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Epipolar Geometry 

Epipoles 

•  Ol,Or - projection centres 
–  Origins of the reference frames 

–  fl, fr - focal lengths of cameras 

•  πl, πr - image planes 

–  3D reference frame for each camera: 
Z-axis = the optical axis 

Pl=[Xl,Yl,Zl]T, Pr=[Xr,Yr,Zr]T - the 
same 3D point P in the reference frames 

pl=[xl ,yl, zl =fl]T, pr=[xr,yr, zr =fr]T     

- projections of P onto the image planes 
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Basics of Epipolar Geometry 

•  Reference frames of the left and right cameras - related 
via the extrinsic parameters 
–  Translation vector T = (Or - Ol)  and a rotation matrix R 

defining a rigid transformation in 3-D space, given a 3-D 
point P, between Pl and Pr:  Pr = R(Pl - T)   

•  Epipoles el and er - the points at which the line through 
the centres of projection intersects the image planes 
–  Left epipole - the image of the right projection centre  
–  Right epipole - the image of the left projection centre 
–  Canonical geometry: the epipole is at infinity of the baseline  
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Basics of Epipolar Geometry 

•  3-D point P = [X,Y,Z]T ⇔ its projections pl and pr: 

•  Epipolar plane: the plane through P, Ol, and Or 
–  Epipolar line: its intersection with each image plane 

–  Conjugated lines: both the lines for an epipolar plane  

–  Given pl, the 3-D point P can lie anywhere on the ray pl Ol  
depicted by the epipolar line through the corresponding pr 

–  Epipolar constraint: the true match lies on the epipolar line 

€ 

pl =
flPl
Zl

;     pr =
f rPr
Zr
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Basics of Epipolar Geometry 

•  All epipolar lines go through the epipole 
– With the exception of the epipole, only one epipolar line goes 

through any image point 

– Mapping between points on one image and corresponding 
epipolar lines on the other image ⇒ the 1-D search region 

–  Rejection of false matches due to occlusions 

–  Corresponding points must lie on conjugated epipolar lines 

•  The obvious question: how to estimate the epipolar 
geometry, i.e. determine the ‘point-to-line’ mapping for images 
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The Essential Matrix, E 

•  Determining the mapping between points in one image 
and epipolar lines in the other image:  
–  The equation of the epipolar plane through a 3-D point P as 

the co-planarity of the vectors Pl, T, and Pl-T: 

Pl 

T 
Pl-T=(RTPr) 
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Pl −T( )T T×Pl( ) = 0

⇒ RTPr( )
T
T×Pl( ) = 0⇒ Pr

TR T×Pl( ) = 0

⇒ T×Pl ≡
0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0
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 Matrix S of rank 2
1 2 4 4 3 4 4 

Pl ⇒ Pr
T RS( )

Matrix E
 of rank 2

{
Pl

Ol 

Or 

P 

Vector product  a×b = n |a||b|sinθ  where the unit vector n is 
perpendicular to and θ is the angle between the vectors a and b  

Essential matrix 

Full rank matrix 
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The Essential Matrix, E 

–  By construction, the matrix S (and thus E) are of rank 2 

–  The essential matrix gives a natural link between the epipolar 
constraint and the extrinsic parameters of the stereo system:  

Matrix E: the mapping between the points and epipolar lines 
–  Vector ar= Epl → parameters of the epipolar line pr

Tar= 0  in the right 
image corresponding to the point pl in the left image 

–  Vector al
T= pr

TE → parameters of the epipolar line al
Tpl = 0  in the left 

image corresponding to the point pr in the right image 

  

€ 

Pl =
Zlpl
f l

;  Pr =
Zrpr
f r

  ⇒   ZlZr

f l fr
pr

TEpl = 0  ⇒   pr
TEpl = 0
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The Fundamental Matrix, F 

•  The mapping “points ↔ epipolar lines” can be obtained 
from corresponding points only  
–  No prior information on the stereo system! 

•  Points pl, pr in pixel and pl, pr in camera coordinates: 
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p l ≡
x l
y l
1
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= Mlpl;  p r ≡
x r
y r
1
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= Mrpr  ⇔   pl = Ml
−1p l;  pr = Mr

−1p r

    ⇒   p r
T Mr

−T EMl
−1

Fundamental 
matrix F

1 2 4 3 4 
p l    ⇒   p r

TFp l Ml and Mr - matrices of the 
intrinsic camera parameters 
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The Fundamental Matrix, F 

•  Matrix F - the “pixels - epipolar lines” mapping:  
–  Vector ar= Fpl → parameters of the epipolar line pr

Tar= 0  
in the right image related to the pixel pl in the left image 

–  Vector al
T= pr

TF → parameters of the epipolar line al
Tpl = 0  

in the left image related to the pixel pr in the right image 
–  Just as the matrix E, the fundamental matrix F has rank 2 

– F accounts for both the intrinsic and extrinsic parameters 

•  The epipolar constraint can be established with no prior 
knowledge of the stereo parameters! 
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The Eight-point Algorithm 

•  n ≥ 8  corresponding points in the images are known 
–  Each correspondence i - a homogeneous linear equation: 

–  If the n points do not form a degenerate configuration, the 9 entries of F are 
given by the non-trivial solution of this homogeneous linear system  
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p r,i
T Fp l,i = 0⇒ x r,i y r,i 1[ ]

F11 F12 F13

F21 F22 F23

F31 F32 F33
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x l,i
y l,i
1
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= 0

            ⇒ x r,ix l ,iF11 + x r,iy l ,iF12 + x r,iF13 + y r,ix l,iF21 + y r,iy l,iF22

                                                 + y r,iF23 + x l ,iF31 + y l,iF32 + F33 = 0
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The Eight-point Algorithm 

–  Since the system is homogeneous, the solution is unique up 
to a signed scaling factor 

–  Typically, n > 8, so that the system is over-determined, and 
its solution is obtained by singular value decomposition (SVD) 
related techniques 

•  A - the system’s matrix n × 9: 
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A =

x r,1x l,1 x r,1y l,1 x r,1 y r,1x l ,1 y r,1y l ,1 y r,1 x l ,1 y l,1 1
M M M M M M M M M

x r,n x l,n x r,n y l,n x r,n y r,n x l ,n y r,n y l ,n y r,n x l ,n y l,n 1
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The Eight-point Algorithm 
•  SVD A=UDV 

T ⇒ the solution is the column of V corresponding 
to the only null singular value of A 

•  V = [v1 … v9]; vi - the eigenvectors of the 9×9 matrix ATA  

  

€ 

ATA =

X r
2X l

2 X r
2X lYl X r

2X l X rYrX l
2 X rYrX lYl X rYrX l X rX l

2 X rX lYl X rX l

X r
2X lYl X r

2 Yl
2 X r

2Yl X rYrX lYl X rYr Yl
2 X rYrYl X rX lYl X rYl

2 X rYl
X r
2X l X r

2Yl X r
2 X rYrX l X rYrYl X rYr X rX l X rYl X r

X rX l
2Yr X rYrX lYl X rYrX l Yr

2X l
2 Yr

2X lYl Yr
2X l YrX l

2 YrX lYl YrX l

X rYrX lYl X rYr Yl
2 X rYrYl Yr

2X lYl Yr
2Yl

2 Yr
2Yl YrX lYl YrYl

2 YrYl
X rYrX l X rYrYl X rYr Yr

2X l Yr
2Yl Yr

2 YrX l YrYl Yr
X rX l

2 X rX lYl X rX l Yr
2Yl YrX lY YrX l X l

2 X lYl X l

X rX lYl X rYl
2 X rYl YrX lYl YrYl

2 YrYl X lYl Yl
2 Yl

X rX l X rYl X r YrX l YrYl Yr X l Yl n
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X r
αYr

γX l
βYl

δ ≡ xr,i
α yr,i

β xl,i
γ xl ,i

δ

i=1

n
∑
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The Eight-point Algorithm 

•  Due to noise, the solution is the column of V associated 
with the least singular value 

•  The estimated fundamental matrix Fest is almost always 
non-singular, i.e. is full rank (3) rather than the expected rank 2 
–  The singularity is enforced by adjusting the entries of Fest: 

•  The SVD Fest = UDV T 

•  Set the smallest singular value in the diagonal matrix D to 
zero to obtain the corrected matrix D′


•  The corrected estimate: F ′ = UD′V T 
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To Avoid Numerical Instabilities: 

•  Coordinates of the corresponding points have to be 
normalised to make entries of A of comparable size 
–  Translate the two coordinates of each point to the centroid of 

each data set: 

–  Scale the norm of each point so that the average norm over 
the data set is 1:  
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pi =

xi
yi
1
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1
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0 1 d −my d
0 0 1
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mx = 1
n xii=1

n
∑ ;     my = 1

n yii=1

n
∑
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d = 1
n 2

xi −mx( )2 + yi −my( )
2

i∑
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Stable Eight-Point Algorithm 

•  Input: n pixel-to-pixel correspondences 

•  Data normalisation:   
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pl,i = xl,i  yl ,i  1[ ]T;  pr,i = xr,i  yr,i  1[ ]T( ) :   i =1,K,n{ }
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′ p l,i = Hlpl ,i;  ′ p r,i = Hrpr,i( ) :   i =1,K,n{ }
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Hl =

1
dl

0 −
ml,x

dl
0 1

dl
−
ml,y

dl
0 0 1
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dl 0 ml,x

0 dl ml,y

0 0 1
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;      Hr =

1
dr

0 −
mr,x

dr
0 1

dr
−
mr,y

dr
0 0 1
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0 0 1
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Stable Eight-Point Algorithm 

•  SVD A = UDV 
T of the n×9 matrix A for the system of 

n linear equations; n ≥ 8 (over-determined for n > 8): 
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′ p r,i
T ′ F ′ p l,i = 0  ⇒   ′ x r,i, ′ y r,i,1[ ]

F1 F2 F3

F4 F5 F6

F7 F8 F9
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 
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′ x l,i
′ y l,i
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= 0  ⇒   a i
Tf = 0 :   i =1,2,...,n{ }

Af = 0  where  A =

a1
T

a2
T

M

an
T
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T = ′ x l,i ′ x r,i, ′ y l ,i ′ x r,i, ′ x r,i, ′ x l,i ′ y r,i, ′ y l ,i ′ y r,i, ′ y r,i, ′ x l,i, ′ y l,i,1[ ];  f =

F1

F2
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F9
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Stable Eight-Point Algorithm 

–  The entries of F ′ (up to an unknown, signed scale factor) are 
the components of the column of V corresponding to the least 
singular value of A 

•  SVD F ′=UDV 
T of F ′to enforce the singularity constraint 

–  Set the smallest singular value in the diagonal of D equal to 0 
to obtain the corrected matrix D′ 

–  Compute the corrected estimate F ″=UD′V 
T of the 

fundamental matrix 

•  Renormalisation: the output estimate F =Hr
-1F″Hl

-1  
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Locating the Epipoles 

•  Accurate localisation of the epipoles:  
–  To refine the locations of the conjugate epipolar lines 
–  To simplify the stereo geometry  
–  To recover 3D structure in the case of uncalibrated stereo 

•  The left epipole el lies on all the epipolar lines in the left 
image ⇒ the relationship pr

TFel = 0  holds for every pr 
–   F is not identically zero, so it follows that Fel = 0

–   F has rank 2 - the epipole el is the null space of F  

•  The null space is the set of all solutions s to the equation Fs = 0 

–  Similarly, er is the null space of F 
T 
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Algorithm to Locate Epipoles 

•  Input: the fundamental matrix F 

•  SVD F  = UDV 
T  

–  The epipole el : the column of V corresponding to the null 
singular value 

–  The epipole er : the column of U corresponding to the null 
singular value  
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F =

0 0 0
0 0 1
0 1 0
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0 1 0
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0 1
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D
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0 1
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⇒ e l = er =

1
0
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 



COMPSCI 773 19 

Rectification of Stereo Images 

Rectification - a transformation (warping) of each image: 
pairs of conjugate epipolar lines become collinear and 
parallel to one of the image axes (typically, x-axis) 
–  The 1-D search for correspondence after rectification 

–  Computation: by using the known intrinsic parameters of the 
camera and extrinsic parameters of the stereo system 

–  The rectified images are thought of as acquired by a new 
stereo rig obtained by rotating the original cameras around 
their optical centres 
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Rectification of a Stereo Pair 
P 

Or 

Ol 

The epipolar lines associated to a 3-D point P 
in the original cameras become collinear in 
the rectified cameras  

The original cameras 
can be in any position, 
and the optical axes 
may not intersect 
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Rectification of a Stereo Pair 
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Assumptions and Basic Steps 

•  Assumptions for both cameras without losing generality: 
(1) The origin of the image reference frame in the principal point 

(the trace of the optical axis) and (2) the same focal length f 
•  Steps of rectification 

(1) Rotate the left camera to make its image plane parallel to the 
baseline of the system (the epipole goes to infinity along the x-axis) 

(2) Apply the same rotation to the right camera to recover the 
original geometry and then (3) rotate the right camera by R 

(4) Adjust the scale in both camera reference frames 
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Rotation Matrix Rrect for Step 1 

•  A triple of mutually orthogonal unit vectors e1, e2, and e3  
–  An arbitrary choice due to an under-constrained problem 

–  The epipole e1 coincides with the direction of translation 
(as the image centre is in the origin) 
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Rrect =

e1
T

e2
T

e3
T
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   where  e1 =

T
T

=
1

Tx
2 + Ty

2 + Tz
2

Tx
Ty
Tz
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 
 
 
;  e2 =

e1 × 0,0,1[ ]T

e1 × 0,0,1[ ]T =
1

Tx
2 + Ty

2

−Ty
Tx
0
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;

e3 = e1 × e2 =
1

Tx
2 + Ty

2( ) Tx2 + Ty
2 + Tz

2( )

−TxTz
−TyTz
Tx

2 + Ty
2
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 
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The direction vector of the optical axis 
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The Rectification Algorithm 

•  Input: the intrinsic and extrinsic parameters; the images (or sets 
of their points) to be rectified; assumptions 1 and 2 hold 

•  Build the matrix Rrect and set Rl = Rrect and Rr = Rrect 

•  For each left-camera point, pl =[x, y, f ]T, compute the 
coordinates of the corresponding rectified point: 

•  Repeat this step for the right camera using Rr and pr 
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′ p l =
f ′ x 
′ z 

, f ′ y 
′ z 

, f
 

  
 

  
   where  [ ′ x , ′ y , ′ z ] = Rlpl


