and gives good results provided that the calibration pattern is chosen with a care. The non-
linear method is much more robust with respect to noisy measurements of the reference
coordinates. A need of a special calibration pattern in the field of view is cumbersome for
many applications. There exist possibilities of estimating simultaneously both the camera
parameters and the co-ordinates of the 3D points producing a given set of the correspond-
ing image points si; i = 1, . . . , N .

2.4 Camera calibration: Tsai’s scheme
This most popular calibration scheme is sketched step-by-step below.



Part 1: P. Delmas, G. Gimel’farb 31

Calibration steps 1 – 2. The Tsai’s method requires at least 7 non-coplanar 3D ref-
erence points. The scale sx is initially set to 1 and will be determined at step 4. First,
co-ordinates [xd, yd] in the distorted image are calculated from the lattice coordinates
[cx, cy] assuming that [cx,0, cy,0] is the image center: xd = sx(cx − cx,0)/δx and yd =
(cy−cy,0)/δy. Then 7 parameters transforming image coordinates into world co-ordinates
are determined by replacing the denominator in xd = sxf

r11Xw+r12Yw+r13Zw+tx
r31Xw+r32Yw+r33Zw+tz

with its
expression r31Xw + r32Yw + r33Zw + tz = f r21Xw+r22Yw+r23Zw+ty

yd
derived from yd =

f r21Xw+r22Yw+r23Zw+ty
r31Xw+r32Yw+r33Zw+tz

and converting the resulting equation into the linear equation xd =

mTL assuming that ty $= 0. Here,m = [ydXw, ydYw, ydZw, yd,−xdXw,−xdYw,−xdZw]T

and L = 1
ty

[sxr11, sxr12, sxr13, sxtx, r21, r22, r23]T.
More than 7 reference points lead to an over-determined system of equations xd,i =

mT
i L; i = 1, . . . , N , or X = ML where X is the N × 1 vector of xd,i values and M

is the N × 7 matrix with the row vectors mT
i . This system can be solved by using the

pseudo-inverse technique calledMoore-Penrose inverse1: L =
(
MTM

)−1
MTX.

Calibration steps 3-4. The Y -coordinate of the translation vector is computed using
the parameter vector L obtained at step 2 and the orthonormality property of the rotation
matrix R: r2

21 + r2
22 + r2

23 = 1 → |ty| = 1√
a2
5+a2

6+a2
7

where ai denotes the i-th component

of the above parameter vector L = [a1, a2, . . . , a7]T. Then the scaling factor sx is deter-
mined using the same orthonormality property of R: sx = |ty|

√
a2

1 + a2
2 + a2

3. The sign
of ty is obtained by choosing the reference 3D point whose image position is the most
distant from the principal point (image center) and computing the parameters r11 = a1ty,
r12 = a2ty, r13 = a3ty, r21 = a5ty, r22 = a6ty, r23 = a7ty, and tx = a4ty. The signs
sign{r11Xw + r12Yw + r13Yw + tx} and sign{r21Xw + r22Yw + r23Yw + ty} of the com-
puted coordinates of the projected point are compared to the signs of the actual image
coordinates x, y. If the signs do not coincide, the sign of ty should be inverted.

Calibration step 5 recalculates the 6 components of the rotation matrix R and the X-
component of the translation vector t: r11 = a1

ty
sx
, r12 = a2

ty
sx
, r13 = a3

ty
sx
, r21 = a5ty,

r22 = a6ty, r23 = a7ty, and tx = a4
ty
sx
. The remaining 3 components of the rotation

matrix are calculated using the inner vector (or cross) product of its first two rows: r31 =
λ (r12r23 − r22r13), r32 = λ (r13r21 − r23r11), and r31 = λ (r11r22 − r21r12) where the
factor λ is given by the orthonormality property r2

31 + r2
32 + r2

33 = 1.

1The Moore-Penrose inverse is obtained as follows. LetAx = b be an over-determined system of linear
equations whereA is a matrix n×m, x is a vectorm×1, and b is a vector n×1. The pseudo-inverse matrix
for this system is obtained by solving the least-square problem min

x
D(x) where D(x) = ||Ax− b||2 ≡

xTATAx − 2xTATb + bTb.. The minimisation yields ∂D(x)
∂x = 0, or (ATA)x −ATb = 0. Thus the

solution is: x = (ATA)−1ATb if the squarem×m matrixATA is of rankm.
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Calibration step 6 approximates the focal length f and the Z-coordinate of the transla-
tion vector accounting for no lens distortion. Projection relation for each reference point
i: yd,i = f r21Xw,i+r22Yw,i+r23Zw,i+ty

r31Xw,i+r32Yw,i+r33Zw,i+tz
is rewritten as the linear equation with respect to f

and tz: [Uy,i, −yd,i][f, tz]T = Uz,iyd,i where Uy,i = r21Xw,i + r22Yw,i + r23Zw,i + ty and
Uz,i = r31Xw,i + r32Yw,i + r33Zw,i.

More than 2 reference points i result in the over-determined system of equations:
M[f, tz]T = m where

MT =

[
Uy,1 Uy,2 . . . Uy,n

−yd,1 −yd,2 . . . −yd,n

]

and mT =
[

Uz,1yd,1 Uz,2yd,2 . . . Uz,nyd,n

]
. This system has to be solved by the

pseudo-inverse technique: [f, tz]T = (MTM)−1MTm. More accurate solutions can be
obtained with the steepest descent optimisation that starts from the already determined
approximate values.

Practical calibration procedure. The 3×4 theoretical calibration matrix that combines
a rigid body (Euclidean motion) transformation (R,T) from the WRF (world reference
frame) to the CRF (camera reference frame) with projection onto the image plane (f ) and
integrates sensor specifications (d′x, dy) is determined as follows: (i) metric measurements
for a set of real 3D points and corresponding pixel locations in the image plane are ob-
tained using a specially designed calibration object (e.g., the cube in Fig. 2.8) with known
co-ordinates of calibration points in the WRF, (ii) the calibration matrix coefficients are
computed using the point-to-point correspondence between these measurements (as an
optional step, the intrinsic and extrinsic camera parameters may be computed from these
coefficients), and (iii) calibration errors are estimated by using a radius of ambiguity in
ray tracing, that is, a distance between the back projected image point on the test plane
and the initial measured 3D point in the same plane, or an accuracy of the 3D coordinate
measurements obtained through stereo triangulation using the calibrated cameras. The
calibration object in Fig. 2.8 should have both coplanar and non-coplanar points with pre-
cisely determined geometry and 3D coordinates. After feature points (patches, corners or
predefined patterns) are manually or automatically extracted from the image, the Tsai’s
calibration can be performed.

A simpler calibration scheme estimates directly the 3× 4 projection matrix that trans-
forms a 3D point (x, y, z)T in the WRF into its pixel position (u, v)T in the digital image:

 su
sv
s

 =

 a b c d
e f g h
i j k 1




x
y
z
1
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Figure 2.8: Calibration object.

where s $= 0 and the matrix components are denoted for brevity a, . . . , k. These latter
relate to both intrinsic and extrinsic parameters of the camera. A linearised approximate
solution is obtained by substituting s = ix + jy + kz + 1 into the two other equalities
su = ax + by + cz + d and sv = ex + fy + gz + h so that{

ax + by + cz + d− ixu− jyu− kzu = u
ex + fy + gz + h− ixv − jyv − kzv = v

For a given set of N points with the known (or measured) 3D coordinates (xi, yi, zi)T and
corresponding pixel positions (ui, vi), the following overdetermined linear system for the
unknown components a, . . . , k holds:

x1 y1 z1 1 0 0 0 0 −x1u1 − y1u1 − z1u1

0 0 0 0 x1 y1 z1 1 −x1v1 − y1v1 − z1v1

x2 y2 z2 1 0 0 0 0 −x2u2 − y2u2 − z2u2

0 0 0 0 x2 y2 z2 1 −x2v2 − y2v2 − z2v2

x3 y3 z3 1 0 0 0 0 −x3u3 − y3u3 − z3u3

0 0 0 0 x3 y3 z3 1 −x3v3 − y3v3 − z3v3
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...

xN yN zN 1 0 0 0 0 −xNuN − yNuN − zNuN

0 0 0 0 xN yN zN 1 −xNvN − yNvN − zNvN





a
b
c
d
e
f
g
h
i
j
k



=



u1

v1

u2

v2

u3

v3
...
...

uN

vN


This system can be solved by the pseudo inverse techniques.

2.5 Binocular viewing
Let the coordinates of the points of a spatial scene be measured in a fixed 3D Cartesian
WRF OXY Z. Let the 2D coordinates of the image pixels be measured in the fixed
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2D Cartesian systems o1x1y1z1 and o2x2y2z2, respectively. Figure 2.9 shows geometry of
binocular viewing of a 3D scene by two cameras with arbitrary positions and orientations.
Here, the following notations are used: O1 = (Xo,1, Yo,1, Zo,1) andO2 = (Xo,2, Yo,2, Zo,2)
denote optical centres of the first and second camera, o1 = (x1,o, y1,o) and o2 = (x2,o, y2,o)
are principal points of the first and second images, that is, the traces of the optical axes
of the first and the second cameras in the corresponding images, e1 is an epipolar point in
the plane of the first image, that is, the projection of the second optical centreO2 onto this
plane, and e2] is an epipolar point in the plane of the second image, that is, the projection
of the first optical centre O1 onto this plane. Also, let S = (X, Y, Z) be an arbitrary 3D
point. Then s1 denotes the projection of the point S onto the first image, and s2 denotes
the projection of the point S into the second image.

Figure 2.9: Binocular viewing and fundamental matrix.

The line segment O1O2 between the optical centres is called the stereo baseline.
The binocular viewing with the two cameras is conveniently described in terms of the
corresponding epipolar lines in the stereo pair of images. Let s denote the projection of a
3D point S onto an image plane. The epipolar line through the pixel s in this image plane
is defined as a trace of the intersecting plane that contains the 3D point S and the baseline
(that is, both the optical centres O1 and O2). Any spatial point in this plane is projected
into the corresponding pair of the epipolar lines in the images, for instance, into the lines
e1s1 and e2s2. Thus, an epipolar profile of the scene (that is, the profile of the scene in the
intersecting plane SO1O2) is depicted by the corresponding epipolar lines in the images.

The epipolar geometry is outlined in Figure 2.10 where s1, s2 are the projections of a
3D point S, and e1, e2 are epipoles, or the projections of the centre O1 and O2 onto the
second and first image, respectively. The lines e1s1 and e2s2 are called the corresponding
epipolar lines.

For binocular stereo viewing, the following symmetric epipolar constraint holds. For
a given point s1 (s2) in the plane of the stereo image 1 (2), all the possible stereo matches
in the plane of another image 2 (1) lie on the epipolar line through the epipole e2 (e1),
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Figure 2.10: Epipolar geometry.

respectively. The corresponding epipolar lines are the intersections of the plane SO1O2

with the image planes. The parallel epipolar lines are in a special case of a so-called
horizontal stereo pair:

Epipolar relations between the image points are as follows. Given the two cameras with
the projection matrices Pi = [Qi qi]; i = 1, 2, a 3D point S relates to the corresponding
image points as s1 = P1S and s2 = P2S.

As shown earlier, the optical centre Oi = −Qiqi. Thus the epipole ej; j $= i, given
by the relationship

ej = Pj

[ −Q−1
i qi

1

]
,

is one of the points of each epipolar line.
Another point Di can be chosen at infinity of the optical ray: Oisi, that is, Di =

Q−1
i si. The image dj of this point in the second image plane is given by

dj = QjQ
−1
i si.



36 COMPSCI.773 S1 T Lecture Notes

Fundamental matrix. Given the two points e2 and d2, the epipolar line in the image
plane 2 in the homogeneous coordinates is represented by the vector cross product e2×d2.

The cross product e2 × d2 can be written as Fs1 where F is a 3 × 3 fundamental
matrix. As shown by Faugeras [4] (Chapter 6, p. 172) any pixel s2 on the epipolar line of
s1 satisfies the equation:

sT
2 Fs1 = 0.

where T, as usually, indicates the transposition. This equation is called the Longuet-
Higgins equation. It suggests that the parameters of the epipolar line of s1 are given by
the vector sT

2 F as well as the parameters of the epipolar line of s2 are given by the vector
Fs1.

Let homogeneous coordinate vectorssk,j =

 xk,j

yk,j

1

 : j = 1, 2


denote the k-th pair of corresponding points in a stereo pair of images (the indices j = 1
and j = 2 represent the left and the right image of the stereo pair, respectively).

The fundamental matrix relationship between the homogeneous coordinates of the
corresponding points:

sT
k,2Fsk,1 = 0. (2.1)

means that any point sk,2 of the right image specifies in the left image an epipolar line
which the corresponding point sk,1 lies on. The line has the parameterss sT

k,2F. Alterna-
tively, the point sk,1 specifies in the right image the parameters Fsk,1 of the corresponding
epipolar line which the point sk,2 lies on.

The parameters of the epipolar lines can be represented by the coordinates of the
epipoles e1 = [xe,1, ye,1]T and e2 = [xe,2, ye,2]T in the images. In this case, Eq. (2.1) takes
the following form:

a1(xk,1 − xe,1)(xk,2 − xe,2) + a2(yk,1 − ye,1)(xk,2 − xe,2) +
a4(xk,1 − xe,1)(yk,2 − ye,2) + a5(yk,1 − ye,1)(yk,2 − ye,2) = 0,

(2.2)

Thus, the matrix F in Eq. (2.1) depends on four parameters a = [a1, a2, a4, a5]T and four
coordinates e = [xe,1, ye,1, xe,2, ye,2]T of the epipoles as follows:

F =


a1 a2 −xe,1 · a1 − ye,1 · a2

a4 a5 −xe,1 · a4 − ye,1 · a5

−xe,2 · a1 −xe,2 · a2 xe,1 · xe,2 · a1 + ye,1 · xe,2 · a2

−ye,2 · a4 −ye,2 · a5 +xe,1 · ye,2 · a4 + ye,1 · xy,2 · a5

 . (2.3)

It is easily seen that the matrix F in Eq. (2.3) has the rank 2.
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Figures 2.11 – 2.13 show changes of the corresponding epipolar lines in the images
if the parameters a of the fundamental matrix are changed but the epipoles e1 and e2

are fixed (compare Figs. 2.11 and 2.12) and if the epipoles e1 and e2 are moved but the
parameters a are fixed (compare Figs. 2.11 and 2.13). Thus it is in principle possible
to sequentially change the fundamental matrix F under the fixed epipoles and change
each epipole under the fixed matrix and the other epipole for minimising the total squared
distance between a given set of the corresponding pixels and the epipolar lines produced
by these pixels.

Figure 2.11: Corresponding pixels sj,k, j = 1, 2; k = 1, 2, and epipolar lines under given
parameters a, e.

To represent the squared distance between a pixel and an epipolar line generated by
the corresponding pixel, the squared left side of Eq. (2.1) can be rewritten in an equivalent
form: (

sT
k,2Fsk,1

)2 ≡ aTΦk(e)a (2.4)

with the following 4× 4 matrix Φk(e):

Φk(e) = fk(e) · fT
k (e) (2.5)

where the vector fk(e) is as follows:

fk(e) =


(xk,1 − xe,1) · (xk,1 − xe,1)
(yk,1 − ye,1) · (xk,2 − xe,2)
(xk,1 − xe,1) · (yk,2 − ye,2)
(yk,1 − ye,1) · (yk,2 − ye,2)

 . (2.6)
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Figure 2.12: Changes of the epipolar lines in Fig. 2.11 for the new parameters a.

Figure 2.13: Changes of the epipolar lines in Fig. 2.11 for the new epipoles’ (e) position..
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Thus the squared distance dk,1(a, e) of a pixel sk,1 from the epipolar line that corre-
sponds to the pixel sk,2 and the like distance dk,2(a, e) of a pixel sk,2 from the epipolar
line that corresponds to the pixel sk,1 can be represented as follows:

dk,1(a, e) = aT Φk(e)a
aT Ck,1(e2)a ;

dk,2(a, e) = aT Φk(e)a
aT Ck,2(e1)a ,

(2.7)

where the denominators present the normalizing factors:

aTCk,1(e2)a ≡
(a1 · (xk,2 − xe,2) + a2 · (yk,2 − ye,2))

2 + (a4 · (xk,2 − xe,2) + a5 · (yk,2 − ye,2))
2

and

aTCk,2(e1)a ≡
(a1 · (xk,1 − xe,1) + a4 · (yk,1 − ye,1))

2 + (a2 · (xk,1 − xe,1) + a5 · (yk,1 − ye,1))
2 .

Here, the matrices Ck,1(e2) and Ck,2(e1) have the following obvious form:

Ck,1(e2) =



(xk,2 − xe,2)2 (xk,2 − xe,2)· 0 0
(yk,2 − ye,2)

(xk,2 − xe,2)· (yk,2 − ye,2)2 0 0
(yk,2 − ye,2)

0 0 (xk,2 − xe,2)2 (xk,2 − xe,2)·
(yk,2 − ye,2)

0 0 (xk,2 − xe,2)· (yk,2 − ye,2)2

(yk,2 − ye,2)


and

Ck,2(e1) =



(xk,1 − xe,1)2 0 (xk,1 − xe,1)· 0
(yk,1 − ye,1)

0 (xk,1 − xe,1)2 0 (xk,1 − xe,1)·
(yk,1 − ye,1)

(xk,1 − xe,1)· 0 (yk,1 − ye,1)2 0
(yk,1 − ye,1)

0 (xk,1 − xe,1)· 0 (yk,1 − ye,1)2

(yk,1 − ye,1)


.

Parameter normalization. Basic relations in Eqs. (2.1) and (2.7) suggest that compo-
nents of the fundamental matrix should be normalized to exclude the singular case of
F = 0.
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It should be noted that an ideal horizontal stereopair with the epipolar lines y1 = y2 =
const parallel to the x-axis of the images has the following fundamental matrix:

F =


0 0 0
0 0 1√

2

0 − 1√
2

0

 (2.8)

with the parameters a = 0 and the parameters e = [−∞, c1,−∞, c2]T where the con-
stants cj may have arbitrary values.

Thus, it is impossible to normalize only the parameters a, and the normalization has
to take account of all the components of Eq. (2.3) which are present in the normaliz-
ing factors of the distances of Eq. (2.7). In other words, if F = (Fi,j)

3
i,j=1 then all the

components, except for the component F3,3, should be normalized.
Appendix B presents more detail on estimating the epipolar geometry based on the

fundamental matrix.



Chapter 3

Colour Discrimination

A colour is a subjective human perception of visible light depending on an intensity and
a set of wavelengths associated with the electromagnetic spectrum. This subjective visual
characteristic describes how perceived electromagnetic radiation F (λ) is distributed in the
range of wavelengths λ of visible light in the range of wavelengths [380 nm . . . 780 nm].
The composition of wavelengths specifies chrominance of visible light for human visual
system. The chrominance has two attributes, hue and saturation. The hue is characterised
by the dominant wavelength(s) in the composition, and the saturation measures the purity
of a colour. A pure colour has 100% of saturation, whereas all shades of colourless (grey)
light, e.g. white light, have 0% of saturation.

The sensed colour varies considerably with 3D surface orientation, camera viewpoint,
and illumination of the scene, e.g., positions and spectra of illuminating sources. Also,
human colour perception is quite subjective as regarding perceptual similarity. To design
formal colour descriptors, one should specify a colour space, its partitioning, and how to
measure similarity between colours. A colour space is a multidimensional space of colour
components. Human colour perception combines the three primary colours: red (R) with
the wavelength λ = 700nm, green (G) with the wavelength λ = 546.1nm, and blue (B)
with the wavelength λ = 435.8nm. Nearly any visible wavelength λ is sensed as a colour
obtained by a linear combination of the three primary colours (R, G, B) with the particular
weights cR(λ), cG(λ), and cB(λl): F (λ) = RcR(λ) + GcG(λ) + BcB(λ).

3.1 Colour models

The simplest colour model is a weighted sum of the three primary colours (Fig. 3.1).
An additive mixture based on the RGB (Red, Green, Blue) colours is used to display
images. A subtractive mixture based on the CMYK (Cyan, Yellow, Magenta, blacK)
colours allows for printing images.

41



42 COMPSCI.773 S1 T Lecture Notes

Figure 3.1: Colour models.

RGB colour model assumes by the international standard the following spectral charac-
teristics of the primary colours: R 700 nm, G 546.1 nm, and B 435.8 nm. The RGB cube
(see Fig. 3.2) has all grey values on the main diagonal line (0, 0, 0) (black) — (1, 1, 1)
(white), and the primary colours are on the nodes R = (1, 0, 0); G = (0, 1, 0); B = (0, 0, 1);
C = (0, 1, 1); M = (1, 0, 1); Y = (1, 1, 0); blacK = (0, 0, 0); White = (1, 1, 1) The RGB
colour coordinates are strongly interdependent and describe not only inherent colour prop-
erties of an object, but also variations of illumination and other external factors.

Figure 3.2: RGB cube.

More convenient colour representation is provided by independent (or opponent)
colour axes, e.g. (R + G + B)/3, 0.5R− 0.5G,−0.5R− 0.5G + B) where the first axis
indicates intensity or luminance of the optical colour signal and two other axes describe
its chrominance, or several other ”luminance - chrominance” representations. Such a
representation separates the luminance of the signal (e.g., (R + B + G)/3) from the
two chrominance components in the co-ordinate plane orthogonal to the luminance axis
making the chrominance components invariant to changes in illumination intensity and
shadows. But although these linear colour transforms are computationally simple, the
resulting colour spaces are neither uniform, nor natural.
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HSI / HSV colour model. The HSI (hue - saturation - intensity) or, what is the same,
HSV (hue - saturation - value) colour space is obtained by a non-linear transformation
of the RGB space and provides more adequate representation of colours. The brightness
value( or intensity) I = (R+G+B)/3 acts as the main axis orthogonal to the chrominance
plane. The saturation S and hue H are the radius and angle, respectively, of the polar
coordinates in the chrominance plane with the origin in the trace of the main axis (see
Fig. 3.3).

Figure 3.3: RGB to HSI transformation.

This representation is perceptually rather uniform and it is closely related to the way
the human vision perceives colour images. Because of invariance to the object orientation
with respect to illumination and camera viewing direction, the colour hue might be more
suitable for colour object retrieval. But the conversion between the RGB and HSI colour
coordinates is rather complicated:

H =

{
δ if B < G

360− δ otherwise

S = 1− 3
min{R,G,B}
R + G + B

I =
R + G + B

3

(3.1)

where1 δ = cos−1

 0.5 ((R−G) + (R−B))√
(R−G)2 + (R−G)(G−B)

 in the interval [0, 180◦].

1cos−1 z denotes the angles θ such that cos θ = z.
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3.2 Vector quantisation of a colour space
Generally, the colour space is much more detailed than human vision requires for repre-
senting natural objects, and every image or video clip does not use simultaneously all the
perceivable colours . With 256 signal levels for each RGB colour component, the RGB
cube splits into 224 = 16, 277, 216 individual colours whereas most of scenes involve only
hundreds and rarely thousands of different colours. Thus the discrete colour space can be
considerably compressed by proper colour quantisation.

With respect to accuracy of representing colours of each individual image, a scalar
quantisation of colour spaces, that is, a separate quantisation of each colour dimension,
ranks below an adaptive vector quantisation. Generally, the vector quantisation maps a
whole d-dimensional vector space into a finite set

C = {c1, c2, . . . , cK}
of representative d-dimensional vectors. The set C is usually called a codebook, and
its elements are called code words. In colour quantisation, d = 3, and each code word
ck is a representative colour. The codebook C representing a collection of K colours is
usually called a colour gamut, or a palette. The vector quantisation partitions the whole
3D colour space into K disjoint subsets, one per code word. All the colours belonging to
the same subset are represented by, or quantised to the same code word ck. A perceptually
good palette contains code words that closely approximate colours in the corresponding
subsets so that each subset contains the visually similar colours.

Many digital graphics formats use one or another form of vector quantisation to com-
press the colour images. The palette for an image or an ensemble of images is usually
built by statistical averaging and clustering of the colours at hand. Any conventional mul-
tidimensional clustering method, such as K-means, fuzzy K-means, or EM (Expectation
- Maximisation) clustering discussed below in Chapter 4, can be used in principle for the
colour quantisation.

One popular vector quantisation algorithm iteratively doubles the number of code-
words until a prescribed number of them, say, 64, 128, or 256, is formed. Each iteration t
creates Kt = 2t cluster centres (codewords)

Ct = {ck,t : k = 1, . . . , Kt}
When t = 0, the process starts with a single centre c1,0 that averages colour vectors
over an image. At each next iteration, t = 1, 2, . . ., every previous cluster centre ck,t−1;
k = 1, ..., Kt−1, splits into the two new centres as follows:
1. each current code word ck,t−1 splits into the two new provisional code words, cpr:k,t

and cpr:Kt−1+k,t;

2. each colour vector in the image is assigned to the closest new cluster (the closeness
between a colour vector and a code word is determined using a particular metrics
in the colour space); and
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3. the new code words (cluster centres) ck,t and cKt−1+k,t are formed by averaging the
colour vectors assigned to each such cluster.

Strategies of how to split one code word differ in different implementations of this
simple clustering algorithm, e.g. a multiplication to the two constant factors: (1 + w)c
and (1− w)c where w; 0 < w < 1, is a fixed constant, or a shift of each current centre to
and from the most distant signal g in the cluster:

c + w · (g − c) and c− w · (g − c)

or so forth.

3.3 Colour descriptors
Colour descriptors of images can be global and local. The former ones specify the over-
all colour content of the image but with no information about the spatial distribution of
colours. Local descriptors relate to particular image regions. Most popular descriptors
are colour histograms.

Colour histograms A colour histogram describes the distribution of colours within a
whole image or a specified region. As a pixel-wise characteristic, the histogram is invari-
ant to rotation, translation, and scaling of an object. At the same time, the histogram does
not capture spatial relationships among colours. A quantised HSI (or HSV) colour space
is typically used to represent the colour in order to partially make the histograms invariant
to illumination and object viewpoints. In the HSI colour space, an Euclidean or similar
component-wise distance between the components specifies colour similarity quite well.

A normalised colour histogram h(image) = (hk(image) : k = 1, . . . , K) is a K-
dimensional vector such that each component hk(image) represents the relative number
of pixels of colour ck in the image, that is, the fraction of pixels that are most similar to
the corresponding representative colour:

hk(image) =
1

MN

M∑
x=1

N∑
y=1

δ(image(x, y), ck)

where the Kroneker-type δ-function is equal 0 or 1 if the colour image(x, y) in an image
pixel (x, y) does not coincide or coincides with the code word ck, respectively. The
components of the normalised histogram are the relative frequencies of the individual
colours (code words):

K∑
k=1

hk(image) = 1
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To built such a colour histogram, the image colours should be transformed to an appropri-
ate colour space and quantised according to a particular codebook of the size K. These
colour histograms can be easily collected for individual image regions.

To detect regions that are similar in the overall colours, their colour histograms should
be compared. The (dis)similarity of the two colour histograms, h and h′, is measured by
computing a distance between the histograms in the colour space. The chosen metric
effects both effectiveness and computational complexity of retrieval. The effectiveness
indicates to which extent the quantitative similarity match the perceptual, subjective one.

In the simplest case, the distance is based on the Minkowski metrics, such as the
city-block or Euclidean distance between the relative frequencies of the corresponding
colours, or on the histogram intersection proposed by Swain and Ballard:

Dcity−block(h,h′) =
K∑

k=1
|hk − h′k|

DEuclidean(h,h′) =
K∑

k=1
(hk − h′k)

2

Dintersection(h.h′) = 1− K∑
k=1

min{hk, h′k} ≡ 1
2Dcity−block(h,h′)

The above metrics comparing only the corresponding colour components between the
histograms take no account of cross-relations of the different colour clusters. Thus the
images with similar but not identical representative colours can be considered as dissim-
ilar on the basis of the distance between the colour histograms. Quadratic-form metrics
avoid this drawback by pairwise comparisons of all the component pairs:

D(h,h′) = (h− h′)T A (h− h′)

where A = [aij] is the positive definite symmetric matrix K × K with components
aij = aji specifying the dissimilarity between the code words ci and cj for the his-
togram components with indices i and j. To decrease the computational complexity of
the quadratic-form metrics, only most significant components may be taken into account.

A special case of the quadratic-form metric is the Mahalanobis distance in which the
dissimilarity matrix A is obtained by inverting the covariance matrix for a training set of
colour histograms. Alternatively, the Mahalanobis distance can account for the covariance
matrix of colours in a set of training images (then the colours that are dominant across
all images and do not discriminate among different images will not effect the distance,
as it should be). In the special case of uncorrelated histogram components when the
covariance matrix is diagonal, the Mahalanobis distance reduces to a weighted Euclidean
one. The weight of each squared difference of the histograms’ components is inversely
proportional to the variance of these components treated as random variables.

Other colour descriptors The colour information can be also represented using colour
moments and colour sets. Colour moments are used sometimes as feature vectors in or-
der to overcome quantisation effects of the colour histogram. Any colour distribution can
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be characterised by its moments, and typically the low-order moments are most informa-
tive. Usually only the first few central moments, namely, the mean colour M1, variance
M2, and skewnessM3, act as scalar features of the colour components:

M1,q =
K∑

k=1
hkcq,k

MS,q =

(
K∑

k=1
hk (cq,k −Mq,1)

S

) 1
S

¡p¿ Here, q denotes the colour component (e.g., R, G, B or H, S, V) and S = 2, 3, . . ., is
the order of the moment. The similarity between the moments is measured usually by the
Euclidean distance.

A colour set represents another reduced collection of colour features. The set is
obtained by thresholding the colour histogram. All image colours are first quantised into
a fixed relatively small number of colours in the HSI colour space, and then the colour set
is defined as a subset of most characteristic colours. Two images with the same colour set
are regarded as similar even if they have different relative amount of colours.

In particular, the colour HSI space can be partitioned into 166 characteristic colours as
follows. The HSI space is considered as a cylinder with the axis representing the intensity
that ranges from pure black (0) to pure white (1). The distance (radius) to the axis gives
the saturation, or relative amount of presense of a colour, and the angle around the axis is
the hue giving the chroma (tint, ot tone). The hue is represented with the finest resolution
by a circular quantisation of the hue circle into 18 sectors (6 per each primary colour).
Other colour components are represented with the coarser resolution by quantising each
into three levels. In addition, the colourless greyscale signals are quantised into four
levels. This gives in total 18 (H) × 3 (S) × 3 (I) + 4 (grey levels) = 166 disctinct colours.

But it should be noted that the colour histograms, moments, and sets do not describe
spatial relationships among the neighbouring pixels.

3.4 Colour predicate for image segmentation
A colour predicate (CP) for skin detection and segmentation in an image was first pro-
posed by Kjeldsen and Kender in [10]. In general, their procedure is presented below but
with a number of changes to make it more convenient for implementation. In particular,
CPs in [10, 15] have required from the user to identify skin regions in training images
through manually drawn binary masks. A semi-automated method below for the train-
ing of the predicate uses a simplified logarithmic hue to threshold the training images.
The logarithmic hue proposed by Lievin and Luthon [11] is not only simpler than the
conventional hue but also is more robust to varying illumination. Rather than the initial
3-dimensional CP indexed with hue, saturation, and intensity values in each pixel, a re-
duced predicate with only the logarithmic Hue and Saturation indexes is used below. This
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significantly reduces time for segmentation, while ensures still the sufficiently accurate
skin detection.

Automatic construction of a binary mask. In order to generate CP, regions of interest,
i.e. areas with skin coloured pixels, have to be identified in each image from a given set
of training images. To manually create a binary mask which separates the skin from the
background is a laborious task, especially for reasonably large image databases. In order
to automating the processing, the training images can be segmented using the maximum
and minimum thresholds for a logarithmic hue [11]. Comparing to the conventional angu-
lar hue, the logarithmic one is more robust to image deviations caused by varying image
acquisition conditions, e.g. illumination. Figure 3.4 depicts an image segmented with the
six different sets of the hue thresholds. As illustrated by these six examples, the changing
thresholds results in different percentages of background and foreground ( hand ) pixels
in the thresholded image.

Figure 3.4: Segmentation with a range of thresholds.

Optimal thresholds can be derived by a trial-and-error procedure taking into consid-
eration that the hand must be extracted from the image with the minimum amount of the
background pixels as well as these thresholds must be flexible enough to be applied to a
variety of similar images in the training set. However, a simple logic suggests that regard-
less of the chosen threshold pair, no range is specific enough to accurately extract a hand
from its background, yet at the same time is general enough to satisfactorily accommodate
inter-image variations. One possible solution to this problem is to apply to the training im-
ages a relatively general threshold set removing most but not all of the background noise
and perform additional processing, e.g. median filtering of the hue image component and
a simple morphological opening, to increase the accuracy of segmentation. These latter
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two operations remove a large percentage of the background noise, as well as fill holes
and gaps on the contour of the hand silhouette. Finally, the largest connected region of
skin coloured pixels is extracted from an image through the use of the Haralick-Shapiro
connected component algorithm described in Section 4 (see also [7, 8]. This processing
strategy assumes other connected regions of the skin colour are generally much smaller
than the hand region. The remaining non-background pixels are considered as the skin
regions and used as the binary mask for the training of the predicate. Selection of results
before and after applying the median filter and the morphological operator are depicted in
Figs 3.5 and 3.6.

Figure 3.5: Results after hue thresholding.

Figure 3.6: Post-processing results (morphological opening and median filtering).
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Training process in Fig. 3.7. The hue and saturation pair (H,S) of each pixel is used
to index the colour predicate. Pixels with too large and too small intensity are discarded
because both the hue and saturation become unreliable in those ranges [10]. For this
reason, the process in Fig. 3.7 removes 5% of pixels at either end of the intensity interval
[0, 255].

A broad positively weighted Gaussian window is then used to increment the neigh-
bourhood of each indexed skin pixel, whereas a narrower negatively weighted window
decrements the neighbourhood of the non-skin pixels in the predicate. As described in
[10], the Gaussian smoothing and inclusion of the negatively valued background pixels to
CP considerably improves the segmentation results.

Figure 3.7: Training of the colour predicate

Once all the training images have been used to increment the colour predicate, the
resulting trained CP is a Hue-Saturation plane, or table consisting of thef positive and
negative H-S pairs. The predicate can then be separated into the skin and non-skin regions
by thresholding this H-S plane, thus creating the binary predicate depicted in Fig. 3.8.

Figure 3.8: Binary colour predicate
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Using the Colour Predicate. Once the predicate has been trained, it can be used to
identify regions of skin within an image by simply using the CP index corresponding to
a Hue-Saturation pair in each pixel. The purpose of the CP approach is not to obtain
a higher quality segmentation but rather to provide means by which a large number of
different input images from various users and environmental conditions can be automati-
cally segmented to a reasonable quality while requiring a minimum amount of processing
time. This is evident from Fig. 3.9 showing selected segmented images. Each silhouette
exhibits small gaps and contour irregularities, yet it is of sufficiently high quality for pose
classification and its complete processing takes on the average just 94 ms.

Figure 3.9: Image segmentation with a trained CP.



Chapter 4

Binary Machine Vision

In many practical cases, image analysis is simplified and accelerated by converting initial
greyscale or colour images into binary (black – white or object – background) images.
The simplest binarisation of a greyscale image is performed by comparing signals to a
fixed or adaptive threshold.

4.1 Thresholding greyscale Images
The question of thresholding is how to automatically determine the threshold value. Since
the threshold value separates the dark background from the bright object (or vice versa),
the separation could ideally be done if the probability distributions of dark pixels and of
bright pixels are known. Such a threshold value might equalise the probability of the
two kinds of errors: of assigning a background pixel to a binary object and of assigning
an object pixel to a binary background. More complex thresholding techniques use a
spatially varying threshold to compensate for a variety of local spatial context effects
(such a spatially varying threshold can be thought as a background normalisation).

The independent distributions of dark and bright pixels are usually unknown, so that
a normalised grey level histogram (GLH) F(g) = [F (q|g) : q = 0, ..., qmax]. for a given
greyscale image g, called also an empirical marginasl grey level distribution is used for
finding a threshold. Each GLH component F (q|g) is a relative number of pixels with a
grey level q in the image g. Most popular methods for thresholding are (i) minimisation of
the within-group grey level variance (Otsu algorithm, 1979) and (ii) approximation of the
GLH by a mixture of two Gaussian distributions (Kittler–Illingworth algorithm, 1985).

Minimising the within-group variance. For a threshold 0 ≤ t ≤ qmax, the within-
group variance is equal to s2

t = f1,ts2
1,t + f2(t)s2

2,t where fa,t and s2
a,t denote the relative

frequency and the variance of grey levels in a group a = 1, 2, respectively. Here, f1,t =∑t
q=0 F (q|g); f2,t =

∑qmax
q=t+1 F (q|g); s2

1,t =
∑t

q=0(q −m1,t)2F (q|g); s2
2,t =

∑qmax
q=t+1(q −

52
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m2,t)2F (q|g) where m1,t =
∑t

q=0 q F (q|g) and m2,t =
∑qmax

q=t+1 q F (q|g). The chosen
threshold t∗ = arg mint s2

t . If the fractions of pixels in each mode are far from being
approximately equal, this will not necessarily produce the correct answer.

Minimising the Kullback information distance. A mixture of two Gaussian distribu-
tions with parametersm = (f1, µ1, σ1, f2, µ2, σ2) is specified as P (q) = f1N(q|µ1, σ1) +

f2N(q|µ2, σ2) where N(q|µ, σ) = 1√
2πσ

exp
(
−0.5

(
q−µ

σ

)2
)
. Approximation of the grey

level histogram with the Gaussian mixture results in thresholding by minimizing the Kull-
back information distance J(F (g;P|m) =

∑qmax
q=0 P (q) log P (q)

F (q|g) (Kittler–Illingworth,
1985). The desired threshold should minimise only the second term: J2(F (g;P|m)) =

− qmax∑
q=0

P (q) log F (q|g). Simplifying assumption to compute the threshold is that the

modes are well separated so that F (q|g) ≈ f1N(q|µ1, σ1) if q ≤ t and f2N(q|µ2, σ2)
if q > t. Under this assumption, the mixture parameters are easily estimated from the
GLH.

Using the estimates f1,t, ..., s2,t, the information measure J2 = −f1 log f1+0.5(f1 log σ2
1+

f2 log σ2
2) can be evaluated for each threshold t, and the value that minimises J2 is then

the best threshold. Cho, Haralick, and Yi in 1989 (see [8]) improved this technique to
maximise the probability of correct classification. The corrected parameter values take
account of the truncated distributions.

Signal clustering with EM algorithm. The above thresholding is a particular case of
more general problem of finding two or more clusters of “similar” signals in a given large
set of signals. The similarity is assumed to account for only the signal values but not for
other image properties (such as adjacency in the image plane or so on).

Let Q = {qi : i = 1, . . . , n} be a signal set to split into K ≥ 2 clusters. A very spe-
cial case of the general EM (Expectation – Maximisation) algorithm forms clusters that
maximise the likelihood of the signals under the following conditions: (i) signals of each
cluster have a probability distribution of known type but with a priori unknown parame-
ters and (ii) signals in the whole set are statistically independent. Let f(q; θk) denote the
probability distribution function or the probability density function for the cluster k. Let
p = (pk : k = 1, . . . , K) be prior probabilities of each cluster for each particular signal:∑K

k=1 pk = 1. Then the probability (or probability density) of the signal qi is given by the
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mixture Pr(qi) =
∑K

k=1 pkf(qi; θk). Due to the assumed signal independence, the over-
all probability of the signal set is Pr(Q) =

∏n
i=1 Pr(qi) ≡ ∏n

i=1

∑K
k=1 pkf(qi; θk). The

log-likelihood function is L(Θ,p) = log Pr(Q), therefore, the maximum likelihood clus-
tering (Θ∗,p∗) = arg max

Θ,p

∑N
i=1 log

(∑K
k=1 pkf(qi; θk)

)
is the conditional optimisation

under the unit sum of the prior cluster probabilities.
The conditional maximisation results in the following systems of equations obtained

by setting to zero partial derivatives of the Lagrange function L(Θ,p) − λ

(
K∑

k=1
pk − 1

)
with respect to the cluster parameters: ∀k = 1, . . . , K

∂L(Θ,p)

∂pk
=

n∑
i=1

f(qi; θk)
K∑

κ=1
pκf(qi; θκ)

(4.1)

∂L(Θ,p)

∂θk
=

n∑
i=1

pk
∂

∂θk
f(qi; θk)

K∑
κ=1

pκf(qi; θκ)
(4.2)

Because of complexity of this system, the EM algorithm provides an iterative search
for a local maximum of the likelihood. Let π(k|qi) for k = 1, . . . , K and i = 1, . . . , n
denote the weight that can be considered as an analogue of a posteriori probability of the
claster k for the signal qi:

π(k|qi) =
pkf(qi; θk)

K∑
κ=1

pκf(qi; θκ)

For all i = 1, . . . , n, it holds that π(k|qi) ≥ 0 and ∑K
k=1 π(k|qi) = 1. By using the above

weights, the log-likelihood L(Θ,p) can be rewritten as

L(Θ,p) =
n∑

i=1

K∑
k=1

π(k|qi) log pk+
n∑

i=1

K∑
k=1

π(k|qi) log f(qi; θk)−
n∑

i=1

K∑
k=1

π(k|qi) log π(k|qi)

Then the first sum in the above formula depends only on the desired priors p, and the sec-
ond sum depends only on the desired cluster parameters θk; k = 1, . . . , K. The iterative
EM-like parameter estimation consists at each iteration of two successive steps, the first
step assuming that all the weights π(k|qi) are fixed and the second step assuming that the
priors and cluster parameters are fixed.

The first step obtains the current values of the priors and cluster parameters by con-
ditional maximisation of the likelihood. Under the fixed weights π(k|qi), the priors
that conditionally maximise the first sum under their unit sum constraint are as follows:
p∗k = 1

n

∑n
i=1 π(k|qi). The cluster parameters Θ are obtained by the unconditional max-

imisation of the second sum:

∀k = 1, . . . , K
n∑

i=1

π(k|qi)
∂

∂θk
f(qi; θk)

f(qi; θk)
= 0
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The second step returns the weights π(k|qi) which provide the conditional maximum of
the likelihood under the above conditions on these weights (i.e. the un it sum for each
cluster k):

∂

∂π(k|qi)
L(Θ,p) = log pk + log f(qi; θk)− log π(k|qi)− 1− λi so that (4.3)

π(k|qi) = pkf(qi; θk) exp(1 + λi) (4.4)
This results just in the above-mentioned relationships for the weights.

Iterative maximisation of the likelihood by successive repetition of these two steps
is performed until a particular stopping criterion is satisfied, for instance, until a relative
change of the likelihood value L(Θt,pt) at iteration t with respect to the previous value
L(Θt−1,pt−1) becomes less than a given threshold.

In a particular case of normal (Gaussian) distributions of signals in each cluster, the
cluster parameter θk consists of the mean signal µk and variance σ2

k. It is easy to show
that in this case the parameter estimation algorithm becomes as follows: (1) initialisation:
select the number of clusters K and the parameters Θ0 =

(
(µk,0, σ2

k,0) : k = 1, . . . , K
)

and priors p0 =
(
pk,0 = 1

K : k = 1, . . . , K
)
of the initial clusters and (2) iterative max-

imisation: at each iteration t = 1, 2, . . ., compute first the current weights πt(k|qi) using
the previous cluster priors pt−1 and parameters Θt−1 and then re-estimate both the priors
and parameters using the relationships for the Gaussian case, i.e. pk,t = 1

nνk,t; µk,t =
1

νk,t

∑n
i=1 πt(k|qi)qi, and σ2

k,t = 1
νk,t

∑n
i=1 πt(k|qi)q2

i − µ2
k,t where νk,t =

∑n
i=1 πt(k|qi).

This variant of the EM algorithm has sometimes rather slow convergence to the local max-
imum close to the initial point in the parameter space. But in many clustering problems
it outperforms heuristic counterparts. After signal clustering, an image can be converted
into a binary one by selecting one particular cluster as an object and using all other clus-
ters as a background. The signal clusters are obtained by assigning every signal qi to the
cluster with the maximum posterior probability πT (k|qi) at the last iteration T .

4.2 Connected regions in binary images
Pixel pi in a regionR is connected to {pj if there is a sequence {pi, ...,pj} such that each
two successive pixels {pk,pk+1} are the nearest neighbours and all the pixels are in R.
The region R is a connected region if each pair of pixels in it is connected. Definitions
of 4- and 8-neighbourhood of a pixel are given below:
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Iterative segmentation of a binary image. An iterative algorithm proposed by Haral-
ick (1981) conducts a sequence of top–down label propagation followed by bottom–up
label propagation iterated until no label changes occur. The minimum label of the neigh-
bours is selected to assign to each pixel (see Fig. 4.1).

Figure 4.1: Iterative segmentation.

Connected components are labelled as follows. At the initialisation stage the initial
label is set to zero k = 0 and the region map l is set to zero: l(x, y) = 0 for all image
rows y and columns x. Then the sequential components labeling is performed along the
top–to–bottom and left–to–right scan:

• If g(x, y) = 1 AND ( g(x, y − 1) = 0 AND g(x− 1, y) = 0 ), start the new region:
k := k + 1; l(r.y) = k.

• If g(x, y) = 1 AND ( g(x, y−1) = 1 AND g(x−1, y) = 0 ), continue the previous
region: l(x, y) = l(x, y − 1).

• If g(x, y) = 1 AND ( g(x, y−1) = 0 AND g(x−1, y) = 1 ), continue the previous
region: l(x, y) = l(x− 1, y).

• If g(x, y) = 1 AND ( g(x, y − 1) = 1 AND g(x − 1, y) = 1 ), merge the previous
regions: l(x, y) = min{l(x− 1, y), l(x, y − 1)}.

Then the relabelling is performed by using the label equivalences. It can be imple-
mented by a depth-first search in a graph structure defined by the set of equivalences: the
nodes of the graph are region labels, and the edges are pairs of labels which are equiva-
lent. In so doing, connected components of the graph structure defined by the set of label
equivalences collected during the sequential component labelling are found and each con-
nected set of the equivalent labels is relabelled.
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Figure 4.2: One more example of the connected components labelling.

Space-efficient two-pass connected component labelling The main problem of the
classical connected components labelling is the global equivalence table: for large images
with many regions, the equivalence table can become very large. One solution to the space
problem is the use of a small local equivalence table that stores only the equivalences
detected from the current image line and the line that precedes it. Thus the maximum
number of equivalences is the number of pixels per line. These equivalences are then
used in the propagation step to the next line.

Not all the equivalencing is done by the end of the first top–down pass, and the second
pass bottom–up is required both to find the remainder of the equivalences and assign the
final labels.
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Figure 4.3: Space-efficient labeling:label equivalences.

Figure 4.4: Space-efficient labeling: first top-down pass.



Appendix A

More on Camera Calibration

This appendix addresses one more solution of the problem of calibrating a single camera
using a given set of 3D ground control points and corresponding image points. Analytical
and numerical approaches for approximating the desired camera model parameters are
discussed.

A.1 Initial calibration of a single camera
We consider a simplified camera model given by a fundamental perspective projection
equation [8]. This simplification takes no account of additional non-linear image distor-
tions caused by the lens system as in the more general Tsai’s calibration. Let (x, y) and
(X, Y, Z) be, respectively, 2D coordinates of image points and 3D coordinates of scene
points,R(ω,φ,κ) = ‖rkl‖3

k,l=1 denote a 3D rotation matrix of the camera reference frame
with respect to the world one, sx and sy are scale factors for the image, and f denote a
camera constant. The rotation matrix depends on three rotation angles around axesX (tilt
ω), Y (pan φ), and Z (swing κ) as follows:

R(ω, φ,κ) = RZ(κ)RY (φ)RX(ω) =∥∥∥∥∥∥∥
cos φ cos κ sin ω sinφ cos κ + cos ω sinκ − cos ω sinφ cos κ + sin ω sinκ
− cos φ sinκ − sinω sinφ sinκ + cos ω cos κ cos ω sin φ sinκ + sin ω cos κ

sinφ − sin ω cos φ cos ω cos φ

∥∥∥∥∥∥∥(A.1)
Then the 3D scene and 2D image points are related by:

x = x0 + f · sx · r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)
r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

;

y = y0 + f · sy · r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)
r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

(A.2)

where (X0, Y0, Z0) denotes the camera position in the world reference frame and (x0, y0)

59
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is the principal point of the image.

Usually the scale factors sx and sy are close to unity so that in initial stage of camera
parameter estimation one can omit them: sx 0 sy 0 1. To obtain a close-enough raw
estimates of the other 9 parameters p = (x0, y0, f,X0, Y0, Z0, ω, φ, κ), given a set of
corresponding scene and image points

{(xn, yn), (Xn, Yn, Zn) : n = 1, . . . , N} ,

we reduce the estimation to a weighted least-squares problem:

min
a

{atAa} ;

atCa = const.
(A.3)

Here and below, t indicates a transposition, A denotes a 12 × 12 matrix of sums of the
coordinate products,C denotes a 12× 12 matrix of the constraints, and a is 12× 1 vector
with components depending on the desired calibration parameters.

To formulate the problem in Eq. (A.3), the relations of Eq. (A.2) are represented by:

x =
at

1,4X
at

9,12X
; y =

at
5,8X

at
9,12X

(A.4)

whereX is a 4× 1 vector of homogeneous 3D point coordinates: Xt = (X, Y, Z, 1) and
three vectors 4× 1: at

1,4, a
t
5,8, a

t
9,12 are consecutive parts of the vector a as follows: at =(

at
1,4, a

t
5,8, a

t
9,12

)
. Their indices indicate the successive quadruples of the components of

the vector a (in particular, at
14 = (a1, a2, a3, a4) ). These components are expressed in

terms of the camera calibration parameters in Eq. (A.2), as follows:

a1 = r11f + r31x0;
a2 = r12f + r32x0;
a3 = r13f + r33x0;
a4 = −[(r11X0 + r12Y0 + r13Z0) f + (r31X0 + r32Y0 + r33Z0) x0];
a5 = r21f + r31y0;
a6 = r22f + r32y0;
a7 = r23f + r33y0;
a8 = −[(r21X0 + r22Y0 + r23Z0) f + (r31X0 + r32Y0 + r33Z0) y0];
a9 = r31;

a10 = r32;
a11 = r33;
a12 = − (r31X0 + r32Y0 + r33Z0) .

(A.5)
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The least-square problem in Eq. (A.3) is obtained by replacing the non-linear mini-
mization problem:

min
p

N∑
n=1

(
xn − at

1,4Xn

at
9,12Xn

)2

+

(
yn − at

5,8Xn

at
9,12Xn

)2

(A.6)

with the following apoproximate one:

min
p

N∑
n=1

(
xnat

9,12Xn − at
1,4Xn

)2
+

(
ynat

5,8Xn − at
9,12Xn

)2
. (A.7)

Therefore, the matrixA in Eq. (A.3) has a following structure:

A =

∥∥∥∥∥∥∥
W 0 −Vx

0 W −Vy

−Vx −Vy Vxy

∥∥∥∥∥∥∥ (A.8)

where

W =

∥∥∥∥∥∥∥∥∥
SXX SXY SXZ SX

SXY SY Y SY Z SY

SXZ SY Z SZZ SZ

SX SY SZ n

∥∥∥∥∥∥∥∥∥ ; (A.9)

Vx =

∥∥∥∥∥∥∥∥∥
SxXX SxXY SxXZ SxX

SxXY SxY Y SxY Z SxY

SxXZ SxY Z SxZZ SxZ

SxX SxY SxZ Sx

∥∥∥∥∥∥∥∥∥ ; (A.10)

Vy =

∥∥∥∥∥∥∥∥∥
SyXX SyXY SyXZ SyX

SyXY SyY Y SyY Z SyY

SyXZ SyY Z SyZZ SyZ

SyX SyY SyZ Sy

∥∥∥∥∥∥∥∥∥ ; (A.11)

V =

∥∥∥∥∥∥∥∥∥
S(xx+yy)XX S(xx+yy)XY S(xx+yy)XZ S(xx+yy)X

S(xx+yy)XY S(xx+yy)Y Y S(xx+yy)Y Z S(xx+yy)Y

S(xx+yy)XZ S(xx+yy)Y Z S(xx+yy)ZZ S(xx+yy)Z

S(xx+yy)X S(xx+yy)Y S(xx+yy)Z Sxx+yy

∥∥∥∥∥∥∥∥∥ . (A.12)

Here, S... denote sums of the products of the point 3D and 2D coordinates, for instance,

SXX =
N∑

n=1

X2
n; SxY Z =

N∑
n=1

xnYnZn; S(xx+yy)XZ =
N∑

n=1

(x2
n + y2

n)XnZn, etc.

The 2D coordinates in Eq. (A.2) are invariant to a scale of the 3D coordinates of the
points. The above relations in Eq. (A.5) between the parameters to be estimated and
components of the vector a show that these latter components have an obvious constraint
a2

9 + a2
10 + a2

11 = 1 which follows from the particular form of the rotation matrix R of
Eq. (A.1). Thus, the constraint matrix in Eq. (A.3) is a diagonal one with three non-zero
diagonal unit components which cut out only the components a9, . . . , a11 of the vector a.
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Estimation of the model parameters. Now, the optimization problem of Eq. (A.3) is
as follows:

a∗9,12 = arg min
a9,12

{
at

9,12Ua9,12

}
;

a2
9 + a2

10 + a2
11 = 1.

(A.13)

Here, the matrixU has the following form:

U = Vxy −VxW
−1Vx −VyW

−1Vy.

The desired vector a∗9,12 in Eq. A.13 can be obtained as the eigenvector of the matrix U
which has the minimal eigenvalue under the involved constraints. To be more precise, the
above normalization of the components a∗9, a∗10, a

∗
11, that is, (a∗9)

2 + (a∗10)
2 + (a∗11)

2 = 1
is applied to the initial eigenvectors with corresponding changing of the initial eigen-
values. The resulting vector allows to compute both other vectors a∗1,4 = W−1Vxa∗9,12

and a∗5,8 = W−1Vya∗9,12 to form the desired solution a∗ of the optimizing problem in
Eq. (A.3).

We omit below, for simplicity, the index (∗) of the components of this optimal solution.
It allows us to compute the raw estimates of the camera parameters p. First two camera
orientation angles φ and ω (see Eq. (A.1)) are obtained from the components a9, a10, a11.
The pan angle φ has two possible values:

φ = arctan

 a9√
1− a2

9

 or φ = arctan

 a9

−
√

1− a2
9

 (A.14)

so that we obtain two possible final sets of the angles giving the same orientation matrix
R. The tilt angle ω depends on the pan angle value as follows:

ω = arctan

( −a10 · sign(cos φ)
a11 · sign(cos φ)

)
. (A.15)

It can be easily shown that the 3D camera position is next obtained by solving the follow-
ing linear equation system:

a1X0 + a2Y0 + a3Z0 = −a4;
a5X0 + a6Y0 + a7Z0 = −a8;

a9X0 + a10Y0 + a11Z0 = −a12;
(A.16)

so that the desired solution is as follows: X0

Y0

Z0

 = −
∥∥∥∥∥∥∥

a1 a2 a3

a5 a6 a7

a9 a10 a11

∥∥∥∥∥∥∥
−1  a4

a8

a12

 . (A.17)
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Now, by using the estimated angles φ and ω, we form the following system of linear
equations for getting the swing angle κ, the camera constant f , and the principal point
(x0, y0):∥∥∥∥∥∥∥∥∥∥∥∥∥

cos φ 0 sinφ 0
sinω sinφ cos ω − sinω cos φ 0
− cos ω sinφ sinω cos ω cos φ 0

0 − cos φ 0 sinφ
cos ω − sinω sinφ 0 − sinω cos φ
sinω cos ω sinφ 0 cos ω cos φ

∥∥∥∥∥∥∥∥∥∥∥∥∥


f cos κ
f sinκ

x0

y0

 =



a1

a2

a3

a5

a6

a7

 .(A.18)

This overconstrained system can be solved in a least-square way so that the desired
estimates are then as follows:

f cos κ ≡ fc = 0.5 (a1 cos φ + a2 sinω sinφ− a3 cos ω sinφ + a6 cos ω + a7 sinω)) ;
f sinκ ≡ fs = 0.5 (a2 cos ω + a3 sinω − a5 cos φ− a6 sinω sinφ + a7 cos ω sinφ) ;

x0 = a1 sinφ− a2 sinω cos φ + a3 cos ω cos φ;
y0 = a5 sinφ− a6 sinω cos φ + a7 cos ω cos φ.

(A.19)

Therefore, f =
√

f 2
c + f 2

s and κ = arctan

(
fs

fc

)
. The parameters

pt = (x0, y0, f,X0, Y0, Z0, ω, φ, κ)

found can be then refined by a non-linear least-square technique such as that of [8].

A.2 Refinement of the calibration
Starting from the initial raw approximation, the camera model parameters can be obtained
with higher precision by an iterative solution of the linearized problem in Eq. (A.6). The
linearization is taken around each current approximate solution p.

Let us denote ex,n and ey,n the current x- and y-coordinate errors in Eq. (A.6), respec-
tively:

ex,n(p) = xn − x̃n;
ey,n(p) = yn − ỹn

(A.20)

where the estimated coordinates x̃n and ỹn are given by Eq. (A.4):

x̃n =
at
1,4Xn

at
9,12Xn

;

ỹn =
at
5,8Xn

at
9,12Xn

.
(A.21)
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The errors depend non-linearly on the parameters p, and these non-linear transfor-
mations can be linearized around a current solution p by representing each estimated
coordinate by a first-order Taylor series expansion:

ex,n(p + ∆p) = ex,n(p)−∆x̃n(p,∆p);
ey,n(p + ∆p) = ey,n(p)−∆ỹn(p,∆p)

(A.22)

where ∆x̃n and ∆ỹn, the total derivatives of x̃n and ỹn, respectively, are linear functions
of the parameter adjustment vector∆p:

∆x̃n(p,∆p) = ∆ptgx,n;
∆ỹn(p,∆p) = ∆ptgy,n

(A.23)

where and are the gradient vectors (that is, vectors of partial derivatives)

gx,n =
(

∂x̃n
∂p1

(pt), ..., ∂x̃n
∂p9

(pt)
)

;

gy,n =
(

∂ỹn

∂p1
(pt), ..., ∂ỹn

∂p9
(pt)

)
.

(A.24)

The total derivative shows the linear part of how the error will be perturbed if the param-
eter vector is perturbed by an amount∆p.

When the linearized estimates of Eq. (A.23) are substituted into the least-square prob-
lem in Eq. (A.6), we obtain the following perturbed total square error:

N∑
n=1

(∆ex,n(p,∆p))2 + (∆ey,n(p,∆p))2 , (A.25)

or
N∑

n=1

(
ex,n(p)−∆ptgx,n

)2
+

(
ey,n(p)−∆ptgy,n

)2
, (A.26)

and its minimization by∆p results in the linear system of equations as follows:
N∑

n=1

(
ex,n(p)−∆ptgx,n

)
gt

x,n +
(
ey,n(p)−∆ptgy,n

)
gt

x,n = 0. (A.27)

This system can be easily represented in the matrix form:

d(p)−G(p)∆p = 0 (A.28)

where the 9× 9 symmetric matrixG(p) and 9× 1 column vector d(p) are as follows:

G(p) =
N∑

n=1

gx,ngt
x,n + gy,ngt

y,n;

d(p) =
N∑

n=1

ex,n(p)gx,n + ey,n(p)gy,n.

(A.29)
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When the matrixG(p) is non-singular, the system of Eq. (A.28) has a standard solution:

∆p = G−1(p)d(p), (A.30)

and the corrected parameters are as follows:

pcorr = p + ∆p. (A.31)

If the raw estimates are in a sufficiently close vicinity of the optimal values, there should
be about five – ten sequential corrections to reach the desired optimum [8].

Gradients of the coordinate estimates. The gradient components gx,n,i = ∂x̃n
∂pi

and
gy,n,i = ∂ỹn

∂pi
in Eq. (A.24) to be used for refining the calibration parameters have the

following obvious forms:

gx,n,i =
∂at

1,4

∂pi
Xn

at
9,12Xn

− at
1,4Xn

∂at
9,12

∂pi
Xn(

at
9,12Xn

)2 ;

gy,n,i =
∂at

5,8

∂pi
Xn

at
9,12Xn

− at
5,8Xn

∂at
9,12

∂pi
Xn(

at
9,12Xn

)2 .

(A.32)

The above dot products involving the partial derivatives are obtained in the explicit form
using Eq. (A.5) as follows:

1. For p1 ≡ f :
∂at

1,4

∂f Xn = r11(Xn −X0) + r12(Yn − Y0) + r13(Zn − Z0);
∂at

5,8

∂f Xn = r21(Xn −X0) + r22(Yn − Y0) + r23(Zn − Z0);
∂at

9,12

∂f Xn = 0.

(A.33)

2. For p2 ≡ x0:
∂at

1,4

∂x0
Xn = r31(Xn −X0) + r32(Yn − Y0) + r33(Zn − Z0);

∂at
5,8

∂x0
Xn = 0;

∂at
9,12

∂x0
Xn = 0.

(A.34)

3. For p3 ≡ y0:
∂at

1,4

∂x0
Xn = 0;

∂at
5,8

∂x0
Xn = r31(Xn −X0) + r32(Yn − Y0) + r33(Zn − Z0);

∂at
9,12

∂x0
Xn = 0.

(A.35)
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4. For p4 ≡ X0:
∂at

1,4

∂X0
Xn = −r11f + r31x0;

∂at
5,8

∂X0
Xn = −r21f + r31y0;

∂at
9,12

∂X0
Xn = −r31.

(A.36)

5. For p5 ≡ Y0:
∂at

1,4

∂Y0
Xn = −r12f + r32x0;

∂at
5,8

∂Y0
Xn = −r22f + r32y0;

∂at
9,12

∂Y0
Xn = −r32.

(A.37)

6. For p6 ≡ Z0:
∂at

1,4

∂Z0
Xn = −r13f + r33x0;

∂at
5,8

∂Z0
Xn = −r23f + r33y0;

∂at
9,12

∂Z0
Xn = −r33.

(A.38)

7. For p7 ≡ ω:
∂at

1,4

∂ω Xn = −a3(Yn − Y 0) + a2(Zn − Z0);
∂at

5,8

∂ω Xn = −a7(Yn − Y 0) + a6(Zn − Z0);
∂at

9,12

∂ω Xn = −a11(Yn − Y 0) + a10(Zn − Z0).

(A.39)

8. For p8 ≡ φ:
∂at

1,4

∂φ Xn = (−a9f cos κ + x0 cos φ)(Xn −X0)
+ (−a10f cos κ + x0a9 sin ω)(Yn − Y0)
+ (−a11f cos κ− x0a9 cos ω)(Zn − Z0);

∂at
5,8

∂φ Xn = (a9f sin κ− y0 cos φ)(Xn −X0)
+ (a10f sin κ− y0a9 sin ω)(Yn − Y0)
+ (a11f sin κ + y0a9 cos ω)(Zn − Z0);

∂at
9,12

∂φ Xn = −a11(Yn − Y0) + a10(Zn − Z0).

(A.40)

9. For p9 ≡ κ:
∂at

1,4

∂κ Xn = (r21(Xn −X0) + r22(Yn − Y0) + r23(Zn − Z0))f ;
∂at

5,8

∂ω Xn = −(r11(Xn −X0) + r12(Yn − Y0) + r13(Zn − Z0))f ;
∂at

9,12

∂ω Xn = 0.

(A.41)



Appendix B

More on a Fundamental Matrix

This appendix contains a slightly rewritten paper of Y. Li and G. Gimel’farb “On Estimation of
Fundamental Matrix in Computational Stereo” that ap[peared in the Proceedings of the Image and
Vision Computing New Zealand (IVCNZ’98), Auckland, New Zealand, Nov. 1998, pp.268–273.
It addresses the problem of estimating a fundamental matrix from a given set of corresponding
pixels in two perspective images of a 3D scene that form a stereopair. The 3× 3 fundamental ma-
trix of rank 2 determines the corresponding epipolar lines in both images. Experiments with real
stereo pairs have established the main reasons for instabilities of the well-known linear estimation
based on the 8-parameter representation of a matrix. Three alternative 8-parameter representations
are compared and an enhanced estimation scheme that combines the linear estimation of the six
parameters with the subsequent non-linear minimisation of the total distance between the corre-
sponding pixels and relevant epipolar lines is proposed. This latter non-linear minimisation is done
first by the direct exhaustion of the remaining two parameters and then by the local minimisation
of the total distance in a vicinity of the minimum found by the exhaustion.

Two perspective images of a 3D scene are related by epipolar geometry described by
a 3 × 3 singular fundamental matrix [3]–[17]. To obtain a weakly calibrated stereo pair
[3], the matrix can be estimated from the known coordinates of corresponding pixels in
two images.

Usually, the estimation is formulated as a constrained least-square problem of choos-
ing the 3 × 3 matrix of rank 2 that yields the minimum total distance between the cor-
responding pixels and relevant epipolar lines in both images. The total distance depends
non-linearly on the matrix components, so that a straightforward constrained minimi-
sation, say, by gradient-based techniques, involves too cumbersome computations (espe-
cially, because the distance is multi-modal with respect to the desired matrix components).
The problem can be simplified by replacing the distance by a particular quadratic form
and using less complicated linear minimisation techniques based, for instance, on the
eigenvector computations. But, the small value of the approximating quadratic form does
not guarantee the small value of the actual distance, so that such approximate solutions
are not robust with respect to random errors in the coordinates of corresponding pixels.

67
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Here, we propose an enhanced linear estimation combining the traditional linear esti-
mation of some matrix parameters with a subsequent non-linear minimisation of the total
distance between the corresponding pixels and epipolar lines with respect to the remaining
parameters. This enhanced technique is based on the well-known 8-parameter represen-
tation of the fundamental matrix of rank 2 [17]. The six parameters are obtained by the
linear estimation, and the non-linear minimisation is done by the direct exhaustion of the
two remaining parameters within a sufficiently large range of their values and by the local
minimisation in a vicinity of the minimum distance found by the exhaustion. Experi-
ments with natural stereopairs show that the proposed approach yields a robust estimate
of a fundamental matrix.

This appendix is organised as follows. Section B.1 overviews basic features of a fun-
damental matrix, describes the known linear estimation scheme, compares the three al-
ternative 8-parameter represenations of a fundamental matrix, and proposes the enhanced
linear estimation of a matrix. Section ?? presents some experimental results that reveal
the main reasons for the non-robustness of the traditional linear estimation techniques to
be ovecome by the above enhanced linear estimation.

B.1 Estimation of a fundamental matrix
Basic features of fundamental matrix. Epipolar constraint in stereo means that, for
each pixel mk1 in the left image of a stereopair, the corresponding pixel mk2 in the right
image lies on the relevant epipolar line which is uniquely specified by the pixel mk1.
Alternatively, for each pixel mk2 in the right image, the corresponding pixel mk1 lies on
the relevant epipolar line specified by the pixelmk2.

This constraint is quantitatively expressed by the fundamental 3× 3 matrix of rank 2:

F =

 a1 a2 a3

a4 a5 a4

a7 a8 a9

 ,

that links the homogeneous coordinates of the corresponding pixels as follows [4]:

mT
k2Fmk1 = 0. (B.1)

Here, the vectors mT
kj = [xkj, ykj, 1] : j = 1, 2, represent homogeneous coordinates of

k-th pair of the corresponding pixels in a stereopair, j = 1, 2 are the left and the right
image, respectively, and T denotes the transposition. The vectors

lk1 ≡ [mT
k2F]T

=

 lk11 = a1xk2 + a4yk2 + a7

lk12 = a2xk2 + a5yk2 + a8

lk13 = a3xk2 + a6yk2 + a9
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and
lk2 ≡ Fmk1

=

 lk21 = a1xk1 + a2yk1 + a3

lk22 = a4xk1 + a5yk1 + a6

lk23 = a7xk1 + a8yk1 + a9


represent the coefficients of the corresponding epipolar lines that should pass through the
pixelsmk1 andmk2, respectively.

That the fundamental matrix F is of rank 2 is explicitly demonstrated by involving
into Eq. (B.1) the coordinates of the epipoles e1 = [xe1, ye1, 1]T and e2 = [xe2, ye2, 1]T in
both the images [17]:

F =


a1 a2 −xe1a1 − ye1a2

a4 a5 −xe1a4 − ye1a5

−xe2a1 − ye2a4 −xe2a2 − ye2a5 xe1xe2a1 + ye1xe2a2

+xe1ye2a4 + ye1ye2a5

 . (B.2)

Linear estimation: a known technique. An error of the epipolar geometry in the image
j is given by the distance from a pixel mkj in this image to a relevant epipolar line lTkj =
(lkj1, lkj2, lkj3) as follows:

dkj = dkj (mkj, lkj) =
mT

k2Fmk1(
l2kj1 + l2kj2

) 1
2

. (B.3)

This distance is invariant to uniform scaling of the matrix components a1, . . . , a9. Be-
cause the denominator in Eq.(B.3) is independent of a9, the fundamental matrix F can be

normalised so that the following constraint holds:
8∑

i=1

a2
i = 1.

If the corresponding pixels k = 1, . . . , n are known, the matrix F can be estimated by
minimising the total square error in both the images:

E =
n∑

k=1

(
d2

k1 + d2
k2

)
(B.4)

with respect to the components a1, . . . , a9 under the above constraint of rank 2.
To avoid the computationally complex non-linear minimisation of the total error E,

various linear approximations have been proposed in [5, 16, 17]. One of most popular
linear schemes is based on minimising the unnormalised total error:

Eappr =
n∑

k=1

(
mT

k2Fmk1

)2
(B.5)
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under the asymmetric 8-parameter representation of the matrix of rank 2 proposed in [5]:

F =

 a1 a2 a3

a4 a5 a6

αa1 + βa4 αa2 + βa5 αa3 + βa6

 . (B.6)

Eq. (B.2) suggests that the factors α = −xe2, β = −ye2, respectively. The minimisation
is carried out by the 2-stage block relaxation as follows. (i) For given values (α, β), the
six parameters aT = [a1, . . . , a6] can be estimated as follows:

min
a

Eappr(α, β) = aT Γα,βa under aTa = 1 (B.7)

where the symmetric matrix Γα,β is computed from the known coordinates of the corre-
sponding pixels and the parameters α, β. In such a case, the desired vector a is obtained
as the eigenvector of the matrix Γα,β with the smallest eigenvalue. (ii) Under the known
vector a, the total error of Eq. (B.5) is reduced to a quadratic form with respect to α and
β, and these latter can be found by solving a system of two linear equations obtained by
differentiating Eq. (B.5) with respect to α and β.

This approach is computationally simple but has several drawbacks.

• Usually, the matrix Γα,β is ill-defined, so the initial coordinates should be nor-
malised in a specific way to obtain computationally stable results.

• The minimum unnormalised error of Eq. (B.5) may not correspond to the desired
minimum of the total error in Eq. (B.4). To avoid this drawback, several iterative
schemes based on the total weighted square error where the weights are specified
by the denominators of Eq. (B.3) have been proposed [17]. But, such an iterative
weighting stops usually in one of the local minima of the weighted error.

• The matrix representation of Eq. (B.6) results in singular parameter values for the
ideal horizontal or vertical stereopairs. For example, the ideal horizontal pair has
the following fundamental matrix:

F =

 0 0 0
0 0 0.707
0 −0.707 0


so that the above 8 parameters are as follows: α = −∞, β = 0, a1 = a2 = a3 =
a4 = a5 = 0, a6 = 0.707, but simultaneously αa1 = 0, αa2 = −0.707, and
αa3 = 0.
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Enhanced linear estimation. To avoid these drawbacks, we combine the computation-
ally simple linear and non-linear techniques as follows. Instead of iterative block relax-
ation by the parameters a1, . . ., a6 and α, β, we simply use the direct exhaustion of α and
β values in a broad range which is sufficient to find a vicinity of the global minimum of
the total error of Eq.(B.4).

To exclude possible singularities, we use the following two 8-parameter representa-
tions of F simultaneously with Eq. B.6. The representation

F =

 a1 a2 a3

αa1 + βa7 αa2 + βa8 αa3 + βa9

a7 a8 a9

 , (B.8)

is suitable for the ideal vertical stereopairs (here, α = −xe2
ye2

and β = − 1
ye2
as follows

from Eq. (B.2)), and the representation

F =

 αa4 + βa7 αa5 + βa8 αa6 + βa9

a4 a5 a6

a7 a8 a9

 , (B.9)

is convenient for the ideal horizontal stereopairs (here, α = − ye2

xe2
and β = − 1

xe2
). Sin-

gularities in these latter representations exist when ye2 = 0 in Eq.(B.8) or xe2 = 0 in
Eq.(B.9) but these values are not typical for usual vertical or horizontal stereopairs, re-
spectively.

After computing the eight parameters in Eqs. B.6, B.8, and B.9, we apply the same

renormalisation
8∑

i=1

a2
i = 1 to all the resulting matrices.

B.2 Experimental results and conclusions
Experiments with the natural stereopairs (one of them, taken from [18], with 128 known
corresponding pixels is used in Figures B.1 – B.3) show that the total error of Eq.(B.4) has
multiple local minima with respect to the parameters α and β if the other six parameters
a = [a1, . . ., a6] are found by solving Eq. (B.7). That is why a vicinity of the desired
global minimum of this error has to be searched by the direct exhaustion, and only then
the local minimisation techniques such as the above-mentioned block relaxation in a and
(α, β) can be used for refining these values.

The enhanced linear estimation results in the slightly different estimates for the matrix
representations of Eqs. (B.6), B.8), and (B.9) presented in Table B.1. Because of a finite
range of exhausting the parameters α, β the minimum total error for both the represen-
tations in Eq.(B.8) and Eq.(B.9) has been found at the borders of the range. But, in this
case this approach suggests how to extend the search range as to approach the globally
minimum error.
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Figure B.1: Epipolar lines for the matrix represented by Eq. B.6 (the mean square distance
error: 0.01 pixel; the maximum square distance error: 0.122 pixel).

Figure B.2: Epipolar lines for the matrix represented by Eq. B.8 (the mean square distance
error: 0.02 pixel, the maximum square distance error: 0.145 pixel).



Part 1: P. Delmas, G. Gimel’farb 73

Table B.1: Estimated fundamental matrices.
α = 100, β = 1 in Eq.(B.6) α = 500, β = 0 in Eq.(B.8) α = 0, β = 0 in Eq.(B.9)

0 0 0.012
0 0 0.716

−0.001 −0.698 10.5

0 0 −0.001
0 0 −0.712

−0.01 0.702 −11.5

0 0 0
0 0 −0.712

−0.01 0.702 −11.6

Stereo pairs with the overlaid epipolar lines corresponding to Table B.1 are shown in
Figures B.1-B.3. Here, all the three cases give practically the same precision of the result-
ing epipolar lines. Tables B.2 and B.3 present the mean values of the matrix components
a1, . . . , a9 and their standard deviations with respect to the ideal ones. These results, ob-
tained under random variations of the coordinates of the corresponding pixels within the
two ranges: [−1, 1] and [−5, 5] pixels, confirm the robustness of the proposed approach.

Table B.2: Mean values (µ) and standard deviations (σ) of the matrix components un-
der random variations of the coordinates of the corresponding pixels in the range [−1, 1]
pixels.

107a1 107a2 105a3 105a4 105a5 103a6 103a7 103a8 a9

(B.6) µ 1.5 −676 1090 −0.08 0.2 716 1.7 −698 10.6
σ 1.3 1.4 101 0.7 1 2.6 2.1 2.7 0.736

(B.8) µ 1.3 −0.05 −142 6.6 −0.3 −712 −9.6 702 −11.5
σ 0.1 0.09 0.3 0.7 0.4 1.3 1.8 1.4 0.547

(B.9) µ −0.02 0.7 1 6.6 −0.2 −712 −11 702 −11.6
σ 0.03 3 8.4 0.7 1 2.6 1.8 2.6 0.725

The above experiments show that the described approach allows to obtain robust es-
timates of a fundamental matrix in a computationally simple way that can be easily im-
plemented in practice. All the three representations give fairly similar results but the
representation in Eq. (B.8) seems to be slightly more stable under the random noise. The
representation in Eq.(B.9) is most convenient when a given stereopair is almost horizontal.
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Table B.3: Mean values (µ) and standard deviations (σ) of the matrix components un-
der random variations of the coordinates of the corresponding pixels in the range [−5, 5]
pixels.

107a1 107a2 105a3 105a4 105a5 103a6 103a7 103a8 a9

(B.6) µ 1.3 −675 1090 −0.01 0.2 716 1.4 −698 10.4
σ 4 6 104 3 4 10 7.2 10.3 2.79

(B.8) µ 1.3 −0.04 −142 6.5 −0.2 −712 −9.4 702 −11.7
σ 0.5 0.5 1 3 2 6.7 7.2 6.9 2.29

(B.9) µ −0.01 2.5 −3 6.6 −0.2 −712 −10.7 702 −11.6
σ 0.2 22 59 2.7 3.7 9.9 7.1 10 2.76

Figure B.3: Epipolar lines for the matrix of Eq. B.9 (the mean square distance error: 0.02
pixel, the maximum square distance error: 0.138 pixel).
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