
The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm

Matthew Mathis, Je�rey Semke, Jamshid Mahdavi �

<mathis@psc.edu> <semke@psc.edu> <mahdavi@psc.edu>

Pittsburgh Supercomputing Center

Teunis Ott

<tjo@bellcore.com>

Bellcore

To appear in Computer Communication Review, a publication of ACM SIGCOMM, volume 27,
number 3, July 1997. ISSN # 0146-4833. When citing this paper, please refer to the CCR publica-
tion.

Abstract

In this paper, we analyze a performance model for the
TCP Congestion Avoidance algorithm. The model pre-
dicts the bandwidth of a sustained TCP connection sub-
jected to light to moderate packet losses, such as loss
caused by network congestion. It assumes that TCP
avoids retransmission timeouts and always has su�-
cient receiver window and sender data. The model pre-
dicts the Congestion Avoidance performance of nearly
all TCP implementations under restricted conditions
and of TCP with Selective Acknowledgements over a
much wider range of Internet conditions.

We verify the model through both simulation and
live Internet measurements. The simulations test sev-
eral TCP implementations under a range of loss con-
ditions and in environments with both drop-tail and
RED queuing. The model is also compared to live In-
ternet measurements using the TReno diagnostic and
real TCP implementations.

We also present several applications of the model to
problems of bandwidth allocation in the Internet. We
use the model to analyze networks with multiple con-
gested gateways; this analysis shows strong agreement
with prior work in this area. Finally, we present sev-
eral important implications about the behavior of the
Internet in the presence of high load from diverse user
communities.

1 Introduction

Tra�c dynamics in the Internet are heavily in
uenced
by the behavior of the TCP Congestion Avoidance al-
gorithm [Jac88a, Ste97]. This paper investigates an
analytical performance model for this algorithm. The
model predicts end-to-end TCP performance fromprop-
erties of the underlying IP path. This paper is a �rst
step at discovering the relationship between end-to-end
application performance, as observed by an Internet

�This work is supported in part by National Science Founda-
tion Grant No. NCR-9415552.

user, and hop-by-hop IP performance, as might be mon-
itored and marketed by an Internet Service Provider.

Our initial inspiration for this work was the \heuris-
tic analysis" by Sally Floyd [Flo91].

This paper follows a �rst principles derivation of
the stationary distribution of the congestion window of
ideal TCP Congestion Avoidance subject to indepen-
dent congestion signals with constant probability. The
derivation, by Teunis Ott, was presented at DIMACS
[OKM96b] and is available on line [OKM96a]. The full
derivation and formal analysis is quite complex and is
expected to appear in a future paper.

We present a simple approximate derivation of the
model, under the assumption that the congestion signal
losses are periodic. This arrives at the same mathemat-
ical form as the full derivation, although the constant
of proportionality is slightly di�erent. This paper is
focused on evaluating the model's applicability and im-
pact to the Internet.

The model applies whenever TCP's performance is
determined solely by the Congestion Avoidance algo-
rithm (described below). We hypothesize that it ap-
plies to nearly all implementations of SACK TCP (TCP
with Selective Acknowledgements) [MMFR96] under
most normal Internet conditions and to Reno TCP
[Jac90, Ste94, Ste97] under more restrictive conditions.
To test our hypothesis we examine the performance
of the TCP Congestion Avoidance algorithm in three
ways. First, we look at several TCP implementations
in a simulator, exploring the performance e�ects of ran-
dom packet loss, packet loss due to drop-tail queu-
ing, phase e�ects [FJ92], and Random Early Detection
(RED) queuing [FJ93]. Next, we compare the model to
Internet measurements using results from the TReno
(\tree-no") [Mat96] user mode performance diagnos-
tic. Finally, we compare the model to measurements
of packet traces of real TCP implementations.

Many of our experiments are conducted with an up-
dated version of the FACK TCP [MM96a], designed
for use with Selective Acknowledgements. We call this
Forward Acknowledgments with Rate-Halving (FACK-
RH) [MM96b]. Except as noted, the di�erences between
FACK-RH and other TCP implementations do not have
signi�cant e�ects on the results. See Appendix A for

1

congestion window (packets)

Time (RTT)

0

W
2

W

�
�
�
�

0

�
�
�
�

W
2

�
�
�
�

W

�
�
�
�

3W
2

�
�
�
�

2W

Figure 1: TCP window evolution under periodic loss
Each cycle delivers (W

2
)2 + 1

2
(W
2
)2 = 1=p packets and takes

W=2 round trip times.

more information about FACK-RH.

2 The Model

The TCP Congestion Avoidance algorithm [Jac88a]
drives the steady-state behavior of TCP under condi-
tions of light to moderate packet losses. It calls for in-
creasing the congestion window by a constant amount
on each round trip and for decreasing it by a constant
multiplicative factor on each congestion signal.1 Al-
though we assume that congestion is signaled by packet
loss, we do not assume that every packet loss is a new
congestion signal. For all SACK-based TCPs, multiple
losses within one round trip are treated as a single con-
gestion signal. This complicates our measurements of
congestion signals.

We can easily estimate TCP's performance by mak-
ing some gross simpli�cations. Assume that TCP is
running over a lossy path which has a constant round
trip time (RTT) because it has su�cient bandwidth and
low enough total load that it never sustains any queues.

1 The window is normally opened at the constant rate of one
maximum segment size (MSS) per round trip time (RTT)
and halved on each congestion signal. In actual implementations,
there are a number of important details to this algorithm.
Opening the congestion window at a constant rate is actu-

ally implemented by opening the window by small increments
on each acknowledgment, such that if every segment is acknowl-
edged, the window is opened by one segment per round trip. Let
W be the window size in packets. Each acknowledgment adjusts
the window: W += 1=W , such that W acknowledgments later
W has increased by 1. Since W equals cwnd=MSS, we have
cwnd += MSS �MSS=cwnd, which is how the window opening
phase of congestion avoidance appears in the code.
When the congestionwindow is halved on a congestion signal, it

is normally rounded down to an integral number of segments. In
most implementations the window is never adjusted below some

oor, typically 2 segments. Both derivations neglect rounding
and this low window limit. [Flo91] considers rounding, resulting
in a small correction term.
We are also neglecting the details of TCP data recovery and

retransmission. Some form of Fast Retransmit and/or Fast Re-
covery, with or without SACK, is required. The important detail
is that the loss recovery is completed in roughly one round trip
time, TCP's Self-clock is preserved, and that the new congestion
window is half of the old congestion window.

For ease of derivation, we approximate random packet

loss at constant probability p by assuming that the
link delivers approximately 1=p consecutive packets, fol-
lowed by one drop. Under these assumptions the con-
gestion window (cwnd in most implementations) tra-
verses a perfectly periodic sawtooth. Let the maximum
value of the window be W packets. Then by the def-
inition of Congestion Avoidance, we know that during
equilibrium, the minimum window must be W=2 pack-
ets. If the receiver is acknowledging every segment, then
the window opens by one segment per round trip, so
each cycle must be W=2 round trips, or RTT � W=2
seconds. The total data delivered is the area under the
sawtooth, which is (W

2
)2 + 1

2
(W
2
)2 = 3

8
W 2 packets per

cycle. By assumption, each cycle also delivers 1=p pack-
ets (neglecting the data transmitted during recovery).
Solving for W we get:

W =

r
8

3p
(1)

Substitute W into the bandwidth equation below:

BW =
data per cycle

time per cycle
=

MSS � 3
8
W 2

RTT � W
2

=
MSS=p

RTT
q

2
3p

(2)

Collect the constants in one term, C =
p
3=2, then we

arrive at:

BW =
MSS

RTT

C
p
p

(3)

Other forms of this derivation have been published
[Flo91, LM94] and several people have reported unpub-
lished, \back-of-the-envelope" versions of this calcula-
tion [Mat94a, Cla96].

Derivation ACK Strategy C

Periodic Loss Every Packet 1:22 =
p
3=2

(derived above) Delayed 0:87 =
p
3=4

Random Loss Every Packet 1.31
follows [OKM96a] Delayed 0.93

Table 1: Derived values of C under di�erent assump-
tions.

The constant of proportionality (C) lumps to-
gether several terms that are typically constant for a
given combination of TCP implementation, ACK strat-
egy (delayed vs non-delayed)2, and loss mechanism. In-
cluded in the TCP implementation's contribution to C

2The Delayed Acknowledgment (\DA") algorithm [Ste94] sup-
presses half of the TCP acknowledgments to reduce the number
of tiny messages in the Internet. This changes the Congestion
Avoidance algorithm because the window increase is driven by
the returning acknowledgments. The net e�ect is that when the
TCP receiver sends Delayed Acknowledgments, the sender only
opens the window by MSS=2 on each round trip. This term can
be carried through any of the derivations and always reduces C
by
p
2.

The receiver always suppresses Delayed Acknowledgements
when it holds partial data. During recovery the receiver acknowl-
edges every incoming segment. The receiver also suppresses De-

2

are the constants used in the Congestion Avoidance al-
gorithm itself.

The model is not expected to apply under a number
of situations where pure Congestion Avoidance does not
fully control TCP performance. In general these phe-
nomenon reduce the performance relative to that which
is predicted by the model. Some of these situations are:

1. If the data receiver is announcing too small a win-
dow, then TCP's performance is likely to be fully
controlled by the receiver's window and not at all
by the Congestion Avoidance algorithm.

2. Likewise, if the sender does not always have data
to send, the model is not likely to apply.

3. The elapsed time consumed by TCP timeouts is
not modeled. Many non-SACK TCP implemen-
tations su�er from timeouts when they experience
multiple packet losses within one round trip time
[Flo95, MM96a]. These TCP implementations do
not �t the model in environments where they ex-
perience such losses.

4. TCP implementations which exhibit go-back-N
behaviors do not attain the performance projected
by the model because the model does not account
for the window consumed by needlessly retrans-
mitting data. Although we have not studied these
situations extensively, we believe that Slow-start,
either following a timeout or as part of a normal
Tahoe recovery, has at least partially go-back-N
behavior, particularly when the average window is
small.

5. TCP implementations which use other window
opening strategies (e.g. TCP Vegas [BOP94,
DLY95]) will not �t the model.

6. In some situations, TCP may require multiple
cycles of the Congestion Avoidance algorithm to
reach steady-state3. As a result, short connections
do not �t the model.

Except for Item 6, all of these situations reduce
TCP's average throughput. Under many circumstances
it will be useful to view Equation 3 as a bound on per-
formance. Given that Delayed Acknowledgements are
mandatory, C is normally less than 1. Thus in many
practical situations, we can use a simpler bound:

BW <

�
MSS

RTT

�
1
p
p

(4)

layed Acknowledgements (or more precisely, transmits acknowl-
edgements on a timer) when the data packets arrive more than
200 ms apart.
There are also a number of TCP implementations which have

bugs in their Delayed Acknowledgment algorithms such that they
send acknowledgments less frequently than 1 per 2 data segments.
These bugs further reduce C.

3This problem is discussed in Appendix B. All of the simula-
tions in this paper are su�ciently long such that they unambigu-
ously reach equilibrium.

We will show that it is important that appropriate
measurements be used for p and RTT . For example
SACK TCP will typically treat multiple packet losses in
one RTT as a single congestion signal. For this case, the
proper de�nition for p is the number of congestion
signals per acknowledged packet.

Although these derivations are for a rather restricted
setting, our empirical results suggest that the model is
more widely applicable.

3 Simulation

All of our simulations use the LBL simulator, \ns ver-
sion 1", which can be obtained via FTP [MF95].

Most of the simulations in this paper were conducted
using the topology in Figure 2. The simulator associates
queuing properties (drop mechanism, queue size, etc.)
with links. The nodes (represented by circles) imple-
ment TCP, and do not themselves model queues. We
were careful to run the simulations for su�cient time to
obtain good measures of TCP's average performance4.

This single link is far too simple to model the com-
plexity of a real path through the Internet. However,
by manipulating the parameters (delay, BW, loss rate)
and queuing models (drop-tail, RED) we will explore
the properties of the performance model.

Receiver
TCP

Sender
TCP

RED queuing
drop-tail queuing, or

Link with constant delay,

Figure 2: The simulation topologies

3.1 Queueless Random Packet Loss

In our �rst set of experiments, the single link in Fig-
ure 2 was con�gured to model the conditions under
which Equation 3 was derived in [OKM96a]: constant
delay and �xed random packet loss. These conditions
were represented by a lossy, high bandwidth link5 which
does not sustain a queue.

The choice of our FACK-RH TCP implementation
does not a�ect the results in this section, except that
it is able to remain in Congestion Avoidance at higher
loss rates than other TCPs. This phenomenon will be
discussed in detail in Section 3.4. The receiver is using
standard Delayed Acknowledgements.

The network was simulated for various combinations
of delay, MSS, and packet loss. The simulation used
three typical values for MSS: 536, 1460, and 4312
bytes. The one-way delay spanned �ve values from 3 ms

4This was done by using the bandwidth-delay product to esti-
mate an appropriate duration for the simulation, such that Con-
gestion Avoidance experienced 50 or more cycles. The duration
was con�rmed from instruments in the simulator.

5In order to make sure that the link bandwidth was not a
limiting factor, the link bandwidth selected was more than 10
times the estimated bandwidth required. We then con�rmed that
the link did not sustain a queue.

3

to 300 ms; and the probability of packet loss was ran-
domly selected across four orders of magnitude, span-
ning roughly from 0.00003 to 0.3 (uniformly distributed
in log(p)). Since each loss was independent (and as-
sumed to be relatively widely spaced), each loss was
considered to be a congestion signal.

In Figure 3 we assume C = 1 and plot the simulation
vs. the model. Each point represents one combination
of RTT , MSS, and p in the simulation. The X axis
represents the bandwidth estimated by the model from
these measurements, while the Y axis represents the
bandwidth as measured by the simulation. Note that
the bandwidth, spanning nearly �ve orders of magni-
tude, has a fairly strong �t along one edge of the data.
However, there are many outlying points where the sim-
ulation does not attain the predicted bandwidth.

In Figure 4 we plot a di�erent view of the same data
to better illuminate the underlying behaviors. Simula-
tions that experienced timeouts are indicated with open
markers. For the remainder of the �gures (except where
noted), we rescale the Y axis by RTT=MSS. The Y
axis is then BW �RTT=MSS which, from classical pro-
tocol theory, is a performance-based estimate of the av-
erage window size6.

We plot p on the X axis, with the loss rate increasing
to the right.

To provide a common reference for comparing data
between experiments, we plot the line corresponding
to the model with C = 1 in Figure 4 and subsequent
�gures.

When p < 0:01 (the left side of the graph) the �t be-
tween the model and the simulation data is quite plau-
sible. By looking at the data at p = 0:0001 we estimate
C to be 0.9, which agrees with the Delayed ACK en-
tries in Table 1. Notice that the simulation and model
have slightly di�erent slopes, which we will investigate
in Section 3.5.

When the average loss rate (p) is large (the right side
of the graph), the loss of multiple packets per RTT be-
comes likely. If too many packets are lost, TCP will lose
its Self-clock and be forced to rely on a retransmission
timeout, followed by a Slow-start to recover. As men-
tioned above, timeouts are known not to �t the model.
Note that the open markers indicate if there were any

timeouts in the simulation for a given data point. Many
of the open markers near p = 0:01 experienced only a
few timeouts, such that the dominant behavior was still
Congestion Avoidance, and the model more or less �ts.
By the time the loss rate gets to p = 0:1 the timeout
behavior becomes signi�cant. Our choice of FACK-RH
TCP alters the transition between these behaviors. We
compare di�erent TCP implementations in Section 3.4.

Note that C=
p
p can be viewed as the model's esti-

mate of window size. This makes sense because packet
losses and acknowledgment arrivals drive window ad-
justments. Although time scale and packet size do de-
termine the total bandwidth, they only indirectly a�ect
the window through congestion signals.

6In this paper, \window" always means \window in packets",
and not \window in bytes."

FACK RH DA

Simulation bits/s

Model bits/s

5

1e+05

2

5

1e+06

2

5

1e+07

2

5

1e+08

2

5 1e+05 2 5 1e+06 2 5 1e+07 2 5 1e+08 2

Figure 3: The Measured vs. Estimated BW
The simulation used three typical values for MSS: 536, 1460,
and 4312 bytes. The one-way delay spanned from 3 ms to 300
ms; and the probability of packet loss was randomly selected
between 0.00003 to 0.3. In the model we have assumed C

to be 1.

FACK RH DA

With Timeouts

 Model, C=1

BW * RTT/MSS

loss (p)

0.5

1

2

5

10

20

50

100

200

2 5 0.0001 2 5 0.001 2 5 0.01 2 5 0.1 2

Figure 4: Window vs. Loss
This is a di�erent view of the same data as in Figure 3. Each

point has been rescaled in both axes.

4

3.2 Environments with Queuing

Since, under the assumptions of Section 2, the Conges-
tion Avoidance algorithm is only sensitive to packet loss
and Acknowledgement arrivals we expect the model to
continue to correctly predict the window when queuing
delays are experienced. Thus, with an appropriate de�-
nition for RTT , the model should hold for environments
with queuing.

We performed a set of simulations using bottlenecked
links where queuing could take place. We used a drop-
tail link (Figure 2 with drop-tail) with RTT = 60 ms
andMSS = 1024 bytes. The link bandwidth was varied
from 10 kb/s to 10 Mb/s, while the queue size was varied
from 5 to 30 packets. Therefore, the ratio of delay-
bandwidth product to queue length spanned from 15:1
to 1:400. The simulations in Figures 5 and 6 were all
performed with the stock Reno module in the simulator.

In Figure 5 we plot the data using the �xed part of
the RTT , which includes only propagation delay and
copy time. Clearly the �t is poor.

In Figure 6 we re-plot the same data, but use the
RTT as measured by a MIB-like instrument in the sim-
ulated TCP itself. The instrument uses the round trip
time as measured by the RTTM algorithm [JBB92] to
compute the round trip time averaged across the entire
connection. This is the average RTT as sampled by the
connection itself.

This transformation has the e�ect of making the Y
axis a measurement-based estimate of the average win-
dow. It moves individual points up (relative to the up-
per graph) to re
ect the queuing delay.

The slope of the data does not quite agree with the
model, and there are four clusters of outliers. The slope
(which we will investigate in Section 3.5) is the same as
in Figure 4.

The four clusters of outliers are due to the long
packet times at the bottleneck link causing the De-
layed ACK timer to expire. This e�ectively inhibits the
Delayed ACK algorithm such that every data packet

causes an ACK, raising C by a factor of
p
2 for the af-

fected points, which lie on a line parallel to the rest of
the data.

We conclude that it is necessary to use an RTT mea-
surement that is appropriate for the connection. The
RTT as sampled by the connection itself is always ap-
propriate. Under some circumstances it may be possible
to use other simpler measures of RTT , such as the time
average of the queue at the bottleneck.

Reno �ts the model under these conditions because
the idealized topology in Figure 2 drops exactly one
packet at the onset of congestion 7, and Reno's Fast

7It has been observed that Reno TCP's Self-clock is fragile in
the presence of multiple lost packets within one round trip [Hoe95,
Flo95, Hoe96, FF96, MM96a, LM94]. In the simulator, a single
TCP connection in ongoing Congestion Avoidance nearly always
causes the queue at the bottleneck to drop exactly exactly one
packet when it �lls. This is because the TCP opens the window
very gradually, and there is no cross tra�c or ACK compression
to introduce jitter. Under these conditions Reno avoids any of its
problems with closely spaced losses.

Min Reno DA

 Model, C=1

BW * RTT/MSS

loss (p)

0.1

0.2

0.5

1

2

5

10

20

50

100

0.0001 2 5 0.001 2 5 0.01 2 5

Figure 5: Estimated Window vs. Loss.
Simulations of Reno over a bottlenecked link with a drop-tail
queue, without correcting for queuing delay. The RTT was 60
ms and the MSS was 1 kbyte. The bandwidth was varied from
10 kb/s to 10 Mb/s, and the queue size was varied from 5 to 30

packets.

Reno DA

 Model, C=1

BW * RTT/MSS

loss (p)

4

5

6

8

10

15

20

25

30

40

50

60

80

100

0.0001 2 5 0.001 2 5 0.01 2 5

Figure 6: Estimated Window vs. Loss.
This is a di�erent view of the same data as Figure 5,
transformed by using TCP's measure of the RTT .

5

Recovery and Fast Retransmit algorithms are su�cient
to preserve the Self-clock. Under these conditions Reno
exhibits idealized Congestion Avoidance and �ts the
model. If the simulations are re-run using other TCP
implementations with standard Congestion Avoidance
algorithms 8 the resulting data is nearly identical to Fig-
ures 5 and 6. For NewReno, SACK and FACK the data
points agree within the quantization errors present in
the simulation instruments. This is expected, because
all are either derived from the original Reno code, or
were expressly designed to have the same overall be-
havior as Reno when subjected to isolated losses.

3.3 Phase E�ects

Phase e�ects [FJ92] are phenomena in which a small
change in path delay (on the order of a few packet times)
has a profound e�ect on the observed TCP performance.
It arises because packets leaving the bottlenecked link
induce correlation between the packet arrival and the
freeing of queue space at the same bottleneck. In this
section we will show why phase e�ects are consistent
with the model, and what this implies about the future
of Internet performance instrumentation.

L

S1

S2

R1 K1
8Mbps

δVariable delay =

5ms
8Mbps

TCP 2

TCP 1

0.8Mbps
100ms

Figure 7: Phase E�ects topology.

8 The simulator includes models for several di�erent TCP im-
plementations. Tahoe [Jac88a] and Reno (describedin [Ste97] and
[Jac90]) are well known. The simulator also includes a SACK im-
plementation \SACK1" [Flo96], which was based on the original
[JB88] SACK, but has been updated to RFC 2018 [MMFR96].
This is, by design, a fairly straightforward implementation of
SACK TCP using Reno-style congestion control. NewReno is
a version of Reno that has some modi�cations to correct what is
essentially a bug that frequently causes needless timeouts in re-
sponse to multiple-packet congestion signals. This modi�cation
was �rst suggested by Janie Hoe [Hoe95, CH95] and has been
thoroughly analyzed [Flo95, FF96].
Tahoe TCP has signi�cantly di�erent steady-state behavior

than newer TCP implementations. Whenever a loss is de-
tected the congestion window is reduced to 1 (without changing
ssthresh). This causes a Slow-start, taking roughly log2W round
trips, and delivering roughly W segments). Tahoe does not �t
the model in a badly underbu�ered network (due to persistent
repeated timeouts). At higher loss rates when a larger fraction
of the overall time is spent in Slow-Start, Tahoe has a slightly
di�erent shape, and therefore the model is less accurate.

In Figure 7 we have reconstructed9 one of the sim-
ulations from [FJ92], using two SACK TCP connec-
tions through a single bottlenecked link with a drop-tail
router. Rather than reconstructing the complete sim-
ulation in which the variable delay is adjusted across
many closely spaced values, we present a detailed anal-
ysis of one operating point, � = 9:9 ms. In this case,
the packets from connection 2 are most likely to arrive
just after queue space has been freed, but just before
packets from connection 1. Since the packets from con-
nection 2 have a signi�cant advantage when competing
for the last packet slot in the queue, connection 1 sees
more packet drops.

The packets are 1 kbyte long, so they arrive at the
receiver (node K1) every 10 ms. The 15 packet queue
at link L slightly underbu�ers the network. We added
instrumentation to both the bottlenecked link and the
TCP implementations, shown in Table 2. The Link
column presents the link instruments on L, including
total link bandwidth and the time average of the queue
length, expressed as the average queuing delay. The two
TCP columns present our MIB-like TCP instruments
for the two TCP connections, except for the RTT Es-

timate row, which is the average RTT computed by
adding the average queue length of the link to the min-
imum RTT of the entire path.

The loss instruments in the TCP implementation
categorize each loss depending on how it a�ected the
congestion window. Losses that trigger successful
(clock-preserving) divide-by-two window adjustments
are counted as \CA events". All other downward win-
dow adjustments (i.e. timeouts) are counted as \non-
CA events". Additional losses which are detected while
already in recovery and do not cause their own win-
dow adjustments and are counted as \other losses"10.
In the drop-tail case (on the left side of the table), we
can see that TCP1 experienced 103 CA events and 37
non-CA events (timeouts). During those same recovery
intervals, there were an additional 76 losses which were
not counted as congestion signals. Note that p is the
number of CA events per acknowledged segment. The
link loss instruments, by contrast, do not categorize lost
packets, and cannot distinguish losses triggering conges-
tion avoidance.

The TCP RTT instrument is the same as in the
previous section (i.e. based on the RTTM algorithm).

Note that even though the delay is di�erent by only
4.9 ms there is about a factor of 4 di�erence in the per-
formance. This is because the loss rate experienced by

9Our simulation is identical, except that we raised the re-
ceiver's window such that it does not interfere with the Con-
gestion Avoidance algorithm. This alters the overall behavior
somewhat because the dominant connection can potentially cap-
ture the full bandwidth of the link.

10Every loss episode counts as exactly one CA or non-CA event.
Episodes in which there was a Fast Retransmit, but Fast Recovery
was unsuccessful at preserving the Self-clock or additional losses
caused additional window reductions were counted as non-CA
events.
All additional retransmissions (occurring in association with

either a timeout or congestion signal) are counted as additional
lost packets.

6

Table 2: Phase e�ects with queue limit = 15, � = 9:9
Drop Tail RED

Link TCP1 TCP2 � = 9:9ms Link TCP1 TCP2
781 133 648 Bandwidth kb/s 798 430 368
259 103+37+76 41+0+2 losses (CA+timo+other) 139 64+0+1 73+0+1
48795 8287 40508 packets 49853 26851 23002
0.0053 0.0124 0.0010 p 0.0028 0.0024 0.0032

325 315 TCP RTT ms 304 307
83.49 Link Delay ms 77.47

305 315 RTT Estimate ms 299 309
288 (118%) 279 (57%) Link Model kb/s 405 (6%) 393 (7%)
177 (34%) 638 (2%) TCP Model kb/s 432 (1%) 370 (1%)

Table 3: Phase e�ects with queue limit = 100, � = 9:9
Drop Tail RED

Link TCP1 TCP2 � = 9:9ms Link TCP1 TCP2
800 244 556 Bandwidth kb/s 798 401 397
20 12+0+3 5+0+0 losses (CA+timo+other) 137 68+0+0 69+0+0

50000 15250 34750 packets 49845 25039 24806
0.0004 0.0008 0.0001 p 0.0027 0.0027 0.0028

1029 1029 TCP RTT ms 304 307
801.03 Link Delay ms 77.25

1022 1032 RTT Estimate ms 299 308
313 (29%) 310 (45%) Link Model kb/s 409 (3%) 396 (1%)
222 (10%) 518 (7%) TCP Model kb/s 404 (1%) 395 (1%)

each connection is di�erent by an order of magnitude.
The model is used to predict performance in two

di�erent ways. The �rst technique, the Link Model,
uses only the link instruments, while the second, the
TCP Model, uses only the TCP instruments. Clearly
applying the model to the aggregate link statistics or to
TCP1 statistics (with 37 timeouts) in the drop-tail case
can not yield accurate results. The model11 applied
to TCP2's internal instruments correctly predicts the
bandwidth.

Random Early Detection (RED) [FJ93] is a form
of Active Queue Management [B+97], which manages
the queue length in a router by strategically discarding
packets before queues actually �ll. Among many gains,
this permits the router to randomize the packet losses
across all connections, because it can choose to drop
packets independent of the instantaneous queue length,
and before it is compelled to drop packets by bu�er
exhaustion.

In the phase e�ects paper [FJ92], it is observed that
if a router uses RED instead of drop-tail queuing, the
phase e�ects disappear. In the right side of Table 2 we
present a simulation which is identical to the left side,
but using RED at the bottleneck (link L). With RED,
the link instruments are in nearer agreement with the
TCP instruments; so the model gives fairly consistent
results when calculated from either link statistics or

11Since we are most interested in the drop-tail simulation near
p = 0:01, we estimated a locally-accurate value of C = 0:8 by
examining the data used in Figure 6 in the previous section. This
value of C was used for all the model bandwidths shown in Ta-
bles 2 and 3.

TCP instruments12. The residual di�erences between
the results predicted by the model are due to p not
being precisely uniform between the two TCP connec-
tions. This may re
ect some residual bias in RED, and
bears further investigation.

In Table 3 we repeated the simulations from Table 2,
but increased the packet queue limit at link L to 100. As
you would expect, this only slightly changes the RED
case. However, there are several interesting changes to
the drop tail case.

Average RTT has risen to a full second. Without
RED to regulate the queue length, SACK TCP only
halves its window when it �lls the 100 packet queue.
TCP's window is being regulated against a full queue,
rather than some other operating point closer to the
onset of queued data. Even if both connections expe-
rience a packet loss in the same RTT , the queue will
not fully drain. We can gauge the queue sizes from the
average link delay instrument: 800 ms corresponds to
80 packets. We know that the peak is 100 packets, so
the minimum queue is likely to be near 60 packets, or
600 ms! This is not likely to please interactive users.

The tripling of the RTT requires an order of mag-
nitude lower loss to sustain (roughly) constant band-
width. The model is less accurate, even when applied
to the TCP instruments because the loss sample size is
too small, causing a large uncertainty in p. Excluding
the initial Slow-start, TCP2 only experienced 5 losses

12Note that RED also lowered the average link delay, lowered
the total packet losses, raised the aggregate throughput. RED
usually signals congestion with isolated losses. Therefore Reno
might operate as well as SACK TCP in this environment.

7

during the 500 second measurement interval (i.e. each
Congestion Avoidance cycle took 100 seconds!)

The symptoms of overbu�ering without RED are:
long queuing delays and very long convergence time for
the congestion control algorithm.

Also note that our opening problem of projecting
end-to-end TCP performance from hop-by-hop path
properties requires reasonable assurance that the link
statistics collected at any one hop are indicative of
that hop's contribution to the end-to-end path statis-
tics. This requirement is not met with drop-tail routers,
where correlation in the tra�c causes correlation in the
drops.

If packet losses are not randomized at each bottle-
neck, then hop-by-hop performance metrics may not
have any bearing upon end-to-end performance. RED
(or possibly some other form of Active Queue Manage-
ment) is required for estimating end-to-end performance
from link statistics. Conversely, if a provider wishes to
assure end-to-end path performance, then all routers
(and other potential bottlenecks) must randomize their
losses across all connections common to a given queue
or bottleneck.

Also note that if the losses are randomized, C=
p
p is

a bound on the window size for all connections through
any bottleneck or sequence of bottlenecks. Further-
more, connections which share the same (randomized
loss) bottleneck tend to equalize their windows [CJ89].
We suspect that this is the implicit resource allocation
principle already in e�ect in the Internet today.13

3.4 E�ect of TCP Implementation

FACK RH

FACK RH DA

Sack1

Sack1 DA

Reno

Reno DA

New Reno

New Reno DA

Tahoe

Tahoe DA

Proportion

loss (p)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 0.01 2 5 0.1 2 5

Figure 8: Algorithm dominance vs packet loss.
The fraction of all downward window adjustments
which are successful (clock-preserving) divide-by-two

window adjustments.

13Note that our observation is independent of the model in
this paper. To the extent that the window is only determined
by losses (which isn't quite true) and that losses are equalized at
bottlenecks (which also isn't true without RED, etc.), the Internet
must tend to equalize windows.

We wish to compare how well di�erent TCP implemen-
tations �t the model by investigating two aspects of
their behavior. We �rst investigate the transition from
Congestion Avoidance behavior at moderate p to time-
out driven behavior at larger p. In the next section, we
investigate a least squares �t to the model itself.

As mentioned earlier, the model does not predict the
performance when TCP is timeout driven. Although in
our simulations timeouts do not cause a serious per-
formance penalty, we have not included cross tra�c or
other e�ects that might raise the variance of the RTT
and thus raise the calculated retransmission timeout.
Although Figure 4 might seem to imply that the model
�ts timeouts, remember that this was in a queueless
environment, where there is zero variance in the RTT .
Under more realistic conditions it is likely that timeouts
will signi�cantly reduce the performance relative to the
model's prediction.

We simulated all of the TCP implementations sup-
ported by the simulator8, with and without Delayed
ACK receivers, and instrumented the simulator to tab-
ulate all downward window adjustments into the same
two categories as used in the previous section. The �rst,
\CA events," includes all successful (clock preserving)
divide-by-two window adjustments. The second, \non-
CA events", includes all other downward window ad-
justments. In Figure 8 we plot the proportion of all
downward adjustments which were successful invoca-
tions of the Congestion Avoidance algorithm. (This
data is also summarized on the right side of Table 4).

FACK-RH TCP avoids timeouts under more se-
vere loss than the other TCP implementations because
it normally sends one segment of new data after the
�rst duplicate acknowledgment but before reaching the
dupack threshold (triggering the �rst retransmission{
see Appendix A). All of the other TCP's are unable
to recover from a single loss unless the window is at
least 5 packets14. The horizontal position of the steep
downward transition re
ects the loss rate at which the
various TCPs no longer retain su�cient average window
for Fast Retransmit. Under random loss SACK, Reno,
NewReno, and Tahoe all have essentially the same char-
acteristics.

3.5 Fitting the slope

As we have observed in the previous sections, the win-
dow vs. loss data falls on a fairly straight line on a log-
log plot, but the slope is not quite �1=2. This suggests
that a better model might be in the following form:

BW =
MSS

RTT
Cpk (5)

Where k is roughly �1=2.
We performed a least mean squared �t between

Equation 5 and the TCP performance as measured in
the simulator. The results are shown in Table 4. All

14One packet is lost, the next three cause duplicate acknowl-
edgements, which are only counted. The lost packet is not re-
transmitted until the �fth packet is acknowledged.

8

Least Mean Squares Proportion of successful
Acknowledgement TCP �t W=2 adjustments

Scheme Implement- Equation 3 Equation 5
ation N C k C p = :01 p = 0:033 p = 0:1
FACK 16 1:352� 0:090 �0:513 1:205� 0:047 0:996 0:985 0:738

No SACK 11 1:346� 0:052 �0:508 1:247� 0:033 0:992 0:822 0:497
Delayed Reno 12 1:331� 0:054 �0:521 1:096� 0:009 0:935 0:765 0:331
ACKs New Reno 12 1:357� 0:055 �0:516 1:167� 0:020 0:983 0:896 0:517

Tahoe 11 1:254� 0:079 �0:534 0:920� 0:015 0:974 0:796 0:367
FACK DA 15 0:928� 0:086 �0:519 0:783� 0:045 1:000 0:929 0:725

Delayed SACK DA 10 0:938� 0:036 �0:518 0:792� 0:012 0:952 0:664 0:112
ACKs Reno DA 10 0:939� 0:046 �0:524 0:752� 0:015 0:919 0:595 0:157

New Reno DA 11 0:935� 0:045 �0:526 0:738� 0:006 0:942 0:635 0:176
Tahoe DA 11 0:883� 0:076 �0:542 0:596� 0:012 0:919 0:590 0:173

Table 4: Comparison of various TCP implementations.

simulations which experienced timeouts were excluded,
so the �t was applied to runs exhibiting only the Con-
gestion Avoidance algorithm15. The number of such
runs are shown in column N .

For k = �0:5, the values of C are quite close to
the derived values. The quality of the �t is also quite
good. As expected, Delayed Acknowledgements change

C by
p
2. When k is allowed to vary slightly, the �t

becomes even better still, and the best values for k are
only slightly o� from �0:5. This slight correction to
k probably re
ects some of the simplifying assumptions
used in the derivation of Equation 3. One simpli�cation
is that TCP implementations perform rounding down
to integral values in several calculations which update
cwnd. The derivation of the model assumes cwnd varies
smoothly, which overestimates the total amount of data
transferred in a congestion avoidance cycle. Another
simpli�cation is that the model expects the window to
begin increasing again immediately after it is cut in half.
However, recovery takes a full RTT , during which TCP
may not open the window. We plan to investigate the
e�ects of these simpli�cations in the future.

4 TReno results

Much of our experimentation in TCP congestion dy-
namics has been done using the TReno performance
diagnostic [Mat96]. It was developed as part of
our research into Internet performance measurement
under the IETF IP Performance Metrics working
group [Mat97]. TReno is a natural succession to the
windowed ping diagnostic [Mat94b]. (The FACK-RH
algorithm for TCP is the result of the evolution of the
congestion control implemented in TReno.)

TReno is designed to measure the single stream bulk
transfer capacity over an Internet path by implement-
ing TCP Congestion Avoidance in a user mode diagnos-
tic tool. It is an amalgam of two existing algorithms:
traceroute [Jac88b] and an idealized version of TCP
congestion control. TReno probes the network with ei-

15FACK �ts less well because it avoids timeouts and thus in-
cludes data at larger p, where rounding terms become signi�cant.

 TReno

(Timeouts)

 Model, C=1

BW * RTT/MSS

Loss Rate (p)

0.3

0.4

0.5

0.7

1

1.5

2

3

4

5

7

10

15

20

30

40

0.001 2 5 0.01 2 5 0.1

Figure 9: TReno measurement data
This data �ts Equation 3 with C = 0:744�0:193 or to Equation 5
with k = �0:617;C = 0:375 � 0:054. These are poorer than
the �ts in Table 4, in part because the TReno data extends to
much worse loss rates, where the e�ects of rounding become more
pronounced. The C values are lower, indicating about 20% lower
performance than TCP in a simulator.

9

ther ICMP ECHO packets (as in the ping program),
or low-TTL UDP packets, which solicit ICMP errors
(as in the traceroute program). The probe packets are
subject to queuing, delay and congestion-related loss
comparable to TCP data and acknowledgment packets.
The packets carry sequence numbers which are re
ected
in the replies, such that TReno can always determine
which probe packet caused each response, and can use
this information to emulate TCP.

This has an advantage over true TCP for exper-
imenting with congestion control algorithms because
TReno only implements those algorithms and does not
need to implement the rest of the TCP protocol, such
as the three-way SYN handshake or reliable data de-
livery. Furthermore, TReno is far better instrumented
than any of today's TCP implementations. Thus it is a
good vehicle to test congestion control algorithms over
real Internet paths, which are often not well-represented
by the idealized queuing models used in simulations.

However, TReno has some intrinsic di�erences from
real TCP. For one thing, TReno does not keep any state
(corresponding to the TCP receiver's state) at the far
end of the path. Both the sender's and receiver's be-
haviors are emulated at the near end of the path. Thus
it has no way to distinguish between properties (such
as losses or delay) of the forward and reverse paths16.

For our investigation, TReno was run at random
times over the course of a week to two hosts utilizing
di�erent Internet providers. Due to normal
uctuation
in Internet load we observed nearly two orders of mag-
nitude
uctuations in loss rates. Each test lasted 60
seconds and measured model parameters p and RTT
from MIB-like instruments.

The TReno data17 is very similar to the simulator
data in Figure 4, except that the timeouts have a more
profound negative impact on performance. If the runs
containing timeouts are neglected, the data is quite sim-
ilar.

Also note that TReno su�ered far more timeouts
than FACK-RH in the simulator, even though they have
nearly identical internal algorithms. This is discussed
in the next section, where we make similar observations
about the TCP data.

5 TCP measurements

In this section, we measured actual TCP transfers to
two Internet sites in order to test the model. This was
done by using a slightly modi�ed version of \tcptrace"
[Ost96] to post-process packet traces to reconstruct p
and RTT from TCP's perspective. These instruments
are nearly identical to the instruments used in the TCP
simulations.

16If the ICMP replies originate from a router, (such as interme-
diate traceroute hops) TReno may su�er from a low performance
ICMP implementation on the router. This is not an issue in the
data presented here, because the end systems can send ICMP
replies at full rate.

17TReno emulates Delayed Acknowledgements.

Set 1

(Timeouts)

 Model, C=1

BW * RTT/MSS

loss (p)

5

6

7

8

10

15

20

25

30

35

40

50

60

70

80

0.0001 2 5 0.001 2 5 0.01

Figure 10: Measured TCP data, Set 1
This data �ts Equation 3 with C = 0:700� 0:057 or to

Equation 5 with k = �0:525;C = 0:574� 0:045. These values
for C are about 25% lower than TCP in a simulator.

Set 2

(Timeouts)

Too short

 Model, C=1

BW * RTT/MSS

loss (p)
3

4

5

6

8

10

15

20

25

30

40

50

60

80

2 5 0.001 2 5 0.01 2

Figure 11: Measured TCP data, Set 2
This data �ts Equation 3 with C = 0:908� 0:134 or to

Equation 5 with k = �0:611;C = 0:418� 0:058. Some of the
individual data points are above the C = 1 reference line. The
live Internet measurements were not over long enough intervals

to permit trimming the Slow-start overshoot described in
Appendix B. This data set may have been subject to Slow-start

overshoot.

10

This experiment proved to be far more di�cult than
expected. We encountered a number of di�culties with
the test paths themselves. The Internet is vastly noisier
and less uniform than any simulation [Pax97a, Pax97b].
Furthermore, several paths exhibited behaviors that are
beyond the scope of the model18.

The tests were run at random times over the course
of 10 days, at an average rate of once per hour to each
remote site. The period included a holiday weekend
(with unusually low background tra�c), and was not
the same week as the TReno data.

During our testing, the connections transferred as
much data as possible in 100 seconds of elapsed time
to two di�erent Internet sites. Figure 10 shows that
the model �ts fairly well to data collected to one tar-
get. If you compare this to Figure 4 it is in reasonable
agreement, considering the di�erence in scale.

Figure 11, on the other hand, does not �t as well.
It is illustrative to dissect the data to understand what
is happening over this path, and how it relates to the
model's applicability. Our �rst observation is that there
are too many timeouts (indicated by open circles), con-
sidering the low overall loss rate.

To diagnose this phenomenon, we looked at the raw
packet traces from several of the transfers. Nearly all of
the timeouts were the result of losing an entire window
of consecutive packets. These short \outages" were not
preceded by any unusual
uctuation in delay. Further-
more, the following (Tahoe-style) recovery exhibited
no SACK blocks or step advances in the acknowledg-
ment number. Therefore an entire window of data had
been lost on the forward path. This phenomenon has
been observed over many paths in the Internet [Pax97b,
p305] and is present in Figures 9 and 10, as well. Lore
in the provider community attributes this phenomenon
to an interaction between routing cache updates and
the packet forwarding microcode in some commercial
routers19.

Our second observation (regarding traces without
timeouts) is that the number of \CA events" is very
small, with many traces showing 3 or fewer successful
window halving episodes. An investigation of the trace
statistics reveals that the path had a huge maximum
round trip time (1800 ms), and that during some of our
test transfers the average round trip time was as large
as a full second. This suggests that the path is over-
bu�ered and there is no active queue management in
e�ect to regulate the queue length at the bottleneck.

Real TCP over this path exhibits the same symp-
toms as the simulation of an overbu�ered link without
RED in Section 3.3: long queuing delays and very long
cycle times for the congestion avoidance algorithm. As a
consequence, our 100 second measurement interval was
not really long enough and captured only a few conges-

18 One discarded path su�ered from packet reordering which
was severe enough where the majority of the retransmissionswere
spurious.

19Note that burst losses and massive reordering are not de-
tectable using tools with low sampling rates. These sorts of prob-
lem can most easily be diagnosed in the production Internet with
tools that operate at normal TCP transfer rates.

tion signals, resulting in a large uncertainty in p. The
open circles on the left side of Figure 11 have observ-
able vertical banding in the data corresponding to 1, 2
or 3 total congestion avoidance cycles.20. Traces with 4
or more congestion avoidance cycles are included in the
good data (solid squares).

Our test script also used conventional diagnostic
tools to measure background path properties bracketing
the TCP tests. Although we measured several param-
eters, the RTT statistics were particularly interesting.
For \not under test" conditions, the minimumRTT was
72.9 ms, and the average RTT was 82 ms21. From the
tcptrace statistics, we know that during the test trans-
fers the average RTT rose to 461 ms22.

Our TCP transfers were su�cient to substantially
alter the delay statistics of the path. We believe this to
be an intrinsic property of Congestion Avoidance: any
long-running TCP connection which remains in Con-
gestion Avoidance raises the link delay and/or loss rate
to �nd its share of the bottleneck bandwidth. Then
Equation 3 will agree with the actual bandwidth for the
connection, and if the losses at the bottleneck are su�-
ciently randomized, the link statistics (delay and loss)
will be common to all tra�c sharing the bottleneck.

In general, the current Internet does not seem to
exhibit this property. We suspect that this is due to a
combination of e�ects, including Reno's inability to sus-
tain TCP's Self-clock in the presence of closely-spaced
losses, the prevalence of drop-tail queues and faulty
router implementations.

6 Multiple Congested Gateways

In this section we apply the model to the problem of
TCP fairness in networks with multiple congested gate-
ways. Floyd published a simulation and heuristic anal-
ysis of this problem in 1991 [Flo91]. In this paper,
she analyzed the following problem: given a network
of 2n gateways, where n are congested by connections
that use only one of the congested gateways, what por-
tion of the available bandwidth will a connection pass-
ing through all n congested gateways receive? The
analysis of this problem presented by Floyd computes
bandwidth by determining the packet loss rate for each
connection23. Here, we demonstrate that the same re-

20The bands are at roughly p = 0:00015;0:00035 and 0:0005.
21Each backgroundmeasurement consisted of 200RTT samples

taken either shortly before or shortly after each test TCP transfer.
The median of the measurement averages was 80 ms for the \not
under test" case.

22The median of the measurement averages was 466 ms for the
\under test" cases.
Unfortunately, the burst losses obscured our background loss

rate measurement, because in the average they causedmuch more

packet loss than the true congestion signals. Since they caused
TCP timeouts, they were implicitly excluded from the TCP data,
but not from our background measurements.
Note that to some extent the burst losses and the RED-less

overbu�ering are complementary bugs because each at least par-
tially mitigates the e�ects of the other.

23We should note that Floyd's work was published three years
prior to Mathis [Mat94a] and �ve years prior to Ott [OKM96a].

11

2

4

gatewaysource sink

11

1

00

2

2 3

3 3 4 4 5

5

5

0

: 1.5Mbps, 50ms delay

: 10Mbps, 5ms delay

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b

Figure 12: The multiple congested gateways scenario.

sults can be obtained by using Equation 3.
Figure 12 (from [Flo91]) shows the exact scenario we

are interested in analyzing. Each dotted line indicates
a connection from a source to a sink. Generalizing the
parameters, we de�ne � to be the individual delay of the
long links (50 ms in Figure 12) and � to be the delay
of the short links (5 ms in Figure 12). The round-trip
delay for Connection i is:

�i = 2� + �Q + 4� (6)

Here, we add a term �Q which represents the average

delay due to queuing at the bottleneck router.24 The
round-trip delay for Connection 0 is:

�0 = 2(2n� 1)� + n�Q + 4� (7)

The model can then be used to predict the band-
width for each connection:

Bi = C
MSS

�i

1
p
p

(8)

B0 = C
MSS

�0

1
p
np

(9)

The total link bandwidth used at each congested hop
is given by the sum of these two values:

B = B0 +Bi = C
MSS
p
p

(
1p
n�0

+
1

�i
) (10)

The fraction of the bandwidth used by Connection
0 is then given by (divide Equation 9 by Equation 10):

B0

B
=

1

1 +
�0
p
n

�i

=
1

1 +
p
n(

2(2n�1)�+n�Q+4�
2�+�Q+4�

)
(11)

The �rst part of Equation 11 exactly matches
Floyd's result [Flo91, Claim 5, Equation 3]25. The sec-
ond part of Equation 11 �lls in the precise formulae for
the delays. If we assume �Q and � are small, we again
match Floyd's results [Flo91, Corollary 6].

24We make the assumption that �Q is the same for all of the
connections being considered. This is probably not a realistic as-
sumption, but it does allow us to simplify the problem somewhat.

25Noting that we are using an increase-by-1 window in-
crease algorithm, which is identical for both the long and short
connections.

B0

B
� 1

1 +
p
n(2n� 1)

(12)

In the case of overbu�ered, drop-tail gateways,
where �Q is large and phase e�ects are not an issue,
we get a slightly di�erent result:

B0

B
� 1

1 + n3=2
(13)

It is useful to note that C has dropped out of the
calculation. A precise estimate of C was not needed.

In this section, we have used Equation 3 to estimate
TCP performance and bandwidth allocation in a com-
plex network topology. Our calculation agrees with the
prior heuristic estimates for this environment.

7 Implications for the Internet

Queue Length = 5 packets)

(50 ms, Lossy Link)

Link, L

Router

1000 WWW servers

Data Center

Router

1000 Users

University User

(10 Mb/s ethernet)

(28.8 kb/s,

Figure 13: Simpli�ed Internet Topology

In this section we use Equation 3 to investigate some
properties of tra�c and congestion in the global Inter-
net. Figure 13 is a very simpli�ed schematic of the
Internet. To the left are information providers, includ-
ing a large population of WWW servers and other large
data centers, such as supercomputing resources.

To the right are information consumers, including a
large population of modem-based users and a smaller
population of Research and Education users, who are
trying to retrieve data from the data center.

The link between the data suppliers and consumers
represents a long path through an intra-continental In-
ternet. For illustration purposes we assume that the
path can be modeled as having a single bottleneck, such
that the entire path has a �xed average delay and a vari-
able loss rate due to the total load at the bottleneck.
Furthermore we assume that each individual data sup-
plier or consumer shown in Figure 13 presents an in-
signi�cant fraction of the total load on the link. The
loss rate on L is determined by the aggregate load (of
many modems and R&E users) on the link and is uni-
form across all users. Thus the individual connections
have no detectable e�ect upon the loss rate.

We wish to investigate how changes in the loss rate at
link L might a�ect the various information consumers
and to explore some strategies that might be used to

12

CA-Events

Modem RTT

Loss at L

Loss at Modem

Total Loss

Loss rate (%) or RTT (units of 1/10 second)

loss (p) at link L

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

0.001 2 5 0.01 2 5 0.1 2 5

Figure 14: Packet loss experienced by modem users.
Packet loss on link L is largely o�set by reduced loss at the
modem. \Total loss" is computed from the link instruments,
\CA-Events" from the instruments in the TCP. (This is for

FACK-RH TCP).

mss=4312

mss=1460

mss=536

Modem

Simulation Bandwidth (b/s)

loss (p) at link L
200

500

1e+03

2

5

1e+04

2

5

1e+05

2

5

1e+06

2

5

1e+07

2

0.001 2 5 0.01 2 5 0.1 2 5 1

Figure 15: E�ect of loss rate at link L.
While modem users (with a 1000 byte MSS) do not notice loss

on link L until it is quite high, R&E users su�er severe
performance degradation, particularly when using a small MSS.

control the elapsed time needed to move scienti�c data
sets.

First we consider TCP congestion control at the
modems, which are the likely bottlenecks for the low
end users. A full-sized packet (1000 bytes) takes about
277 ms of modem transmission time. The RTT of the
unloaded path is about 400 ms (1000 byte packets
ow-
ing in one direction, 40 byte acknowledgements
owing
in the other). Assume 5 packets of queue space at the
modem, then the maximum window size is between 6
and 7 packets, so the \half window" must be roughly
3 packets, yielding an average window of about 5 pack-
ets. Since the data packets arrive at the clients with
more than 200 ms headway, acknowledgements will be
sent for every segment (due to the Delayed Acknowl-
edgement timer). Thus we assume that C = 1:2 (the
non-Delayed Acknowledgement periodic case from Ta-
ble 1), so the 5 packet average window requires a loss
rate of roughly 4% (p = 0:04). This can be observed
on the far left edge of Figure 14. (We are assuming
FACK-RH TCP).

The packet loss at the modem provides feedback to
the TCP sender to regulate the queue at the modem.
This queue assures that the modem utilization is high,
such that data is delivered to the receiver every 277 ms.
These data packets cause the receiver to generate ac-
knowledgements every 277 ms, which clock more data
out of the server at a nearly constant average rate.

Next we want to consider what happens if link L
loses about 3% of the packets. Since this is not enough
to throttle TCP down to 28.8 kb/s, the modem must
still be introducing some loss, but less than before.
Since the modem is still introducing loss, it must still
have a signi�cant average queue, so the server still sends
data every 277 ms. With any SACK TCP (including
FACK-RH), only the missing data is retransmitted, so
the average goodput for the modem user continues to
be 28.8 kb/s. Therefore the 3% loss on link L has an
insigni�cant e�ect on the modem user.

As the loss rate rises beyond 3%, the queue at the
modem becomes shorter, reducing the RTT from about
1.2 seconds down toward 400 ms. Note that a 5 packet
queue overbu�ers the path, so the utilization does not
start to fall until the loss rate approaches 10%26.

Now consider the plight of an R&E user (See Fig-
ure 15). What performance limitations are imposed on
the R&E user by 3% loss? From Equation 3, the aver-
age window size must be about 5 packets. If these are
536 byte packets (with a 100 ms RTT), the user can get
no more than about 250 kb/s. Timeouts and other dif-
�culties could further reduce this performance. At 250
kb/s, moving 1 Gigabyte of data27 takes over 8 hours.

26Note that this is FACK-RH TCP, which does substantially
better than other TCPs in this region.
Many recovery episodes exhibit multiple dropped packets (note

that the total link loss rate and CA-Events di�er) so Reno has no
hope of preserving its Self-clock. As the peak window size falls
below 5 packets, conventional Fast Retransmit will also fail.

27Note that at today's prices, with disk space available at be-
low $100 per Gigabyte, workstations commonly have several Gi-
gabytes of disk space. It is not at all unusual for researchers to

13

As a consequence, some researchers have been known
to express mail tapes instead of using the Internet to
transfer data sets.

Suppose the R&E user needs to move 1 Gigabyte of
data in 2 hours. This requires a sustained transfer rate
of about 1 Mb/s. What loss rate does the user need
to meet this requirement? Assume C < 1 (because the
R&E receivers will be using Delayed Acknowledgments)
and invert Equation 4 to get a bound on p:

p <

�
MSS

BWRTT

�2

(14)

The model predicts that the R&E user needs a loss
rate better than 0.18% (p = 0:0018) with 536 byte pack-
ets. At 1460 bytes, the maximumloss rate rises to 1.4%.
If the R&E user upgrades to FDDI (and uses 4312 byte
packets), Equation 14 suggests that the network only
needs to have less than 11% loss.

In practice, we need to consider the actual value of
C and potential bottlenecks in all other parts of the
system, as well as the details of the particular TCP im-
plementation. This calculation using the model agrees
with the simulation shown in Figure 15.

Note that the speci�c results in this section are very
sensitive to many of our assumptions, especially to the
use of FACK-RH TCP and the 5 packet queue at the
modem. Di�erent assumptions will change the rela-
tive positions of the data in our graphs, but the overall
trends are due to intrinsic properties of TCP congestion
control and the Congestion Avoidance algorithm.

We can draw some useful rules-of-thumb from our
observations. First, each factor of 3 in the MSS (4312
to 1460, or 1460 to 536) lowers the required end-to-end
loss rate by nearly an order of magnitude. Furthermore,
a network which is viewed as excellent by modem users
can be totally inadequate for a Research and Education
user.

8 Conclusion

We have shown, through simulation and live observa-
tions, that the model in Equation 3 can be used to
predict the bandwidth of Congestion Avoidance-based
TCP implementations under many conditions.

In the simulator all presented TCPs �t the model
when losses are infrequent or isolated. However, since
di�erent TCPs vary in their susceptibility to timeouts,
they diverge from the model at di�erent points.

Live Internet tests show rough agreement with the
model in cases where no pathological behaviors are
present in the path.

The model is most accurate when using delay and
loss instruments in the TCP itself, or when loss is
randomized at the bottleneck. With non-randomized
losses, such as drop-tail queues, the model may not be
able to predict end-to-end performance from aggregate
link statistics.

want to transfer a few Gigabytes of data at one time.

FACK-RH, which treats multiple packet losses as
single congestion signals, �ts the model across a very
wide range of conditions. Its behavior is very close to
ideal TCP Congestion Avoidance. Reno, on the other
hand, stumbles very easily and deviates from the model
under fairly ordinary conditions.

To produce a model that applies to all loss rates, we
need to have a model for timeout-driven behavior.

Overbu�ering without RED or some other form of
queue management does not interact well with SACK
TCP. A single pair of end-systems running SACK over
a long Internet path without RED are likely to sustain
persistent, unpleasantly long queues.

The model can be used to predict how TCP shares
Internet bandwidth. It can also be used to predict the
e�ects of TCP upon the Internet, and represents an
equilibrium process between loss, delay and bandwidth.

9 Acknowledgements

We would like to thank Sally Floyd and Steve McCann
(LBL's ns simulator), as well as Shawn Ostermann (tcp-
trace) for making their software publicly available, with-
out which we would have been unable to complete this
work. We would also like to thank Dr. Floyd for allow-
ing us to use Figure 12 from [Flo91]. We appreciate the
willingness of Mark Allman, Kevin Lahey, and Hari Bal-
akrishnan to allow us to use equipment at their sites for
our remote testing. We would also like to acknowledge
Bruce Loftis, for his assistance in �tting parameters to
the data, and Susan Blackman, for making suggestions
to improve the readability of this paper.

A FACK-RH TCP

The FACK-RH TCP used in the simulations and in
the TReno experiment is slightly di�erent than the
FACK version presented at Sigcomm96 [MM96a]. We
replaced \Overdamping" and \Rampdown" by a com-
bined \Rate-Halving" algorithm, which preserves the
best properties of each. Rate-Halving quickly �nds
the correct window size following packet loss, even un-
der adverse conditions, while maintaining TCP's Self-
clock. In addition, we strengthen the retransmis-
sion strategy by decoupling it completely from conges-
tion control considerations during recovery. An algo-
rithm we call \Thresholded Retransmission" moves the
tcprexmtthresh logic to the SACK scoreboard and ap-
plies it to every loss, not just the �rst. We also add
\Lost Retransmission Detection" to determine when re-
transmitted segments have been lost in the network.

Rate-Halving congestion control adjusts the window
by sending one segment per two ACKs for exactly one
round trip during recovery. This sets the new window
to exactly one-half of the data which was actually held
in the network during the lossy round trip. At the be-
ginning of the lossy round trip snd:cwnd segments have
been injected into the network. Given that there have
been some losses, we expect to receive (snd:cwnd�loss)
acknowledgments. Under Rate-Halving we send half as

14

many segments, so the net e�ect on the congestion win-
dow is:

snd:cwnd =

�
snd:cwnd� loss

2

�
(15)

This algorithm can remain in Congestion Avoidance,
without timing out, at higher loss rates than algorithms
that wait for half of the packets to drain from the net-
work when the window is halved.

We detect when exactly one round trip has elapsed
by comparing the value of the forward-most SACK
block in each ACK to the value of snd:nxt saved at
the time the �rst SACK block arrived.

Bounding-Parameters add additional controls to
guarantee that the �nal window is appropriate, in spite
of potential pathological network or receiver behaviors.
For example, a TCP receiver which sends super
uous
ACKs could cause Rate-Halving to settle upon an inap-
propriately large window. Bounding-Parameters assure
that this and other pathologies still result in reasonable
windows. Since the Bounding-Parameters have no ef-
fect under normal operation, they have no e�ect on the
results in this paper.

We are continuing to tinker with some of the de-
tails of these algorithms, but mostly in areas that have
only minute e�ects on normal bulk TCP operations.
The current state of our TCP work is documented at
http://www.psc.edu/networking/tcp.html.

B Reaching Equilibrium

In several of our simulations and measurements we
noted that an excessive amount of time was sometimes
required for TCP to reach equilibrium (steady-state).

One interpretation of Equation 3 is that the average
window size in packets will tend to C=

p
p. However,

during a Slow-start (without Delayed ACKs), the ex-
pected window size is on the order of 1=p when the
�rst packet is dropped, 2=p when the loss is detected,
and back down to 1=p by the end of recovery (assum-
ing SACK TCP). This window is much too large if p

is small. It then takes roughly log2

�
1=p

C=
p
p

�
congestion

signals to bring the window down to the proper size.
This requires the delivery of 1

p
log2

1
C
p
p
packets, which

is large if p is small.
The e�ect of this overshoot can be signi�cant. Sup-

pose p = 1=256 (approximately 0:004) then we have
1=
p
p = 16 and log2 1=

p
p = 4. So it takes roughly 1000

packets to come into equilibrium. At 1500 bytes/packet,
this is more than 1.5 Mbytes of data.

The average window in steady state will be 16 pack-
ets (24 kbytes). If the path has a 100 ms RTT , the
steady state average bandwidth will be close to 2 Mb/s.
However the peak window and bandwidth might be
larger by a factor 16: 256 packet (6 Mbytes) and

30 Mb/s. (This is a factor of
1=p

1=
p
p
). The overshoot

will be this pronounced only if it consumes a negligible
fraction of the bottleneck link. Clearly this will not be

the case over most Internet paths so the Slow-start will
drive up the loss rate (or run out of receiver window)
causing TCP to converge more quickly. It is unclear
how signi�cant this overshoot is in the operational In-
ternet.

In all of our simulations we estimate the time re-
quired for the connection to reach steady-state, and ex-
clude the initial overshoot when measuring loss, delay
and bandwidth.

References

[B+97] Robert Braden et al. Recommendations on
Queue Management and Congestion Avoid-
ance in the Internet, March 1997. Internet
draft draft-irtf-e2e-queue-mgt-00.txt (Work
in progress).

[BOP94] Lawrence S. Brakmo, Sean W. O'Malley,
and Larry L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and
Avoidance. Proceedings of ACM SIG-

COMM '94, August 1994.

[CH95] David D. Clark and Janey C. Hoe. Start-
up Dynamics of TCP's Congestion Con-
trol and Avoidance Schemes. Technical re-
port, Internet End-to-End Research Group,
1995. Presentation. Cited for acknowledge-
ment purposes only.

[CJ89] D. Chiu and R. Jain. Analysis of the In-
crease/Decrease Algorithms for Congestion
Avoidance in Computer Networks. Journal
of Computer Networks and ISDN, 17(1):1{
14, June 1989.

[Cla96] Dave Clark. Private communication, De-
cember 1996. Derivation of Bandwidth vs.
Loss.

[DLY95] Peter B. Danzig, Zhen Liu, and LimimYan.
An Evaluation of TCP Vegas by Live Em-
ulation. ACM SIGMetrics '95, 1995.

[FF96] Kevin Fall and Sally Floyd. Simulations-
Based Comparisons of Tahoe, Reno and
SACK TCP. Computer Communications

Review, 26(3), July 1996.

[FJ92] Sally Floyd and Van Jacobson. On Traf-
�c Phase E�ects in Packet-Switched Gate-
ways. Internetworking: Research and Expe-

rience, 3(3):115{156, September 1992.

[FJ93] Sally Floyd and Van Jacobson. Random
Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on

Networking, August 1993.

[Flo91] Sally Floyd. Connections with Multiple
Congested Gateways in Packet-Switched

15

Networks, Part 1: One-way Tra�c. Com-

puter Communications Review, 21(5), Oc-
tober 1991.

[Flo95] Sally Floyd. TCP and Successive Fast
Retransmits, February 1995. Obtain via
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

[Flo96] Sally Floyd. SACK TCP: The sender's
congestion control algorithms for the im-
plementation sack1 in LBNL's ns sim-
ulator (viewgraphs). Technical report,
TCP Large Windows Working Group of
the IETF, March 1996. Obtain via
ftp://ftp.ee.lbl.gov/talks/sacks.ps.

[Hoe95] Janey C. Hoe. Startup Dynamics of
TCP's Congestion Control and Avoidance
Schemes. Master's thesis, Massachusetts
Institute of Technology, June 1995.

[Hoe96] Janey C. Hoe. Improving the Start-up Be-
havior of a Congestion Control Scheme for
TCP. Proceedings of ACM SIGCOMM '96,
August 1996.

[Jac88a] Van Jacobson. Congestion Avoidance and
Control. Proceedings of ACM SIGCOMM

'88, August 1988.

[Jac88b] Van Jacobson. Traceroute Source Code,
1988. Obtain via ftp from ftp.ee.lbl.gov.

[Jac90] Van Jacobson. Modi�ed TCP Congestion
Avoidance Algorithm. Email to end2end-
interest Mailing List, April 1990. Obtain
via ftp://ftp.ee.lbl.gov/email/
vanj.90apr30.txt.

[JB88] Van Jacobson and Robert Braden. TCP
Extensions for Long-Delay Paths, October
1988. Request for Comments 1072.

[JBB92] Van Jacobson, Robert Braden, and Dave
Borman. TCP Extensions for High Perfor-
mance, May 1992. Request for Comments
1323.

[LM94] T.V. Lakshman and U. Madhow. The Per-
formance of TCP/IP for Networks with
High Bandwidth-Delay Products and Ran-
dom Loss. IFIP Transactions C-26, High

Performance Networking, pages 135{150,
1994.

[Mat94a] Matthew Mathis. Private communication,
November 1994. Derivation of Bandwidth
vs. Loss.

[Mat94b] Matthew B. Mathis. Windowed Ping: An
IP Layer Performance Diagnostic. Proceed-
ings of INET'94/JENC5, 2, June 1994.

[Mat96] Matthew Mathis. Diagnosing Internet Con-
gestion with a Transport Layer Perfor-
mance Tool. Proceedings of INET'96, June
1996.

[Mat97] Matthew Mathis. Internet Performance
and IP Provider Metrics information page.
Obtain via http://www.psc.edu/~mathis/
ippm/, 1997.

[MF95] Steven McCanne and Sally Floyd. ns{
LBL Network Simulator. Obtain via:
http://www{nrg.ee.lbl.gov/ns/, 1995.

[MM96a] Matthew Mathis and Jamshid Mahdavi.
Forward Acknowledgment: Re�ning TCP
Congestion Control. Proceedings of ACM

SIGCOMM '96, August 1996.

[MM96b] Matthew Mathis
and Jamshid Mahdavi. TCP Rate-Halving
with Bounding Parameters, October 1996.
Obtain via: http://www.psc.edu/network-
ing/papers/FACKnotes/current/.

[MMFR96] Matthew Mathis, Jamshid Mahdavi, Sally
Floyd, and Allyn Romanow. TCP Selective
Acknowledgement Options, October 1996.
Request for Comments 2018.

[OKM96a] Teunis Ott, J.H.B. Kemperman, and
Matt Mathis. The Stationary Behav-
ior of Ideal TCP Congestion Avoidance.
In progress, August 1996. Obtain via
pub/tjo/TCPwindow.ps using anonymous
ftp to ftp.bellcore.com, See also [OKM96b].,
August 1996.

[OKM96b] Teunis J. Ott, J.H.B. Kemperman, and
Matt Mathis. Window Size Behavior in
TCP/IP with Constant Loss Probability,
November 1996.

[Ost96] Shawn Ostermann. tcptrace TCP dump-
�le analysis tool.
Obtain via http://jarok.cs.ohiou.edu/soft-
ware/tcptrace/tcptrace.html, 1996.

[Pax97a] Vern Paxson. Automated Packet Trace
Analysis of TCP Implementations. Proceed-
ings of ACM SIGCOMM '97, August 1997.

[Pax97b] Vern Paxson. Measurements and Analy-

sis of End-to-End Internet Dynamics. PhD
thesis, University of California, Berkeley,
April 1997.

[Ste94] W. Richard Stevens. TCP/IP Illustrated,
volume 1. Addison-Wesley, Reading MA,
1994.

[Ste97] W. Richard Stevens. TCP Slow Start, Con-
gestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, January 1997.
Request for Comments 2001.

16

