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ABSTRACT
A highly accurate monitoring solution for active network measure-
ment is provided without the need for GPS, based on an alterna-
tive software clock for PC’s runningUnix . With respect to clock
rate, it’s performance exceeds common GPS and NTP synchro-
nized software clock accuracy. It is based on the TSC register
counting CPU cycles and offers a resolution of around 1ns, a rate
stability of 0.1PPM equal to that of the underlying hardware, and
a processing overhead well under 1µs per timestamp. It is scalable
and can be run in parallel with the usual clock. It is argued that
accurate rate, and not synchronised offset, is the key requirement
of a clock for network measurement. The clock requires an accu-
rate estimation of the CPU cycle period. Two calibration methods
which do not require a reference clock at the calibration point are
given. To the TSC clock we add timestamping optimisations to cre-
ate two high accuracy monitors, one based on Linux and the other
on Real-Time Linux. The TSC-RT-Linux monitor has offset fluc-
tuations of the order of 1µs. The clock is ideally suited for high
precision active measurement.
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1. INTRODUCTION
Because of their power, flexibility, and low cost, personal comput-
ers are increasingly being called upon to perform a variety of tasks
for which they were never designed. One of these is as engines for
the measurement of network traffic. Both passive and active mea-
surement require network monitoring, which involves timestamp-
ing packets as they arrive on the network interface. In addition,
active measurement requires the sending of a stream of test packets
at carefully determined target times, calculated to achieve specific
network probing objectives. To fufill each of these two roles in
software on a standard PC, the availability of an accurate, reliable,
and high resolutionsoftware clockis primordial.

Two of the most fundamental attributes of any clock are itsrateand
offset, that is its departure from the true time1 at a given time. It is
commonly accepted, or assumed, that in general neither of these
are particularly reliable for software clocks in PC’s. Of the two, the
offset has traditionally generated the most concern, and so mecha-
nisms such as the Network Time Protocol (NTP) are widely used
to enforce synchronization [1, 8]. However, for network measure-
ment, we point out that it is not offset butthe rate characteristics
which are of central importance. In this paper we focus on provid-
ing a software clock with highly smooth and accurate rate perfor-
mance, based purely on standard hardware. Our approach is very
generic, so that the clock could also be used in other contexts, espe-
cially when smooth rate performance is a prime consideration. We
illustrate and optimize the use of the clock however in the context
of network measurement, especially active probing, to which it is
ideally suited.

There are three reasons for the focus on rate. First, many measure-
ments, including the important round-tripdelayand inter-arrival
timesof packets, are made at a single physical location using the
same clock, so that offset synchronization is not an issue. Second,
any measured delay series can be decomposed intodelay variation
(the difference of delay) and a constant. Of these two components,
only the latter is subject to offset synchronization error, however
because delay values are large, high accuracy is then not of crucial
importance. For example for one-way delays in the range of 100’s
of milliseconds, an offset error of 1ms is acceptable. On the other
hand the delay variation, although immune to offset error, is vul-
nerable to rate variations in the clocks at either end, and as its value
may be under a millisecond, it requires far higher timestamping ac-
curacy. Finally, many metrics, and methods, are already based im-
plicitly or explicitly on delay variation or inter-arrival times, which
are each independent of a constant offset difference. All of the
more advanced techniques of active probing for example are based
on fine properties of the delay variation and/or inter-arrival time se-
ries ([7, 5, 11]). Only in relatively few (though important) cases is
the actual delayvalue required, but then, as we observed, very high
accuracy is not crucial.

Our motivation for this work was to circumvent the disadvantages
of the existing timestamping techniques used in inexpensive PC
based network measurement, particularly active probing. Of these,
the simplest is to use the standard software clock with network
based NTP synchronization. Under optimal conditions, such as
100Mb/s LAN access to a synchronized primary NTP server, NTP
can bound the offset to the order of a millisecond from Coordinated

1Newtonian space-time will be assumed in this paper.



Universal Time (UTC). Although this may seem sufficient for many
network measurement purposes, it should be put in the context of
controlled packet sending, for example for 100Mb/s Ethernet the
transmission times of minimum (28 byte) to maximum (1500 byte)
packets range from around 2 to 130µs. Furthermore, the accuracy
of NTP can be far worse than 1ms, and is in any case unreliable, as
it is subject to variations in network conditions, including outages
[12]. Because of this, and particularly when measuring one-way
delay, where different clocks are used for the departure and arrival
timestamps of the measured packets, Global Positioning System
(GPS) based timing is commonly used as a means of improving
synchronization, to around 10µs in common GPS-Unix based so-
lutions. However, this solution is a logistically difficult addition to
an otherwise simple infrastructure, as it typically requires roof ac-
cess for reliable continuous satellite coverage. Installation costs to
machine rooms can run to many thousands of dollars! The exploita-
tion of radio based alternatives relies on the presence of the appro-
priate network and also implies additional hardware. In this paper
we describe a simple alternative software clock which is more re-
liable, at least as accurate for rate based needs, and has higher res-
olution than the solutions discussed above, but which requires no
special hardware and can be easily installed in parallel to the usual
clock.

The essence of this clock is very simple. The CPU clock cycle
(TSC) register is used to keep track of time at very high resolu-
tion, for example 1 nanosecond for a 1 gigahertz processor. The
updating of this register is a hardware operation, and reading it and
storing its value involves only very fast memory accesses. Provided
that we have an accurate estimate of the true duration of a clock cy-
cle, the stored value can be readily converted to an accurate relative
time. We take advantage of the fact that CPU clocks have high
oscillator stability to validly assume that the corresponding con-
version constant is, to high precision, constant over quite long time
periods, well beyond those needed for most high resolution mea-
surement needs. We then propose two methods for estimating this
constant to the required accuracy. The first involves using NTP –
not to directly modify the clock using the NTP algorithm(s), but to
indirectly estimate the clock skew over large time intervals. The
second involves using a single reference timing source to remotely
calibrate other machines across a network.

Using the TSC register simply to increase resolution is not new.
What is novel is the exploitation of the fundamental reliability of
the available hardware to build a clock which has a range of impor-
tant benefits, and avoids a number of pitfalls of the existing soft-
ware clock. Its rate accuracy is inherently more accurate than that
of the usual GPS + software clock combination, but in fact in typ-
ical Unix systems the accuracy of both clocks is limited by the
operating system and hardware noise. In particular the delays in-
curred in accessing the clock, the timestamping operation itself,
suffers from system ‘noise’ in the form of process scheduling, and
the effects of interrupt latency. For the purposes of traffic measure-
ment we reduce the noise by performing an ultra low cost times-
tamping instruction in the driver code to the network interface card.
By using Real-Time Linux we can in addition control scheduling
problems, resulting in orders of magnitude improvement over the
traditional solution. Again, we emphasize that the above provides
for accurateratesin individual or geographically separated clocks,
and therefore for approximately constant, but non-zero, compara-
tive offset. That is, synchronized rates, but not values. We also
however offer a discussion on improved solutions to the quite sep-
arate problem of offset synchronization.

Validation of timing methods would not be possible without a re-
liable timing reference. We used a ‘DAG3.2e’ series measure-
ment card designed for high accuracy and high performance pas-
sive monitoring of 10/100 Mbit/s Ethernet, synchronized to a GPS
receiver, yielding a time stamping accuracy around 100ns [9]. The
card was connected to a Magellan OEM/5V GPS receiver, the same
one used by the primary NTP server the host was connected to, lo-
cated in the same building and only1.5ms away.

2. UNIX TIMING
To discuss issues related to clock accuracy in detail more precise
terminology is needed. Clockresolution is the smallest unit by
which a clock’s time is updated. Theoffsetθ(t) is the difference
between the time reported by the clock and the true reference time
t at a particular momentt. The skewγ is roughly the difference
between the clock’s rate and a reference rate. To define it more
precisely consider the following general model for the offset

θ(t) = γ ∗ t + ω(t), (1)

where the skew is just the coefficient of the deterministic linear part,
ω(t) being a random remainder which encapsulates the deviations
from the ‘simple skew’ modelθ(t) = γ ∗ t. Theoscillator stability
[3] characterizesω(t) via the family, indexed by time-scaleτ , of
relative offset errors:

yτ (t) =
θ(t + τ)− θ(t)

τ
= γ +

ω(t + τ)− ω(t)

τ
. (2)

In other wordsyτ (t) is the total rate error when measured over time
scaleτ . The seriesyτ (t) (which has meanγ if we assume zero
mean forω(t)), can be thought of as the skewγ with some random
variation of zero mean. A particular variance estimator of the vari-
ance ofyτ (t), known as theAllan variance, plotted over a range
of τ values, is a traditional characterization of oscillator stability
[3]. A study over a range of time-scales is essential as the source
and nature of timing errors vary according to the measurement in-
terval. For example it is important to note that the rate quantity
yτ (t) only really corresponds to the intuitive skew concept over
timescales large enough to makeγ apparent. At small timescales,
γ will be invisible, and the ‘rate’ error will essentially correspond
to the high frequency noise.

Significant Time Interval Interval Error rate, PPM
Duration 0.1 50 500

Interrupt latency 2µs � 1ns 0.1ns 1ns
Periodic interrupt period 10ms 1ns 0.5µs 5µs

Standard unit 1s 0.1µs 50µs .5ms
Max. useful estn interval 5.55h 2ms 1s 10s

Table 1: Absolute errors at key error rates and intervals.

To discuss offset, and its ‘derivative’, rate error, we use the dimen-
sionless unit ofParts Per Million(PPM). Table 1 translates this into
absolute error (offset) over key time intervals. The significance of
the error rates in the table, discussed in detail below, are i) clock
stability: 0.1PPM, ii) typical skew from nominal rate (or boot time
measurement): 50PPM, and iii) software clock maximum adjust-
ment: 500PPM.

2.1 Unix Clocks
All PCs have at least two clocks, the independent battery powered
Real-Timeor Hardware Clock, and theSystem Clock, often re-
ferred to as theSoftware Clock. Some processors, for example in



Pentium based PCs, also provide access to their clock cycle reg-
ister (TSC), which can be utilized in different ways as a high res-
olution clock. In this paper we assume that the TSC is available,
and furthermore that the base clock rate is constant (many notebook
computers allow variable CPU rates). Our work is Linux based, al-
though some tests were also performed under BSD, with very sim-
ilar results. The description that follows will of course vary under
different systems, but it is a common configuration that also serves
to introduce the key concepts.

The real-time clock is independent and keeps track of time even
when the system is turned off, and is typically not used while the
system is running.

The software clock, which is accessed using thegettimeofday()
system call, is based on a counter of timer interrupts. These are
typically generated by dividing, via a 8254 timer chip, the 1.19318
MHz output signal of a standard quartz oscillator (residing on the
motherboard), and are used by the operating system to schedule
execution of both system and user tasks. The division is typically
to HZ=100Hz, yielding interrupts everyδ = 10ms, which sets a
coarse bound on the resolution of the clock. Furthermore, the os-
cillator has a skew, in the range of±50PPM (see below) which is
not measured nor accounted for. This oscillator will be referred to
as the ‘standard oscillator’. Incrementing the counter is one of the
highest priority periodic tasks.

A common enhancement to the base software clock or ‘interrupt
clock’ is to exploit the TSC register to interpolate time between the
interrupts. The resulting much greater resolution is capped at 1µs,
the smallest unit available in the standard data structure forUnix
timestamps, used in the interface definition ofgettimeofday() .
To use this technique the true period of a CPU cycle must be known.
The procedure typically followed is to measure the number perµs
once only at boot time and thereafter to use this constant to trans-
form the 64 bit clock cycle register contents to time inµs units.
This initial measurement however is prone to error as it is based
on using the standard oscillator over a very small measurement in-
terval of around 50ms. The ‘interpolation–clock’ therefore inherits
the skew of the standard oscillator. Furthermore, since the period
of the standard oscillator is close to 1µs, resolution effects result in
an additional error of the order of 1µs per 50ms, or 20PPM (if the
interrupt period is shortened by increasing theHZkernel parameter
in Linux , integer arithmetic effects can increase this to 100’s of
PPM). The overall skew of the interpolation–clock is thus that of
the standard oscillator plus an additional systematic component of
up to±20PPM.

We see that the standard software clock combines two different os-
cillators, with related but different skews which are either poorly
estimated or unknown. At small timescales below the interrupt pe-
riod the interpolation–clock skew will be in force, while at large
time scales the other will dominate. Accessing the software clock
via gettimeofday() , which activates a reading of the software
clock counter, the TSC, and the interpolation calculation, takes on
the order of 1µs to execute on our 600Mhz test machines. NTP
tunes adjustments to the interrupt clock, but does not affect the in-
terpolation clock.

2.2 Experiment Design
We describe the measurement protocols used in the paper. A pe-
riodic probe stream of 40 byte UDP packets of periodT , serving
as a set of opportunities to collect and compare the accuracy of

timestamps on a controlled time-scale, is sent to a test machine.
A high accuracy RT-Linux based sender was used, based on that
reported recently in [10]. The packets reach the interface card in
the test machine, and the DAG card via passive tap off the wire, at
approximately the same time. The DAG card timestamps are taken
at the beginning of the packets, and the network card generates a
hardware interrupt after the full packet has arrived. From this point
there are several different possibilities, in two main categories, de-
pending on the aim of the experiment. In the first category we study
the characteristics of the existing clocks. To do so a user program,
which is listening on the relevant socket and has the highest pos-
sible priority, reacts to the interupt by executing timestamping op-
erations in user space. If two clocks are compared, the timestamp-
ing calls are executed immediately after each other. In the other
category, we wish to compare the performance of different traffic
monitors, which can be thought of as a combination of a clock and
a timestamping operation. As detailed in section 4, these are the
TSC-RT-Linux, the TSC-Linux, and the SW-NTP-tcpdump moni-
tors. In the case of the TSC-RT-Linux monitor, the interrupt im-
mediately results in the driver being invoked. The driver has been
modified to immediately record the TSC register value, and then to
store it for postprocessing. With the TSC-Linux monitor, after pos-
sibly some scheduling delay, again a modified driver records the
TSC register. Finally, under the SW-NTP-tcpdump monitor, the
Berkeley Packet Filter code in the kernel timestamps the packets
usinggettimeofday() as they are passed up from the driver.
In all cases, the differences between the different software clocks
and the DAG timestamps form the estimations of offset for that
clock or monitor, on a close to periodic time grid.

The normalised difference in the offsets, theyτ (t) above, can then
be calculated over timescales ofτ = {T, 2T, 3T, · · · }. The se-
quence of un-normalised offset differences at timesτ = kT are
also of interest as they can be naturally interpreted as errors in
Inter-Arrival Time (IAT) measurements between everykth packet.
Determination and control of these errors is important as they rep-
resent a key limitation to the use of IATs in active measurement.
Accordingly, depending on context, results are presented for

offset : θ(t), used when examining how the actual error in times-
tamps increases over time (in all comparisons we setθ(0) =
0),

offset error : θ(t+ τ)− θ(t), when wishing to examine the offset
at a particular (and by extension, over a range) of timescales.
This is directly relevant to the issue of errors in IAT measure-
ment as just mentioned,

rate error : [θ(t + τ)− θ(t)]/τ , or normalised offset error, when
we want to examine the value of the skewγ, and the validity
of the simple skew model, over different timescales.

The test machines were used in a lightly loaded configuration to
minimize errors due to scheduling. From previous work, we know
that in this mode only a few major events per 10,000 can be ex-
pected, which are readily recognised as they are isolated and in the
millisecond range. Scheduling effects are pointed out at various
points in the text. Several different 600Mhz Linux machines were
used, each with Linux version 2.2.14, and when appropriate RT-
Linux version 2.2. The RT-Linux networking software had to be
extended, and some bugs fixed.



2.3 Clock Skew and Stability
In this section we measure the skew and stability of the two compo-
nents of the software clock to illustrate the points described above,
benchmark our measurement infrastructure, and prepare the ground
for the new clock. In order to study the ‘natural’ behaviour of the
underlying oscillators, NTP is not used in the experiments in this
section. The results are important as the high stability we find pro-
vides the basis for our approach.

One can effectively focus on the interrupt–clock component by
choosing timescales well over the interrupt period, hereτ = 60000δ=
600s was used. This meant that the effect of interpolation-skew
over the measurement was at worst of the order of2 × 50PPM of
10ms over 600 seconds, or 0.0017PPM. The linear increase in er-
ror in the lower curve in figure 1, a skew of 38PPM, is therefore
essentially that of the interrupt–clock. To focus on the skew of the
interpolation–clock it was necessary to modify the software clock
in the kernel. A newgettimeofday() function was created
based purely on a counting and conversion of the TSC value, us-
ing the usual error ridden period estimate as measured at boot time.
The upper curve in the figure reveals that this estimate entailed a
skew error of 55PPM. (Note that this modification of the software
clock was used for this purpose only. It is not the same as the TSC
based clock and monitors we present in this paper.) For ease of
comparison we have setθ(0) = 0.
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Figure 1: Offsets of the two component clocks used in the stan-
dard software clock (NTP off), showing significant skew.

As we move from small to large timescales, the overall skew of the
normal software clock moves monotonically from 55PPM to that
of the interrupt–clock, 38PPM, as the 20PPM discretisation error
is averaged away. These skew levels are consistent with the typ-
ical figure of 50PPM reported in [3]. This is quite a large error,
nonetheless we see from table 1 that in the range of a single inter-
rupt it is still below 1µs, below the software clock resolution. It is
clearly vastly greater however, than what would be possible using
the TSC register with an accurate period estimate, a fact which we
exploit in the next section.

We now consider the stability of the two component clocks. The
aim is not to characterise the detailed statistical behaviour of their
stabilities, but to identify the timescales at which a pure or ‘simple-
skew’ model is meaningful. Recall from equation 2 that stability
is essentially concerned with the variance of error in rate. In fig-
ure 2 the top plot shows the rate varying over a 24 hour period
for both the software clock (again, this is essentially the interrupt–
clock over large timescales) and the interpolation–clock. From the
raw data taken everyT = 1s a value ofτ = 1000s was used in
the plot. The range of variation is seen to be very small for both,
of the order of 0.1PPM over the period, that is skew varying in a
±0.1PPM range. The lower plots show the corresponding Allan
deviation curves (the root of the Allan variance) in logarithmic co-
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Figure 2: Stability of the software clock (SW, estimating the
interrupt–clock) and the interpolation–clock (TSC based) over
24 hours. Top: rate variations with τ = 1000s. Bottom: Allan
deviation plots showing the validity of a simple skew plus noise
model up to 1000s.

ordinates. The plots have a similar form and show a strong resem-
blance to the measurement results published in [3]. We found sim-
ilar results for other machines running Linux and BSD over three
very different networks.

In each Allan plot two regimes are clearly visible. Over measure-
ment time scalesτ up to some 1000 seconds, the slope of−1 in-
dicates that the Allan deviation falls rapidly as1

τ
. This is consis-

tent with ω(t) being an additive stationary short-range dependent
‘noise’. The interrupt latency noise, which is hardware dependent
and takes values up to 5µs but which is more typically around 1µs,
is one effect which falls into this category The second region is de-
termined by the long term oscillator stability (the deviation seems
to move up but in fact for largeτ there are few data points left and
the confidence intervals are large. It is therefore not inconsistent
with the horizontal behaviour found in [3]). The important fact is
that the change point marks the end of the simple skew plus noise
regime. For the clocks in the test machine it occurs at around 1000s
and at these scales the error is around 0.01 PPM. Values taken from
many computers [3] indicate that 0.1PPM is a typical figure, and
one which we use in the sequel. Attempts will only be made to
correct rate to this level of accuracy, as beyond it the simple skew
model ceases to be valid in any case.

Note that improved estimates of the stability of TSC based clocks
can easily be obtained by using a RT-Linux receiver, however we
do not do so here in order to provide a fair comparison against the
standard software clock, which does not exist under RT-Linux. The
results in any case are similar.

2.4 Synchronization and NTP
The Network Time Protocol (NTP) is used in the Internet and else-
where to synchronize computer clocks to an external reference source.
The servers providing the synchronization service are hierarchi-
cally organized, with primary servers synchronized directly to ex-
ternal reference clocks such as GPS, and secondary servers syn-
chronized to primary servers and others in the synchronization sub-
net. The synchronization is based on the exchange of timestamps
between the client and the server, and possibly some other peer.
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Figure 3: Offset comparison: the positive effect of NTP on large
time scales.

The round-trip delay and the clock offset is then estimated from
them. An upper bound in the offset error estimation is half of the
round-trip time [1].

NTP is essentially concerned with controllingoffsetwithin reason-
able bounds. This is normally done by a series of rate adjustments
which are controlled by sophisticated phase locking algorithms in
the kernel, and passed down to the software clock (in fact the ‘in-
terrupt clock’) in a careful way [4]. It is important to understand
however that its objective is not constant, smooth rate, which is
of key importance for high precision measurement, but bounded
offset. Because of the high skew of the standard oscillator, the
range of the kernel parameter (tickadj under Linux), which im-
plements the change in rate, needs to be large, and rate changes can
be as high as 500PPM when variable network conditions result in
a large error in the offset estimate. In fact, most of the corrections
performed by the NTP clock adjustment algorithm do not compen-
sate for changes in oscillator rate (stability), which as we have seen
are very small, but for the much larger errors due to the skew of
the standard oscillator, and errors in the NTP offset estimates due
to changing network delay and system noise (the skew of the in-
terpolation clock, and integer arithmetic used in the clock imple-
mentation, also play a role). Not only do these adjustments create
irregularities in rate, they also imply that NTP synchronized hosts,
even those synchronized to nearby primary servers, can only pro-
vide time stamping accuracy in the range of milliseconds. Indeed,
a performance analysis of NTP [2] has shown that the accuracy of
the primary servers is in the range of 10µs, and a client synchroniz-
ing to a primary server via Ethernet can achieve clock accuracy of
around1ms at best. In the results presented here the host was con-
nected to a primary NTP server which was only1.5ms away,near
optimalconditions for the NTP + software clock combination.

In figure 3 we compare the software clock offset of our test host
with and without running NTP. For this particular experiment probe
packets were sent every second to the host which captured the ar-
rival times usingtcpdump . As always the DAG card provided the
timing reference. The synchronizing effect of NTP on time scales
well above a millisecond is evident from the figure. As we look
more closely however, we will see that the rate is highly variable
on short to medium timescales due to the effects noted above.

We first describe the two main NTP applications,NTP–Dateand
NTP–daemon(see [1] for a detailed description). The purpose of
NTP–Date is to provide a one-off ability to bring an uncontrolled
clock back into synchronization quickly. In contrast, NTP–daemon
is designed to track offset in a reasonably gentle way, and is adap-
tive. The default parameters allow adaptivity with update intervals
logarithmically spaced between 64 seconds and17.1 minutes.

In figure 4 we illustrate two fundamentally different sources of ir-
regularity in rate on small scales: (1) system ‘noise’, that is de-
lays due to scheduling and software and hardware processing and

queueing, and (2) network based NTP in the worst case (ie. us-
ing NTP–Date, however still under optimal server conditions). We
show both offset (left) and its differenceθ(t + τ) − θ(t) with
τ = 1ms (right). For this purpose we use a TSC based clock called
by a user program (like the interpolation clock described in sec-
tion 2.3 but with an accurate cycle period estimate), because it is
unaffected by NTP, but shares the same system noise as the system
clock. To avoid possible confusion we call it the TSC-User clock,
and use it only in this section. The top plots in figure 4 concern
the TSC-User clock, and the middle plots the software clock with
NTP–Date running. Both show complex variations, and we can-
not tell which are due to operating systems effects, and which to
clock rate effects. In the bottom plots however the difference of
the two is given. Since the TSC-User and software clock times-
tamps are requested immediately after each other, any operating
system delays between the reference timestamping of the packets
by the DAG and the clock timestamps will be experienced equally
by both. The difference therefore shows the true difference in per-
formance between the clocks (although it is not impossible that a
scheduling event could occur inbetween or during the two times-
tamping calls, it is extremely unlikely as the total duration of the
two: TSC-User+SW < (0.1+1)µs is small. We observed that this
occurs no more often than once per 100000 timestamps). A clear
skew difference is seen in the offset in the bottom left plot, which is
revealed in the bottom right plot as being due to rate change recom-
mendations of 5µs being handed down ateachperiodic interrupt.
The size of the system noise can also be evaluated by comparing
the plots and is seen to be of the order of 10µs.

Figure 5 compares the offset of the TSC-User clock with that of the
software clock under the direction of NTP–daemon with default pa-
rameters. Although under NTP the offset has been bounded to 1ms
as one might expect, the difference in rate stability is dramatic, even
though the worst rate change in this interval corresponds to only
10PPM, far less than the maximum of 500PPM. These differences
are visible here because we are at timescales for which the system
noise has become negligible.
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Figure 5 demonstrates two things. First, that NTP induced rate
changes can be large in response to system noise and/or variability
in network delays. The resulting false offset estimates then trigger
subsequent clock adjustments. Second, it graphically illustrates the
inherently smooth nature of the CPU cycle rate, which can be ex-
ploited via the TSC register. Note that the spikes shared by both
clocks are due to system noise on the time the clocks areread, and
do not relate to the dynamics of the clocks themselves.
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Figure 4: Two different sources of irregularity in rate: NTP and system noise. Top plots: TSC-User clock, Middle: software clock,
Bottom: difference. The effect of NTP–Date is easily seen in both the offsets (left) and rates (right). Note scale changes.

Offset errors over small scales have been examined in figure 4. To
explore and compare them over a wide range of medium timescales,
in figure 6 we plot mean absolute value of the growth of offset error
of the TSC-User clock (the same in both plots) and NTP–daemon
under two parameter settings, the highest possible rate of polling
(top), and the default parameters (bottom). For NTP–daemon, not
surprisingly more frequent polling of the server results in a smaller
offset (note the scale change), which is superior to that of the TSC-
User clock for periods over 2000s. The crossover point moves to
the right as the polling rate decreases and is around 6 hours in the
lower plot (see below). Note however that even 2000s is well over
the time-scales of importance in traffic measurement!
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(θ(0) = 0)) over time. Top: TSC-User and NTP–daemon with
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Increasing the polling rate to the NTP server also increases network
traffic, and so the polling is often set low, another reason why the
synchronization performance can be much poorer than the optimal
value of 1ms.

2.5 GPS
In cases when the accuracy of network based clock synchronization
is not sufficient, GPS receivers are often used instead as high pre-
cision external references, both to improve offset synchronization,
and to avoid the network delay dependence of NTP. Large scale
measurement projects collecting statistics of one-way metrics such
as Surveyor [6] and RIPE [13] all use GPS synchronized measure-
ment hosts.

The accuracy of modern GPS receivers’ output signals is well be-
low 1µs. Typically the output signal is fed to the serial port of the
synchronized computer. A special serial port driver is needed, and
essentially using the same clock adjustment algorithm as NTP, the
software clock can be synchronized to an accuracy of 10µs. The
main source of error is not the jitter on the received external syn-
chronization signal, as in the case of NTP over a network, but the
delay due to hardware and software processing and the jitter due to
system noise and clock reading precision. These limiting factors
are the same as those of any clock running under the noise inherent
in aUnix -like multi-tasking operating system.

For monitoring high bandwidth links an accuracy of 10µs is not
sufficient. In these cases special measurement cards like the DAG
series [9], capable of synchronizing to a GPS signal with much
greater accuracy, can be used, or alternatively, a purely software
solution can be retained, as we now describe, provided the traffic
rate is not too high.

3. A NEW SOFTWARE CLOCK
An overview of the nature of the new clock we propose has already
been given in the introduction. In this section we define it more
precisely and give a thorough account of its features.

3.1 The Clock
In section 2.3 we saw that over time periods up to and beyond 1000
seconds, the stability of both the standard oscillator and the CPU
oscillator was good enough to make a simple skew model perfectly
adequate. More precisely, over these timescales we found that the
following model can be applied

θ(t) = θ(0) + γ ∗ t + η(t), (3)



whereη(t) is a stationary noise of zero mean and amplitude (stan-
dard deviation) around 5µs, corresponding to operating system and
hardware noise, the latter being essentially interrupt latency. Over
these timescales, errors in offset due to failure of the model, ie
where oscillator instability is such that we can no longer takeγ to
be constant, are below 0.1PPM. From table 1 we see for example
that for an IAT measurement over an interval as large as a second,
this is well under 1µs. Errors in measurement are of course still
made because of the additive noiseη(t), and are relatively worse
the smaller the measurement interval. Such errors will be suffered
in common with any other clock, including a GPS synchronized
standard software clock.

Of the two oscillators, that of the CPU is clearly preferable because
of its higher resolution. Furthermore, in future PC architectures the
presence of a CPU is a reasonable assumption, as is an ongoing
increase in resolution. Another clear advantage is the hardware
updating of the TSC, and that reading a register is likely to remain
one of the fastest operations available.

From the structural advantages of the TSC outlined above we must
extract a practical software clock and determine its properties. In
the next subsection we do this under the assumption that we already
have an estimate of the average TSC periodp with an accuracy
equivalent to a skew ofγ. The following subsection will deal with
the estimation ofp.

3.1.1 Performance with ‘Best’ Rate
Through measurements using our reference source on several test
machines, we have measured values for the cycle ratesr accurate to
a skew better than 0.1PPM. Such values are the best possible in the
sense that the offset error they generate only becomes significant
above timescales where the simple skew model above fails to hold
in any case. It is remarkable that the values found have remained
constant over many weeks, and through many reboots of the test
systems. Indeed figure 7 exhibits this in a continuous measurement
over 100 days. We have already displayed these small skews, indi-
rectly, via the rate stability plots for the TSC based interpolation–
clock in figure 2. It is this ‘best’ rate which is on display in the top
plots in figure 4, the simple skew in figure 5, and indeed in all plots
involving TSC based clocks in the paper.

Assume then thatr, or equivalently, a value of the CPU cycle period
p = 1/r, is given. The basic timestamping operation is simply the
reading of the TSC register and writing it to memory. From this
point two main approaches can be taken:

Timestamps in Postprocessing: The aim here is maximum ac-
curacy, and to allow multiple timestamps to be obtained very
rapidly if required. Thus only the raw information of the key
events to be timestamped is kept. The actual timestamps in
seconds are calculated separately either as a carefully con-
trolled low priority process in parallel, or after the measure-
ments are complete. This approach is appropriate for an
active measurement receiver, where the volume of received
packets is low, and one can afford to wait.

Alternative System Clock : Here the aim is to have a multipur-
pose alternative system clock available at all times. The basic
timestamping operation then needs to be followed by a rapid
and accurate conversion phase to a timestamp in time units.
Both of these require care in implementation issues, princi-
pally integer arithmetic which preserves the required level of
precision.

Of the two approaches above, the first may be performed in arbi-
trary precision arithmetic and is straightforward. For completeness,
and to aid those who may wish to implement the clock, we quickly
outline an implementation of the second. For simplicity we assume
a nominal CPU speed of 1 gigahertz, and hence a cycle period of
approximately 1 nanosecond. In either case, the ‘conversion con-
stant’ p, the CPU crystal period which converts the TSC register
‘timestamp’ to time units, is stored not as a single real number but
as the ratio of two integers:p = d/c, wherec is a number of cy-
cles, andd the duration of them. The TSC register is 64 bits long,
which at 1ns per bit corresponds to 585 years. Whilst this covers a
sufficient range for the moment, it is more scalable to periodically
update a counter of some larger time unit – we use microseconds,
and to fit the remainder into a smaller integer.

The advantages of the TSC counter and the principles of the above
two ways of using it are naturally scalable to higher processor rates,
and can be implemented in parallel to the normal software clock.
In the case of replacing the latter however the TSC clock cannot
be given a standard timestamp interface, for example by replacing
the internals ofgettimeofday , without limiting its resolution to
1µs.

The performance of this clock is very good, a rate precision of at
least 0.1PPM, a resolution of 1ns, a rate stability equal to that of
the underlying hardware, and an exceptionally low processing over-
head for timestamping (less than 50ns for a 600Mhz test machine).

3.1.2 Approaches for Rate Estimation
The accurate estimation of the cycle periodp is an essential compo-
nent of our approach, and of course requires the use of a reference
time source in some form. One approach could be to measurep
very accurately once by attaching a reference source, and there-
after to use that value. This is not satisfactory as it is not clear
that obtaining such a reference source for a one-off measurement,
or to support a very infrequent (re)calibration regime, is not just
as inconvenient and expensive as the permanent reference source
solution we are seeking to avoid. Furthermore, oscillator rates do
change over time for a variety of reasons. Moving from large to
small timescales, these include:

months/years ageing of the oscillator hardware

weeks/monthschanges in the environment, power supply, aircon-
ditioning

days/week cycles of activity, including systematic temperature vari-
ations

hours/day local temperature variations (activity, weather..).

Thus, although observations of our test system show very little vari-
ation over a period of months, one could never be certain that the
skew had not changed significantly for some reason. It is there-
fore desirable to be able to re-measurep on a regular and automatic
basis.

Accessing a reference source via a network is clearly a very con-
venient solution as it eliminates the need for special hardware and
allows for automated, regular recalibration. In the next two sections
we describe two quite different ways of doing so.



3.2 An NTP Based Rate Calibration
The existing network of GPS synchronized NTP primary servers is
an obvious candidate for gaining ‘second hand’ access to a refer-
ence time source. We exploit the fact that the software clock uses
NTP to track offset to within some bound∆θ.

The idea is that a fixed bound can be made to correspond to as small
a relative error in rate estimation as desired, simply by measuring
over a large interval. From table 1, it is seen that2∆θ = 2ms
(an optimal 1ms error at each end of the measurement interval)
corresponds to a target skew of 0.1PPM by measuring over 5.55
hours. A simple way to gain access to the NTP time estimates is to
read the software clock. Thus,we can obtain a period estimate by
simply choosing a time intervalDT in excess of2∆θ ∗ 107, setting
d to the difference in the software clock timestamps, andc to the
difference in the TSC.The 1µs resolution of the software clock is
not a limitation here as the difference required is in the millisecond
range.

To the basic period estimation it is desirable to add an ability to
follow its possible evolution. This can be done through periodic
windowed estimates, taken with a large degree of overlap to ensure
that the ‘tracking’ does not introduce its own dynamics. The intu-
ition and aim of this heavily damped algorithm is that a quasi-static
skew parameterγ of a simple constant skew model be measured.

More concretely, we continue with the example with∆θ = 1ms.
New durationd′(i) and counterc′(i) measurements are made every
DI = 96s. From figure 2 we see that this is a timescale over which
the simple skew model is valid. Up to 256 past values are stored,
covering a total estimation duration ofDT = 96 ∗ 256 = 24576s
or 6.8 hours (6.8 is thus a convenient figure which exceeds 5.55h).
From this database estimates based on measurementsDT apart are
used to form the final estimates:d(i) andc(i), i = 1, 2, · · · , at
times t = i ∗ DI seconds, corresponding to the rate estimates.
The window size is steadily increased until it reachesDT where it
remains constant. In this way an initial estimate becomes available
after onlyDI seconds.

The time series of period estimates,p(i) = d(i)/c(i), is shown
in figure 7 over a period of 100 days. On this scale the startup
phase is hidden in the vertical axis. The variation of the period
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Figure 7: The (centered) CPU period seriesp(i) over a 100 day
period, showing a 0.1PPM stability.

estimates is very low. Indeed, the visible discretization is due to
the fact that the only variations seen were in the last bit ind, with
very rare exceptions due to exceptional NTP events. Such events
could be filtered out with a more sophisticated algorithm. The error
in the period estimate, measured as its variation over its value, is
seen to be around1.5 ∗ 10−10µs per clock cycle over1.82 ∗ 10−3,

or ≈ 0.1PPM, as designed for. It must be emphasized that these
results are for the optimal conditions of∆θ = 1ms, which can be
very optimistic. Provided∆θ is known however,DT can be set
appropriately and the method will work.

3.3 A Remote Rate Calibration Technique
A disadvantage of the NTP based rate synchronisation is that the
offset bound∆θ is not really known, making it difficult to know
and control the accuracy of the corresponding estimate. Our ‘re-
mote calibration’ technique applies to situations where we have
more control: a reference source at one measurement point. The
aim is to use it to measure the cycle periodp for machines at other
locations.

The idea is that by sending out a stream of accurately timestamped
packets to be received by an accurate software receiver monitor,p
can be measured by comparing the reference departure timestamps
(in seconds) with the TSC register values recorded by the receiver
monitor, after filtering out the network induced variability.

We used one local machine to remotely calibrate another machine
in our local network, via a node in Hungary which reflected the
packets. This provided a difficult test for the method (40 hops in
total), whilst allowing us to use our reference infrastructure in a
convenient way. We used a TSC-RT-Linux sender with a DAG card
monitor, and the receiver ran a TSC-RT-Linux monitor (see below)
timestamping arrivals with the TSC value, also with a DAG monitor
for verification. A 12 hour experiment was conducted consisting
of a periodic test stream of 4320 packets with an inter-departure
time of 10s. The raw data, TSC values against sender timestamps,
exhibits a striking linear behaviour whose slope corresponds top,
and was measured as602.54537 Mhz. Using this value to convert
the TSC values to seconds and comparing with thereceiving DAG
timestamps for verification, we see in the lower plot in figure 8 that
the residual variation in rate is well under 0.1PPM. A precise value
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Figure 8: Calibration over 40 hops. Top: the receiver TSC
readings as a function of measurement packet departure times.
Bottom: The residual rate variation, using the measuredp
value, is in the 0.1PPM range.

for p allows us to return to the raw data, convert the TSC values to
arrival timestamps in seconds, and subtract the DAG sender times
to obtain the end-to-end delay for each packet. This ‘detrended’
delay series is shown in the top plot, where the magnitude of the
network delay variations are easily appreciated.

Intuitively, prior to the estimation these variations were filtered out
by following the densely populated part of the slope. To achieve
this, we formed a histogram of the inter-arrival TSE values and
selected those packets which were in a quartile range∆q about the



median. The slope was then obtained via least squares using only
these values. The estimate was found to be very insensitive to the
value of∆q in a wide range.

3.4 Offset Synchronization
The question of the synchronization of offset is quite different to
that of the synchronization of rate which we have discussed so far.
Nonetheless, it is relevant to consider this question also, if only
briefly.

Let us assume that TSC-RT-Linux monitors are installed in the ori-
gin and destination of a one-way active probing experiment. Over
timescales of importance to the measurement of IAT’s and delay
variation: 10’s to 100’s of milliseconds up to a second, the error in
offset due to the 0.1PPM skew is well under 1µs (table 1). Thus
the rates are so well synchronized that we can assume that they are
both correct and equal. The difference in offset between the clocks
however will not be zero. This is important to know in a few cases,
for example an absolute delay or latency figure is needed to predict
the performance of time critical applications such as voice over IP
and distributed gaming. However, in such applications an estimate
of the delay with millisecond accuracy is adequate. This is because
any technique which analyses delay series in detail inevitably con-
siders delay variation (and IATs), the absolute delay appearing as a
simple constant.

For offset synchronization NTP is an obvious solution, as its aim is
exactly that, to control offset. Nonetheless, we have seen that the
usual NTP + software clock combination suffers from a variety of
sources of timing error, which the tracking algorithm must content
with, which can lead to rapid and dramatic changes in rate (and
even offset), at the whim of unfortunate network conditions [12].
In contrast, the TSC clock is gently poised around a skew value
of zero, and so offset errors can only accumulate very slowly. By
interfacing NTP with the TSC-RT-Linux monitor to use the latter’s
inherent stability to filter the sometimes excessive recommenda-
tions of the former, it should therefore be possible to reduce the
sources of variability to the network only. Estimation based on
minima of one-way and round-trip delays should then be far more
successful than usual in filtering out network delays in this more re-
liable environment. By using a scheme of this type, combined with
an effort to connect to nearby, primary NTP servers, offset errors
for delay estimates can be kept below 1ms. The feasibility of this
approach has been verified in our recent work.

4. A HIGH PERFORMANCE MONITORING
SOLUTION

We have shown that a TSC based clock with an accurate calibra-
tion can easily equal the performance of the traditional GPS +
software clock solution. Aside from the clock itself however, the
other dimension of timestamping is being able to read it as close
as possible to the events being timestamped. Optimising this step
is clearly application dependent. A general purpose system call
suffers from system noise which lowers the inherent accuracy of
a TSC clock to little better than a simple NTP + software clock
solution. Only when NTP loses synchronization, when network-
ing conditions are highly variable, or when NTP–Date is used, is
the TSC clock clearly superior under such circumstances. In other
words, the inherent rate stability and accuracy of the TSC clock is
masked by noise under Linux, leaving only its reliability as its main
advantage. This was clearly seen in figure 4 where the offset differ-
ences due to rate changes in the bottom plot were on the order of

microseconds, whereas the system noise was ten times this. How-
ever, any drop in noise level immediately allows the other benefits
of the clock to be seen.

To see and benefit from this, we optimise for network measurement
by placing the timestamping operation (TSC register reading) early
in the driver code, a solution we call theTSC-Linux monitor. Under
Linux (and BSD) however, operating system noise, chiefly proces-
sor scheduling, still plays a role. This is greatly reduced under
RT-Linux, and we refer to the combination as theTSC-RT-Linux
monitor.

To illustrate these consider figure 9 where offset and rate error (over
τ = 1ms) is displayed for the traditionalSW-NTP-tcpdumpmoni-
tor, the TSC-Linux monitor, and the TSC-RT-Linux monitor (both
of the TSC monitors use the ‘best’ rate). For the SW-NTP-tcpdump
and TSC-Linux monitors spikes due to scheduling can be seen both
in the offset and its difference, though it is much reduced in the
TSC-Linux monitor. In contrast, in the bottom plot the TSC-RT-
Linux monitor shows no large spikes. The increase in performance
from top to bottom is remarkable (note the scales). The TSC-RT-
Linux monitor has offset variations of the order of only 1µs, and
rate variations in the 0.1PPM range. This is much better than the
common GPS and software clock solution, but is achieved entirely
with software. The periodicity visible in the TSC-RT-Linux offset
plot is of the order of the offset error of the DAG clock itself, and
indeed may be caused by the DAG synchronizing to its own GPS
pulse per second input.

5. CONCLUSION
In this paper it was explained why rate performance, rather than ab-
solute offset synchronization, is the key requirement of a software
clock for most purposes of network measurement. From this point
of view the drawbacks of existing solutions were explored in detail,
including unsynchronized standard software clocks, the network
based NTP controlled software clock, and the increasingly com-
mon GPS synchronized software clock. The disadvantages include
being subject to excessive system noise, highly variable rate on
small timescales, and/or excessive cost and inconvenience. As net-
work measurement using inexpensive PC infrastructure becomes
increasingly common and demanding, it is important to provide a
clock which has a high rate accuracy, but without the overheads of
special hardware.

A software clock was presented with excellent rate performance,
based on the TSC register which counts CPU cycles. It offers res-
olution of the order of nanoseconds, and very smooth rate: over
timescales up to 1000 seconds a simple skew model of rate is valid,
with a skew value which can be determined to within 0.1PPM. On
longer timescales the variation in the skew parameter is also of this
order. Estimates obtained for several different machines, running
Linux or BSD, were found (using our local reference clock, a GPS
synchronized DAG3.2e card) to stay in this range on a timescale of
weeks or even months. Using these estimates, rate accuracy was
limited by that of the system noise, and is equal to the GPS + soft-
ware clock solution, but without the disadvantages of using GPS.

To profit from the inherent high stability of the CPU crystal its pe-
riod p must be measured to an accuracy of 0.1PPM without the
need of a reference clock (such as a GPS receiver) at the point of
calibration. We discussed in detail two methods for achieving this.
The first exploits the network of NTP servers. By measuring the
period over a sufficiently long time interval, the bound in offset
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Figure 9: Offset and rate error with τ = 1ms for three network measurment monitors. Top: SW-NTP-tcpdump, Middle: TSC-
Linux, Bottom: TSC-RT-Linux. Note scale changes.

provided by the NTP synchronised software clock can be made as
relatively small as desired. The second assumes that one controls a
reference clock at one point, and shows how it can be used to accu-
rately measurep for remote machines, via packets sent out across
the network from the reference source. We demonstrate how this
was done to an accuracy of 0.1PPM, despite the presence of very
strong network noise over a calibration route 40 hops long.

Apart from an accurate clock, accurate timestamping requires that
the clock can be accessed quickly. In the context of network mea-
surement, we show how this can be optimised to produce very
accurate TSC based traffic monitors. The main optimisations are
lowering system noise by placing the timestamping operation in
the driver code very close to the network interface, and avoiding
scheduling issues by using a real-time operating system. Linux
and RT-Linux where the systems used. The resulting monitors: the
TSC-Linux monitor and the TSC-RT-Linux monitor, have rate per-
formance exceeding that of the equally inexpensive NTP + software
clock + tcpdump solution. The TSC-RT-Linux monitor has an off-
set variability of only 1µs and a rate stability of 0.1PPM.

6. ACKNOWLEDGMENTS
This work was supported by Ericsson. The authors thank the WAND
group for measurement access.

7. REFERENCES
[1] D.L.Mills. Internet time synchronisation: the network time

protocol.IEEE Trans. Communications, 39(10):1482–1493,
October 1991.

[2] D.L.Mills. Precision synchronisation of computer network
clocks.Tech.Report 93-11-1, Electrical Engineering
Department, University of Deleware, November 1993.

[3] D.L.Mills. The network computer as precision timekeeper. In
Proc. Precision Time and Time Interval (PTTI) Applications
and Planning Meeting, pages 96–108, December 1996.

[4] D.L.Mills. The nanokernel. InProc. Precision Time and
Time Interval (PTTI) Applications and Planning Meeting,
pages 423–430, November 2000.

[5] C. Dovrolis, P.Ramanathan, and D. Moore. What do packet
dispersion techniques measure? InProceedings of IEEE
Infocom’01, April 2001.

[6] S. Kalindidi and M. J.Zekauskas. Surveyor: An
infrastructure for internet performance measurements. In
Proc. of INET’99, June 1999.

[7] K. Lai and M. Baker. Measuring link bandwidths using a
deterministic model of packet delay. InProc. of ACM
SIGCOMM’01, pages 283–294, August 2001.

[8] C. Liao, M.Martonosi, and D.W.Clark. Experience with an
adaptive globally synchronizing clock algorithm. InProc. of
11th ACM Symp. on Parallel Algorithms and Architectures,
June 1999.

[9] J. Micheel, I. Graham, and S. Donnelly. Precision
timestamping of network packets. InProc. of the SIGCOMM
IMW, November 2001.

[10] A. Pásztor and D. Veitch. A precision infrastructure for
active probing. InProc. of PAM2001, Workshop and Passive
and Active Measurements, pages 33–44, April 2001.

[11] A. Pásztor and D. Veitch. The packet size dependence of
packet pair like methods. InProc. of IWQoS’02, May 2002.

[12] V. Paxson. On calibrating measurements of packet transit
times. InProceedings of ACM SIGMETRICS, June 1998.

[13] H. Uijterwaal and O. Kolkman. Internet delay measurements
using test traffic: Design note.Tech.Report RIPE-158, RIPE
NCC, June 1997.


