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ABSTRACT
Poisson Arrivals See Time Averages (PASTA) is a well known
property applicable to many stochastic systems. In active probing,
PASTA is invoked to justify the sending of probe packets (or trains)
at Poisson times in a variety of contexts. However, due to the di-
versity of aims and analysis techniques used in active probing, the
benefits of Poisson based measurement, and the utility and role of
PASTA, are unclear. Using a combination of rigorous results and
carefully constructed examples and counter-examples, we map out
the issues involved, and argue that PASTA is of very limited use in
active probing. In particular, Poisson probes are not unique in their
ability to sample without bias. Furthermore, PASTA ignores the
issue of estimation variance, and the central need for an inversion
phase to estimate the quantity of interest based on what is directly
observable. We give concrete examples of when Poisson probes
should not be used, and explain why, and offer initial guidelines on
suitable alternative sending processes.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network manage-
ment; C.4 [Performance of Systems]: Measurement techniques.
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1. INTRODUCTION
Poisson Arrivals See Time Averages, or ‘PASTA’, is a property

applicable to many stochastic systems. In essence, it states that
observations made of a system at time instants obeying a Poisson
process, when averaged, converge to give the ‘true’ value, that is
to the average that an ideal observer would make when monitoring
the system continuously over time. PASTA was first formalized
by probabilists, notably in the 1970’s. Wolff, in his classic 1982
paper [22], unified and extended the then-existing PASTA results.
The generality of his formulation, based on the ‘Lack of Antici-
pation Assumption’, which requires simply that the past history of
the system does not influence the arrival times of future observers,
did away with the need to prove ergodic theorems for each new
application, and led to PASTA being widely used.

PASTA has been used [13, 14, 20, 23] to justify the sending of
probes (or probe trains) at Poisson epochs in an effort to obtain
unbiased estimates of quantities of interest, for example end-to-
end delay. However, despite the generality of the PASTA result
of Wolff, in many respects the role and utility of PASTA for ac-
tive probing has become unclear both in the theoretical and prac-
tical senses. This paper aims to clarify what Poisson probing, and
PASTA itself, can and cannot provide for active probing. In this
context, key questions include

• When is PASTA valid in the strict sense?
• When and in what sense is PASTA useful when it holds? is

Poisson probing necessarily optimal?
• Are there cases when Poisson probes should not be used?
• What role is played by PASTA within the inference problems

of active probing?

Related to this last point there is an important, prior question: What
does PASTA apply to? In other words, Poisson Arrivals See Time
Averages, but of what? does PASTA hold for any quantity that may
form the object of active probing?

Our main focus in this paper is on end-to-end delay over a tan-
dem queueing network, to which PASTA can in fact apply. Delay
is a simple, yet important target of active probing measurement in
its own right. A natural aim in this context would be to accurately
determine any desired statistic of the delay that would be experi-
enced by a single packet of any given size sent into the network in
its steady state regime, for example the distribution of such a delay.
A particular case is the virtual work of queueing theory, which cor-
responds to the delay a zero sized packet would see, under FIFO
scheduling, when sent into the network in steady state. By care-
fully distinguishing between the non-intrusive case (virtual probes
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of zero size) and the intrusive case (real probes of finite size), we
provide important insights into the above questions. The simplicity
of delay allows rigorous results to be derived, and yet it provides a
context rich enough to inform active probing techniques in general.

Our findings group naturally under three distinct categories, and
can be summarised as follows.

Sampling Bias versus Intrusiveness

• PASTA states that Poisson sampling is unbiased. In the non-
intrusive case, we show that this is not unique to Poisson but
is shared by a large class of other sampling processes.

• PASTA states that Poisson sampling remains unbiased even
when observers are not virtual, but contribute to system load.
Apart from a few exceptions ([11]), this property is not shared
by other sampling processes. We argue that it does not follow
that Poisson is superior, because of variance and inversion is-
sues, described next.

• We show that rare probes can be used to avoid issues of intru-
siveness and inversion, and that in such a scenario, Poisson
is no longer special anyway.

Bias versus Variance

• PASTA is a statement about bias. It is silent on variance,
which is nonetheless of equal importance to estimation.

• There is no general result stating the optimality of Poisson
observations with respect to variance or Mean Square Error
(MSE), except asymptotically for MSE in the intrusive case1.
Indeed, optimality would in general require a probing stream
which is well matched in some sense to network characteris-
tics. In Section 2.2 we give explicit examples showing that
Poisson probing can be sub-optimal.

Sampling versus Inversion

• To obtain ‘what one wants’ from what has been observed, for
example what the delay distribution would have been if the
observers were non-intrusive, based on measurements that
were free of sampling bias but which were intrusive, an ad-
ditional inversion step is required. Inversion is typically com-
plex, and in general impacts both bias and variance.

• PASTA is silent on inversion. There is no result stating that
Poisson sampling is unbiased, or otherwise optimal, for the
full problem of sampling followed by inversion. Further-
more, the zero sampling bias of Poisson in the intrusive case
is not necessarily an advantage when it assists in measuring
the wrong quantity. It may even be that inversion is impos-
sible, in which case Poisson sampling cannot magically pro-
vide unbiased estimates.

Finally, we also strongly emphasize the fact that PASTA does not
always hold, as it, in common with alternative probing strategies,
requires important conditions to be satisfied.

The picture that emerges is that PASTA plays only a very re-
stricted role in active probing. In a nutshell, active probing estima-
tion seeks to optimise total bias as well as variance performance,
and must therefore address both sampling and inversion issues.
PASTA deals only with sampling of the available observable, not
with inversion to the final quantity of interest, is ignorant of vari-
ance, and furthermore excludes the low variance potential of alter-
native schemes which also enjoy zero sampling bias. In contrast,
it’s strength, a lack of sampling bias even in the intrusive case, is
not necessarily relevant given the near universal need for inversion.

1See the end of Section 2.2, and recall MSE = bias2 + variance.

We conclude that Poisson probing is poorly motivated, and recom-
mend a Probe Pattern Separation Rule as an alternative default for
both probes and probe patterns, which offers several advantages.

The remainder of the paper is structured as follows. Section 2
uses simple queueing systems to map out the key issues and con-
cepts, and to give examples of many of the main results and insights
in a simple setting. Section 3 introduces the mathematical machin-
ery used to prove results on the bias of sampling processes in a
more general setting. We restrict ourselves to hypothetical zero
sized probes in this section. In Section 4, we consider probes of
non-zero size, examine PASTA, and give a result on rare probing,
a generic strategy to avoid bias. We then combine our findings and
motivate the introduction of a Probe Pattern Separation Rule as
an alternative to the exponential separation of Poisson probing. In
Section 5 we survey selected prior work on PASTA and its applica-
tion in network measurement, and conclude in section 6.

2. PASTA AND DELAY: THE ISSUES
In this section we illustrate the key facts and issues involved in

measuring end-to-end delay from probes, and the role of PASTA,
in the simple context of a single, FIFO queue, fed by probe traffic
and cross-traffic obeying simple models. As we proceed, we high-
light those results which will receive a more general and rigorous
treatment in Section 3. In other cases, the results are in the form of
counter-examples which prove general points as well as illustrate
them.

As several of the examples employ the M/M/1 queue, we sum-
marize some relevant properties here. In the M/M/1 system, pack-
ets arrive as a Poisson process of rate λ, and each takes an expo-
nential amount of time, with average μ, to be serviced2. To ensure
stability and (strict) stationarity of the system, we require the sys-
tem utilisation ρ = λμ to satisfy ρ < 1. It turns out ([8], pp.202)
that the time a packet spends in the system, which is nothing other
than its end-to-end delay, is also exponentially distributed with pa-
rameter d̄ = μ/(1 − ρ):

FD(d) = P(D ≤ d) = 1 − e−d/d̄, d ≥ 0, ρ < 1 (1)

with mean IE[D] = d̄, where D is the random variable representing
the delay of a given packet.

A related but distinct quantity is the waiting time W of a packet,
which also corresponds to the delay experienced by a virtual ob-
server of zero size. This distribution:

FW (y) = P(W ≤ y) = 1 − ρe−y/d̄, y ≥ 0, ρ < 1, (2)

with mean IE[W ] = ρd̄, has an atom at the origin corresponding to
the probability 1− ρ of finding the system empty, resulting in zero
waiting time, and also zero delay in the case of a zero sized packet.

As mentioned in the introduction, an important quantity in queue-
ing theory is the virtual work. This is a stochastic process W (t),
defined for continuous time t ∈ R, which corresponds to the wait-
ing time a packet of size x = 0 would experience when sent at time
t into the network in steady state. Because this is also the delay for
such a zero sized observer, we refer to this here as the virtual de-
lay. This process represents the ground truth of the delay (of zero
sized packets) in the system. The waiting time distribution W of
Equation (2) is simply the marginal of W (t).

The other queues we consider in this section are studied us-
ing Monte Carlo simulation implemented in C and Matlab. The
queue ‘simulation’ directly implements the Lindley recursion (see

2Often μ is taken to be the service rate instead.
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Figure 1: Sampling bias of delay, non-intrusive case (x = 0). Left: CDF as seen by various probing streams, and the true delay
distribution. Right: resulting mean estimates. Each probing stream is unbiased.
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Figure 2: Sampling bias of delay, intrusive case (x > 0). Left: CDF as seen by various probing streams, and true delay distributions
(one per stream, the closest grey curve in each case). Right: resulting probe based mean estimates, and true means. Each probing
stream results in a new true delay distribution, which is sampled with bias by the probes, except the Poisson case (PASTA).

eg. [8]) on waiting times defining the system and is exact to ma-
chine precision. Two kinds of statistics are collected. First, per-
packet delay values, from which the delays, regardless of packet
size, due to probe traffic or cross-traffic can be extracted. Second,
the waiting time distribution W is obtained by observing the vir-
tual delay process W (t) continuously over time. As it is stored in
histogram form, there is a discretisation error. However, this error
can be bounded, and we control it in each case so that errors are
negligible on the scale of the plots given. Similarly, we use long
simulations of 1000000 probes to make confidence intervals small
or negligible (in the latter case we don’t show them), and employ
warmup periods of at least 10d̄ to damp transients. From the ob-
served W (t), we obtain the distribution of D for non-zero probes
by convolving with the probe size distribution.

Finally, recall that if a is some parameter of stochastic data, then
an estimator of a is any function bA of the data designed to estimate
a; this estimator is unbiased if a = IE[Â].

2.1 Bias
We will consider each of sampling bias in the intrusive case,

sampling bias in the non-intrusive case, and inversion bias. Five
different arrival processes - including ‘Poisson’, ‘Uniform’, ‘Pareto’,
‘Periodic’, and ‘EAR(1)’, will be used for probes, in order to offer
a spectrum of bursty behaviors. Three of these, namely ‘Poisson’,
‘Uniform’, and ‘Pareto’, are renewal processes, that is inter-arrivals

are given by independent and identically distributed (i.i.d.) random
variables. They differ only in the choice of distribution, respec-
tively exponential (yielding a Poisson process), uniform, and the
heavy tailed Pareto (with finite mean but infinite variance). The
‘Periodic’ probe stream is also renewal but in a very degenerate
sense as inter-arrivals are constant, and is best regarded as a deter-
ministic stream (a random uniform phase, determining the offset of
the periodic grid from the time origin, makes it stationary despite
this rigidity). The EAR(1) process, described in detail below, has
correlated inter-arrivals with exponential marginal. For the sake of
brevity, details such as complete parameter settings will be omitted.
Figure 1 gives results for each of the above probing streams, with a
shared average inter-probe spacing, using probes of zero size. Con-
sequently, there is no issue of intrusiveness - probes do not affect
the system, nor of inversion - we are directly measuring what we
wish to measure. The issue of sampling bias can therefore be seen
in isolation.

The grey curve in the plot on the left of Figure 1 shows the true
Cumulative Distribution Function (CDF) for the delay of zero sized
probes, calculated from Equation (2). As expected, the curve cor-
responding to Poisson probes agrees with the true one: as is well
known, PASTA applies to this system. However, each of the other 5
curves overlay the true result equally closely. In this non-intrusive
case, the lack of sampling bias of Poisson probing is shared by
many other probing schemes. The (tightly estimated) expected de-
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Figure 3: Inversion bias of delay, range of intrusiveness (x ≥ 0). Left: CDF as seen by Poisson probing streams of different rate, and
true delay distributions (one per stream), as well as the true unperturbed delay (with no probes). Right: corresponding mean delays
as a function of probe to total load ratio. PASTA eliminates sampling bias, but total system behavior increasingly deviates from that
of the unperturbed system.

lays in the right plot of the figure confirm this by agreeing with the
true value in each case. In Section 3, our main result is to prove
that a wide class of processes share this desirable property, and for
far more general systems than the simple M/M/1 queue.

In Figure 2 we consider the same probing arrival streams, but
allow the probes to have a service time x > 0 (for simplicity x
is a constant, but this is not essential). As a result, intrusiveness
becomes an issue: probes do affect the system, both in load and
in more detailed characteristics. To avoid dealing with inversion
issues, for the moment our objective is to know the true delay of the
full system, combining cross-traffic and non-virtual probes, that a
packet of service time x would experience. In other words, again
we seek to measure the same object that we have direct access to
through probing.

The mean estimates in the right hand plot of Figure 2 confirm
that each probing stream results in a different system behavior (de-
spite equal loads), and shows that each now gives a biased estimate
of its respective E[D], with the exception of ‘Poisson’. Hence,
PASTA continues to hold, whereas the other probing streams, de-
spite being unbiased when x = 0, now suffer from a bias due to
intrusiveness. The corresponding CDFs in the left hand plot show
in greater detail how the systems are different for each stream, and
how the bias varies as a function of delay. These results illustrate
that PASTA holds in the intrusive case. In Section 4, we will state
the general conditions under which PASTA can be expected to hold.

We now study inversion bias in isolation. We achieve this by em-
ploying Poisson streams exclusively, thereby benefiting from their
zero sampling bias in all cases. Furthermore, we let the probe ser-
vice time X be exponentially distributed with the same parameter,
μT , as for the cross-traffic packets. This results in a probe+traffic
system which is still M/M/1, with rate λ = λT + λP and average
service time μT , enabling Equation (1) to be used.

Figure 3 shows the unsurprising but significant fact that increas-
ing the probing load through increasing λP results in the over-
all system deviating increasingly far from the original unperturbed
system in which λP = 0. Consequently, even if an estimate of the
true mean (or the CDF) is unbiased, that estimate is an estimate of
the full (probe + cross-traffic) system, not the unperturbed (cross-
traffic only) system that one wishes to measure. Thus, ‘what we
want is not what we directly measure’. To obtain the unperturbed
delay from the perturbed one requires an entirely separate inver-
sion step, which, even in this very simple example of inverting one

kind of delay to another, is highly non-trivial except for the sim-
plest one hop models. For other inference objectives common in
active probing, such as using packet-pair methods to estimate bot-
tleneck bandwidth, the degree of inversion required, and therefore
its potential impact, is far greater. Another way of seeing this is
to note that probes sent as a Poisson process at the sender will not
arrive as Poisson process at the bottleneck link in general, and will
also be affected by their onward passage from that link to the re-
ceiver. Thus, the probes are ‘sampling’ the bottleneck link, but not
in a Poisson way, and not in isolation.

We have two contributions to make on the inversion issue. First,
we point out that not only can it be extremely challenging, but more
importantly that it is a difficulty which arises generically for which
PASTA offers no solution. Indeed, it was recently shown in [10]
that, even in a simple 1-hop system, unless the cross-traffic obeys
particular restrictive assumptions, full knowledge (i.e. the law) of
the cross-traffic process feeding the hop is unobservable. In such
a case, strict inversion is impossible even in principle. This cor-
responds to an extreme form of the inversion problem, relating to
fundamental issues of system non-identifiability, which PASTA is
powerless to mitigate. Second, in spite of the difficulties described
above, there is a general way, the rare probing of Theorem 4, to
address inversion bias in the intrusive case, which we explore in
Section 4.

2.2 Bias versus Variance
In Section 2.1 we focused on the bias of estimators based on a

simple average of delays experienced by probes. In this section
we look into the variance of these estimators. When bias is non-
zero, we examine bias-variance tradeoffs in the traditional manner
by considering the mean squared error MSE = bias2 + variance.

Thus far we have considered cross-traffic packets arriving as a
Poisson process. However, in general cross-traffic will interact with
probe traffic in ways which depend on the correlation or ‘bursti-
ness’ structure of each, and estimation variance will be a function
of these interactions. To show this clearly we need a richer context
than the simple memoryless structure of the Poisson process. We
use the Exponential (first order) AutoRegressive process (EAR(1))
[5] as a convenient way to generate a point process for CT arrivals
which has a well defined correlation time scale, that is a scale τ∗ be-
low which autocorrelation is significant, but above which it decays
rapidly to zero. Like the Poisson process, it consists of exponen-
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Figure 4: Bias and variance of delay with correlated cross-traffic, non-intrusive case (x = 0). Left: bias of mean estimates seen by
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√
MSE =

p
(bias2 + variance). Only the Poisson probing is unbiased, but the scheme

with minimal MSE depends on α.

tial inter-arrivals of intensity λ, but unlike it, inter-arrivals form a
positively auto-correlated AR(1) process, with correlation structure

Corr (i, i + j) = αj , j = 0, 1, 2, . . . , α ∈ [0, 1). (3)

The delay constant j∗(α) of this geometric decay (extracted by set-
ting αj = e−j/j∗ ) translates to a correlation time scale of τ∗(α) =
j∗/λ = (λ ln(1/α))−1, which rises from 0 when α = 0 (the Pois-
son case), to ∞ as α → 1.

Figure 4 shows the effect of increasing α on the estimation of
mean delay, for four different non-intrusive probe streams of iden-
tical rate. In the left plot we see, as expected, a lack of bias for each
stream (note the vertical scale and confidence intervals, offset for
visibility), in agreement with the results of Figure 1, regardless of
the value of α. In contrast, the right hand plot shows that the stan-
dard deviation of the estimates separate at large α. The important
point to note is that this separation clearly exceeds the confidence
intervals: the Poisson stream has higher variance than either Pe-
riodic or Uniform. This is a counter-example making the general
point that Poisson sampling does not imply minimal variance.

We now offer some insight into why Poisson probing gives rise
to higher variance than Periodic in this case. First note that as the
correlations in the cross-traffic increase, so do those of the virtual
delay process W (t) itself. If we could make estimates based on

W (t), they would therefore have increased variance3. Each prob-
ing scheme samples W (t), experiences the larger correlation at
higher α, and thereby inherits the larger variance. Exactly how
much variance however depends strongly on the details of the sam-
pling scheme, not merely on the average sampling rate λP . Bear-
ing in mind that samples which are closer together will be more
correlated, periodic probing has the advantage of guaranteeing a
minimum distance between them. It can therefore ‘jump over’ cor-
relation inducing bursts, provided that 1/λP is large compared with
the correlation scale of W (t). In contrast, in a Poisson process, ar-
rivals may be much closer than 1/λP with appreciable probability,
increasing the correlation considerably between such samples. In
the example here, 1/λP ≈ 20τ∗ even for α = 0.9, so the periodic
stream produces close to i.i.d. samples in all cases.

In Figure 5 we consider the intrusive case for a wider range of
candidate probing schemes. We fix α at 0.9, and examine depen-
dence as intrusiveness is increased by increasing probe size, shown
as a function of the ratio of probing load to CT load. The left-
most plot shows that bias is now present, and increases with α,
for all schemes except for Poisson (PASTA). The variance results
of the middle plot echo those seen in Figure 4: there are schemes

3It is well known [2] that the variance of the sample mean calcu-
lated over a time window of given width is essentially the integral
of the correlation function over the corresponding range of lags.
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which perform both better and worse than Poisson. The rightmost
plot in Figure 5 combines bias and variance, and we see the trade-
offs at work: the relative overall performance of different schemes
changes with x. In particular, as bias becomes stronger for its com-
petitors at load ratios above 0.12, Poisson begins to outperform
Periodic, but continues to be outdone by the Uniform renewal with
wide support.

In this section we have presented only a few illustrations of what
is a general point: PASTA is silent on estimation variance, and
the performance of Poisson probing, for general cross-traffic pro-
cesses, plays no privileged role with regard to variance. The same
holds true for MSE, with one exception. Asymptotically, as the
number of samples tends to infinity, the variance of any consistent
estimator will tend to zero, resulting in the asymptotic MSE being
equal to the bias squared. In the intrusive case, this clearly gives
the advantage to Poisson probing. In general however, overall sta-
tistical performance is a function of how well the probing stream
is adapted to the cross-traffic, and the nature of that traffic. The
optimal approach (if any) will also be strongly determined by the
choice of constraints such as measurement duration, probe budget,
and acceptable intrusiveness profile.

2.3 The Need for Technical Assumptions
Thus far in this section we have passed over the issue of tech-

nical assumptions. For instance, we assumed that PASTA holds
universally. In fact, its validity is dependent on other conditions,
most importantly the lack of anticipation assumption (LAA) men-
tioned in the introduction. Similarly, while Figure 2 indicated that
non-Poisson probing schemes have zero bias, this is true only if
suitable joint ergodicity conditions on the cross-traffic and probe
traffic are satisfied. Intuitively, ergodic systems are those which are
in some sense free enough to explore, in an unbiased way and on
a single sample path, the full range of behavior which one would
find if one could examine all sample paths. It is also important to
note that zero bias, although an important objective, is not enough.
To be useful in practice, we also need measurements to converge
to the parameter to be estimated on a single sample path, as we
witnessed in each example thus far. To ensure this, again suitable
ergodic conditions are required. We defer a rigorous description of
these issues until the next two sections, and complete this one with
an illustrative example and intuitive explanation of these issues.

Figure 6 gives the outcome of a non-intrusive experiment which
is identical to that reported in Figure 1, but with one crucial differ-
ence: the Poisson arrival times of cross-traffic have been replaced
by periodic arrivals of the same average intensity (packet sizes have
not been altered). Each probing stream continues to measure the
mean delay, and even the entire delay distribution, without bias,
with the exception of the periodic probe stream, which is markedly
different. In fact, since the period of the Periodic stream is equal
to an integer multiple of the cross-traffic period (equal to 10 in this
case), the two streams are effectively ‘phase locked’, and in such
a case the joint ergodicity conditions are not satisfied. As a result,
the probes can never sample average conditions on this sample path
alone, but only those found at a particular point in the cycle of the
cross-traffic arrivals.

Despite the rigidity of the periodic cross-traffic, the other probing
streams do satisfy the required joint conditions since they are each
mixing processes, which is a stronger form of ergodicity. Similarly,
the joint ergodicity assumptions were satisfied in the cases shown
earlier of periodic probe traffic and either Poisson or EAR(1) cross-
traffic, since these latter processes were mixing. In a loose sense,
they provided enough variability to overcome the rigidity of the
periodic probes. We discuss this in more detail in the next section.

3. NON-INTRUSIVE MEASUREMENT
In the previous section we discussed sampling bias, inversion

bias, variance, and contrasted the intrusive and non-intrusive cases
in parallel. In this section we focus on sampling bias in the non-
intrusive case only, leaving the intrusive case (and most of our com-
ments on inversion) to Section 4. Our aim is to expand in a rigor-
ous way on the observations of Figure 1, that many processes other
than Poisson enjoy zero sampling bias in the non-intrusive case.
Although this case may not seem to be practically useful, since real
probes must always intrude, it turns out that the design of effective
practical probing is based on a clear understanding of this case. The
basis of our treatment is the machinery of ergodic theory [16] and
Palm calculus [1], in the context of marked point processes [3, 1].
We give an overview of these areas before proving our main result,
a description of precisely when the zero bias property is true.

3.1 Setting
We adopt a setting which allows for very general probe traffic,

cross traffic, and network models. We make the following assump-
tions: stationarity of the probe traffic, cross-traffic and the network
behavior, ergodicity of the cross-traffic and probe traffic, and inde-
pendence of the probe traffic from the cross-traffic. The assump-
tions on probes are not restrictive since the experimenter controls
the probing stream.

We model probe traffic as a (strictly) stationary point process P
of intensity λP . That is, a sample path of the process is simply
the set of times {Tn} at which the (zero sized) probes arrive, and
there exists a probability law PP that determines the probability
of any event concerning sample paths. For example, it governs
the probability that the first inter-arrival time after the time origin:
T2 − T1, equals or exceeds the mean value 1/λP (this would be
1 for periodic probes or e−1 for a Poisson stream), as well as the
probability that n probes fall in a time interval I1 and m in I2, for
intervals I1 and I2. No constraints are placed on PP ; we allow any
structure of probe arrivals (provided points do not coincide).

We model cross-traffic as a marked stationary point process T of
intensity λT . As before this consists of the arrival times of packets,
but now also marks, random variables associated with each packet
which give additional information about the traffic. This includes
the random packet size, but also anything else which characterises
the stream, for example the packet sizes may depend on the arrival
patterns, or packet sizes, of previous arrivals. The probability law
PT governs all details of T , both of arrival times and marks.

The model of an end-to-end path typically used in active probing
is essentially the tandem queueing network of queueing theory. It
consists of a set of FIFO queues and transmission links in series,
each with its own independent cross-traffic stream. Packets from
a given stream are all n-hop-persistent (traversing n hops before
exiting) and frequently n is simply taken to be 1 for each stream.
Our network setting is more than general enough to cover such a
model. However, it is not explicitly defined in terms of queues like
the one above, but instead operates in an abstract setting, which
allows for even greater generality. It is capable of including cross-
traffic streams correlated across nodes, cross-traffic with feedback
such as TCP, non-FIFO scheduling disciplines, varying over nodes,
probes which follow different paths through a network (modelling
load balancing), and more, provided the above technical assump-
tions are satisfied. Technically, each of these cross-traffics, and
their dependencies, are contained in a single marked point process
T , where the marks carry most of the detailed information, such as
which nodes are traversed by a given packet. In this way, much of
our general network model, in fact all of its stochastic components,
is subsumed into a rich cross-traffic description.
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The details of the queueing itself are not contained in T but
would have to be specified separately, for example, if one wished
to simulate the network. However, provided everything that is not
in T acts deterministically on the cross-traffic and probe inputs,
it does not need to be specified explicitly. For example, our re-
sults hold ‘for free’ for each of FIFO, Weighted Fair Queueing, or
processor sharing queueing disciplines, since each of these is de-
terministic given the traffic inputs.

The final components of the basic setting is to specify the observ-
able, which is the quantity related to probes that we have access to,
and the ground truth, that is the quantity we wish to estimate. In the
case of active probing the available data is simply the arrival times
of probes to the receiver, or equivalently (since the sending times
Tn are known), their end-to-end delays. Since we consider only
the non-intrusive case in this section, the underlying observable or
‘ground truth’, which we denote by Z(t), t ∈ R, will be taken to
be the virtual delay process W (t) from Section 2. Recall that this
is the delay experienced by a zero sized observer entering at time t.

Our main goal is to learn about the process Z(t). Technically,
this reduces to determining the expectation E[f(Z(t))] of some
positive function f of Z(t). The choice of f gives us great freedom
in the kind of statistic we may wish to measure. Good examples,
which we have already met in Section 2, are the identity (giving
us the mean delay) or an indicator function noting whether Z(t) is
smaller than some threshold (giving us the CDF of delay). More
will be considered below.

With the setting established, we now indicate where sampling
and inversion fit in to it. Probes sent at times {Ti} literally sample
Z(t) at those times. Hence, the values f(Z(T1)), f(Z(T2)), . . .,
are what is available to estimate E[f(Z(t))]. As we send more
probes, we have more samples and expect our estimates to improve.
Specifically, we want the following almost sure convergence:

lim
N→∞

1

N

NX
n=1

f(Z(Tn)) = E[f(Z(0))]. (4)

For instance, if f is the identity function, the right hand side is
the mean virtual delay to which the sample mean estimate on the
left hand side must converge. Note that stationarity implies that
E[f(Z(0))] = E[f(Z(t))] for any time t.

3.2 Ergodic Theory and Palm Calculus
Statements like Equation (4), where an empirical average (the

left hand side) is equivalent to an ‘ensemble mean’ or mathemati-
cal expectation (the right hand side) are known collectively as er-

godic theorems [16]. Intuitively, this equivalence arises because a
single sample path of an ergodic process will over time come to
resemble every other sample path, with more extreme paths taking
appropriately longer to emerge. In Section 3.3 we determine when
Equation (4) holds. To do so, we must first introduce key aspects
of ergodic theory and Palm calculus.

3.2.1 The Joint Law and the Product Space
To deal with ergodicity of the whole system, we must know the

joint law governing both probe and cross-traffic. Because these are
independent, the events in the combined system can be described
through the product space of P and T , denoted by F , with an
associated probability law P which is the product of PP and PT .

Intuitively, (F , P ) enumerates all sample paths of the combined
system and their associated probabilities. The following example
illustrates this. Consider a system in which probe and cross-traffic
are each periodic with a period of 1 time unit (for simplicity we
ignore the marks of T ). Each probing sample path is completely
determined by its phase y ∈ [0, 1) = T1, the distance from the time
origin to the first probe. Similarly, the cross-traffic is described by
a phase z ∈ [0, 1). We take the phases to be uniformly distributed
over (0, 1], so that each stream is stationary. Thus, each sample
path of the combined system is uniquely described by (y, z), which
is an element of the product space F = [0, 1) × [0, 1). Assuming
independence between the streams, the joint probability P is just

P ((y, z) ∈ [a, b] × [c, d]) = PP(y ∈ [a, b]) · PT (z ∈ [c, d])

= (b − a)(d − c),

where b ≥ a, d ≥ c.

3.2.2 Ergodicity and Time Shifts
We will describe the stationarity and ergodicity of a point process

by means of the associated shift operator {θt}, which represents a
shift in time of value t ∈ R of the whole sample path of the process,
that is of all of its points. Stationarity is very simply expressed in
this framework: by definition, it holds if, for all t, a shift of t leaves
the law of the process unchanged. In order to define ergodicity, we
have to first introduce the notion of invariant event.

Invariant Event: An invariant event for a shift operator {θt}
(for instance that of a point process) is an event A such that A =
θ−t(A) for all t ∈ R. An example of such a event is a set of paths
each of which has an infinite number of inter-arrivals larger than
some value x, because translation would not change this property
for any path in A, so θ−t(A) would contain exactly the same paths.
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Ergodic Shift: A shift is ergodic if all of its invariant events are
trivial; i.e. of probability either 0 or 1. For instance, all stationary
renewal processes are ergodic (e.g., see Section 1.6 of Chapter 1
in [1]). In particular, a periodic point process with a random phase
that is uniform over the period is both stationary and ergodic.

Let us return to the product space defined above. One can define
a product shift which operates, simultaneously but independently,
on both P and T . We would like this product shift to be ergodic,
in which case we say that P and T are jointly ergodic. However, a
pitfall here is that for this to be true, it is not enough that one or the
other, or even both, of the probe process and cross-traffic process
be ergodic in their own right. To see the significance of this, we
continue the ‘periodic-periodic’ example from Section 3.2.1.

Let the event A be those sample paths where, for all n, Tn −
Cn < 0.25, where Tn and Cn are respectively the arrival time of
the n-th probe and n-th cross-traffic packet. For our phase locked
example, this translates to P(y−z < 0.25) = 0.25. However since
the offset between the two streams is fixed at y − z for all n, A is
an invariant event, yet it has probability which is neither 0 nor 1.
Hence, the product shift is not ergodic, despite each of the streams
being individually ergodic. This example is the simplest one of its
kind, but is by no means the only one. Such periodic behaviors are
actually common in IP networks, for example when dealing with a
small number of persistent TCP flows on an access link.

3.2.3 Palm Probability
As pointed out in Section 3.1, probing fundamentally involves

sampling. Whereas the underlying observable Z(t) is a process
in continuous time, in practice we must work with discrete obser-
vations taken at stochastic times. Palm Calculus [1] is a body of
results dealing with how the probabilistic laws governing a process
in fact depend on the ‘conditional viewpoint’ from which they are
‘observed’.

On our product space, the Palm probability P0 with respect to
the probe point process is defined by

P0(Z(0) ∈ B) =
1

λ(b − a)
E

h X
Tn∈(a,b]

1Z(Tn)∈B

i
,

for any real numbers a ≤ b, where λ is the intensity of the probing
point process. Hence, the Palm probability is the average fraction
of probes in (a, b] which observe Z(t) as being in the set B. As B
is arbitrary, this is equivalent to knowing the entire distribution.

We now show that when probes are non-intrusive and indepen-
dent of cross-traffic, then P0[Z(0) ∈ B] = P [Z(0) ∈ B], for all
B. Let N(a, b] denote the number of probes in (a, b]. From the
independence assumption and the fact that Z is a function of the
cross-traffic point process only, we have

P0(Z(0) ∈ B) =
1

λ(b − a)
E

h X
Tn∈(a,b]

1Z(Tn)∈B

i

=
1

λ(b − a)

X
n≥0

PP(N(a, b] = n)

Z
Rn

nX
k=1

PT (Z(tk) ∈ B)fn(d(t1, . . . , tn)),

with fn(d(t1, . . . , tn)) denoting the law of the epochs of the n
probes falling in the interval (a, b] given that there are exactly n
probes in this interval. By stationarity, for all k PT (Z(tk) ∈ B) =

PT (Z(0) ∈ B). Hence

P0(Z(0) ∈ B) =
1

λ(b − a)
EP

h X
Tn∈(a,b]

PT (Z(0) ∈ B)
i

= P (Z(0) ∈ B)
1

λ(b − a)
E

h X
Tn∈(a,b]

1
i

= P (Z(0) ∈ B). (5)

This result implies that the underlying law of the observable as
seen by independent probes (represented by P0) is equal to the
‘ground truth’ (represented by P ).

3.3 NIJEASTA and NIMASTA
In this section we give two theorems which build on the above to

establish broad conditions under which Equation (4) holds.
The significance of the joint ergodicity property stems from the

pointwise ergodic theorem of Birkhoff. This theorem implies (see
Section 1.6 in Chapter 1 of [1]) that when the product shift is er-
godic, for all stationary stochastic processes Z(t) defined on the
product space, and for all positive functions f , the following (al-
most sure) limit exists

lim
N→∞

1

N
f(Z(Tn)) = E0[f(Z(0))] (6)

where E0 denotes the Palm probability of the probe point process.
We can now give our main result

THEOREM 1. If the product shift is ergodic and the probing
stream is independent of cross-traffic, then Equation (4) holds.

Proof: Since the product shift is ergodic, it follows from Property
1.6.3 pp.52 in [1] that the discrete shift θT1 is ergodic w.r.t. the
Palm probability P0, so that for all positive functions f the limit

lim
N→∞

1

N
f(Z(Tn)) = E[f(Z(0))]

holds almost surely. The result then follows from (5). 
�
This result can be summarised as:
NIJEASTA: Non-Intrusive Jointly Ergodic Arrivals See Time Av-
erages.

The jointly ergodic assumption of NIJEASTA is similar to the
Lack of Anticipation Assumption of Wolff in that it states exactly
what is required, but does not say when it is true, which can be
inconvenient in practice. Our next theorem is classical ([16], Theo-
rem 6.1, pp.65) and states simple sufficient conditions under which
the joint ergodicity holds, based on the idea of mixing. A point
process P (or equivalently its shift) is said to be mixing4 if, for all
events A, B:

lim
t→∞

PP (A ∩ θ−t(B)) = PP(A)PP(B).

Intuitively, mixing is a special (and strong) form of ergodicity where
on separation under the shift, all memory between any sets A and
B is lost, so that they ultimately act as independent events.

THEOREM 2. The product space F of P and T is ergodic when-
ever at least one of them is a mixing process, and the other ergodic.

Of the two cases covered here, that of a mixing probe process has
practical importance, because although we may suspect that cross-
traffic is mixing, especially in the Internet backbone where myriads
of random effects wash out deterministic synchronisation, we can-
not guarantee it. On the other hand, if we choose to use probing
processes which are mixing, we are assured of satisfying the joint

4In fact both weak and strong mixing can be defined [16]
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Figure 7: Simulation illustrating NIMASTA in a multi-hop sys-
tem, and sampling bias due to phase-locking. Left set of curves:
periodic cross-traffic on hop 1, Right: window-constrained
TCP flow on hop 1.

ergodicity conditions required for zero sampling bias, regardless
of the dynamics of cross-traffic. To highlight this property, which
generalises PASTA (in the non-intrusive case!), we coin:
NIMASTA: Non-Intrusive Mixing Arrivals See Time Averages.

It is useful to review at this point the observations of Section 2.
Three kinds of processes appeared there: stationary renewal pro-
cesses (with exponential, uniform, or Pareto inter-arrivals), the pe-
riodic process (with random phase), and the EAR(1) process. As
is well known [3], renewal processes are mixing provided that the
support of the inter-arrival distribution contains an interval where
the density is larger than a positive constant, and the EAR(1) pro-
cess is also strongly mixing [5]. However, the periodic process is
not, although it is ergodic. The non-intrusive examples throughout
Section 2, in particular in Section 2.3, illustrate NIMASTA and NI-
JEASTA at work, depending on which traffics are mixing or not.
Finally, note that it is easy to construct a great variety of mixing
processes, for example using Markov processes with a particular
structure, as we will see in the next section.

Figure 7 illustrates NIMASTA for a more complex network: a
3 hop FIFO route with capacities of [6, 20, 10] Mbps. Each hop
carries 1-hop-persistent cross-traffic which, for hop [1, 2, 3] respec-
tively, were chosen to be [ periodic, Pareto, TCP ] or [ TCP, Pareto,
TCP ], combinations which include potential for phase locking, long-
range dependence, and feedback (a single TCP flow is used). For
space reasons we omit many details in this ‘proof of principle’ ex-
ample, which was generated using ns-2 [21], modified to allow the
ground truth Z(t) to be calculated accurately (see Section 7). Two
sets of results are given in the figure, depending on whether the
cross-traffic on hop 1 is periodic, or window-constrained TCP. In
each case the delay marginals show that NIMASTA holds for each
of the mixing probe traffics, but not for the periodic probes, which
become phase locked. In the TCP case (right set of curves), the
period is commensurate with the round-trip time of the TCP flow
on the first hop, whereas in the other case (left curves), the periods
were chosen to be simple multiples.

3.4 From Delay to Jitter
So far we have considered positive functions f which act on Z at

a single time point only. In fact more general functions of the form
f(Z(0), Z(t1), . . . , Z(tk)) can be considered, which gives access
to the temporal structure of Z. Key examples are the n-dimensional
distributions of the process, and the delay variation or jitter.

Palm Calculus can deal with this greater generality by consid-
ering clusters of (non-intrusive) probes sent at epochs {Tn} that
form a stationary and ergodic point process. Each cluster consists
of k + 1 probes sent at times Tn + ti, i = 0, . . . k with t0 = 0.
Palm calculus can then be applied by formulating the clusters as
marks, the probe process thereby becoming a marked point process
(for details see [1]). As before one can then measure without bias
the average behaviour of any such function, that is:

lim
N→∞

1

N

NX
n=1

f(Z(Tn), . . . Z(Tn+tk)) = E[f(Z(0), . . . Z(tk))].

For example, we show how to measure jitter on a time scale of
τ , that is, we desire the distribution of Jτ (t) = Z(t + τ ) − Z(t).
Let the clusters arrive as a renewal process with inter-arrivals dis-
tributed uniformly over [9τ, 10τ ]. This process is mixing. Each
cluster will consist of two points, the cluster seed at Tn, and a
trailing probe at Tn + τ . We then simply collect the jitter val-
ues {Jτ (Tn)} and estimate its distribution by forming a histogram
(technically, this implies defining multiple functions f , each an in-
dicator function for a histogram bin, and counting the hits in each.
These counts are positive, although jitter itself takes either sign).

4. INTRUSIVE MEASUREMENT
The last section dealt with the non-intrusive case. Here we con-

sider implications for inversion and sampling bias arising from ‘real’
probes of positive size. We then combine our findings to conclude
that Poisson probing should no longer be regarded as a viable de-
fault choice, and suggest an alternative.

The key new element is that now probes influence system evo-
lution. This does not affect the existence of the virtual delay pro-
cess W (t) (what a zero sized observer would see when arriving to
the system), nor our final aim, namely to measure the ground truth
Z∗(t), the delay that would be observed by a positive sized probe
arriving to the unperturbed system at time t. However there are
several important changes:
(i) our observable Z(t) is no longer W (t), as the available data is
now what a real probe of positive size would experience;
(ii) observations of Z(t) are not observations of Z∗(t): an inver-
sion issue arises;
(iii) each of Z(t), Z∗(t) and W (t) now depends on the probe pro-
cess, in particular the probe size.

Our goal is to estimate Z∗(t) using observations of Z(t) at the
probing times Tn, and to determine in what sense, if at all, the
following modified form of Equation (4) holds:

lim
N→∞

1

N

NX
n=1

f(Z(Tn)) = E[f(Z∗(0))]. (7)

Notice that this equation defaults to Equation (4) if probes are non-
intrusive, in which case Z(t) = Z∗(t) = W (t).

4.1 PASTA
We revisit PASTA with an emphasis on probing applications.

The general setting of Section 3.1 continues to hold, with the changes
as listed above.

In the intrusive case, sampling bias is typically present. For in-
stance, consider the ‘Uniform’ renewal process with support on
[0.9μ, 1.1μ] in the left hand plot in Figure 5. The negative bias
results from the probes only weakly seeing the contribution to load
of other probes, which arrive at least 0.9μ from them.

There is no reason for Equation (5) to hold in general. However,
the PASTA property of Wolff [22] states that, for Poisson probes, it

239



0.04 0.042 0.044 0.046 0.048
0

0.2

0.4

0.6

0.8

1

Delay (secs)

C
D

F

20 Byte Probes
40 Byte Probes
60 Byte Probes
80 Byte Probes
No Inversion Bias

Figure 8: Simulation illustrating the validity of PASTA in a
multi-hop system, albeit with inversion bias, for 4 different
packet sizes (intrusiveness levels).

does, provided the Lack of Anticipation Assumption (LAA) holds.
However, we are not told which network scenarios satisfy LAA,
and therefore when PASTA will hold for real probing involves many
open questions. We therefore provide the following result and sketch
of proof, which states that PASTA does in fact hold for delay in the
traditional path model.

THEOREM 3. Under the above assumptions, for Poisson probes
(intrusive or not), in a FIFO tandem queueing network,

P0(Z(0) ∈ A) = P (Z(0) ∈ A). (8)

Sketch of proof: In a FIFO tandem queueing network, Z(t) is
predictable w.r.t. the filtration {Ft}, where Ft is the smallest σ-
field that contains the past of the probe process before time t and
the (independent) σ-field that contains the whole history of the CT
marked point processes (see [1], sections 1.8, 3.3).

Further, since a Poisson process is mixing, Theorem 2 is true and
so the product shift is ergodic. Using Equation (8) then allows the
same steps as in Section 3.3 to carry through, yielding

lim
N→∞

1

N

NX
n=1

f(Z(Tn)) = E[f(Z(0))]. (9)

This statement of PASTA in our setting reaffirms the fact that what
it provides is unbiased sampling of (functions of) the total system
Z. This says nothing about Equation (7), which includes the inver-
sion step taking us back to our target, Z∗.

Figure 8 illustrates PASTA using a 3-hop network with capacities
of [2, 20, 10] Mbps. Each hop carries 1-hop-persistent cross-traffic
which is of type [periodic,Pareto,TCP], a combination which in-
cludes long-range dependence, and potential for phase-locking due
to either the TCP (again a single flow) or periodic streams. Again
for space reasons we omit details. Delay marginals, obtained from
50000 probes, are plotted over a range of intrusiveness, achieved
with 4 different probe sizes. The results show, as we expect, that
PASTA continues to hold for delay, despite the dangerous periodic
components of cross-traffic, but that inversion bias is a problem.

4.2 Controlling Intrusiveness
One strategy to reach the objective of Equation (7) is to use a

minimally perturbative stream to reduce bias (e.g., [23]). When
packet sizes cannot be made arbitrarily small, non-intrusiveness
can be achieved by ‘rare probing’, i.e., making the inter-arrival
times large. The aim of the present section is to give a justifica-
tion of this strategy in a limited but natural setting.

Setting: We assume that the queueing system without probes
is described by a Markov kernel in continuous time, Ht, on some
denumerable state space E that is irreducible and positive recurrent
with stationary probability π. We assume that the transmission of a
probe is represented by applying another Markov kernel K; more
precisely, if the state of the system just before a probe is sent is
described by the probability measure ν on E , then the law of the
state of the system when this probe reaches the receiver is νK (also
on E ). Probe n + 1 is sent a random time aτ after n is received,
where a ∈ R

+ is a scaling factor and τ has law I on R
+. Hence,

the probes are not renewal.
The Markov kernel of the total system (describing the law of the

system just before probes are sent) is given by

bPa = K

Z
t

Hat I(dt) .

We also assume that bPa is irreducible and positive recurrent on E ,
with stationary probability πa, provided a is large enough.
Rare Probing: By definition, rare probing is obtained when a
goes to infinity. Within the setting of this subsection, the LHS of
Equation (7) is a.s. equal to

P
i πa(i)f(i) (thanks to the ergodic

theorem for Markov chains), whereas its RHS is
P

i π(i)f(i). Our
main result (proved in the appendix) on rare probing is:

THEOREM 4. Assume that (i) The Markov kernel Ht is s.t. the
parameters of the exponential sojourn times in the states of E are
uniformly bounded from above. (ii) The Markov kernel J of the
embedded chain of Ht is α-Doeblin for some 0 < α < 1. (3)
The law I has no mass at 0 (i.e. probe transmissions are always
separated). Then Equation (7) holds in the following asymptotic
sense: for all bounded functions f , for all ε > 0, there exists an A
such that for all a > A,˛̨X

i

πa(i)f(i) −
X

i

π(i)f(i)
˛̨
< ε. (10)

Notice that the above limit implies that both inversion and sampling
bias go to zero.

Our theorem, valid for delay only, and under a particular set of
conditions, is only an indication of the kind of result that could be
obtained based on ‘rarity’. There is much scope for future work in
this technically challenging area.

4.3 A Replacement for Poisson Probing
In active probing practice, PASTA has been employed either as

a default choice, or in the belief that it will lead to zero estima-
tion bias, and always in the expectation that it can do no harm.
We claim that there is little justification in applying PASTA in the
overwhelming majority of situations, and consequently that Pois-
son probing as a default is both undeserved and misleading, and
should be replaced. We recap the case against Poisson probing
before suggesting what it could be replaced with. As a detailed
summary already appears in the introduction, here we present an
account focusing on practical implications.
Inflexibility: NIMASTA and rare probing show that there is a
large class of probing streams which avoid both sampling bias (if
intrusiveness is controlled) and the possibility of phase-locking.
Poisson probing is a lost opportunity to explore this space to mini-
mize inversion bias as well as variance.
Inapplicability to probe patterns: The techniques of active prob-
ing are rarely based on isolated probes. Section 3.4 showed that
NIMASTA is useful for (mixing) probe patterns, which could be
crafted to achieve given measurement aims. Naturally, Poisson
probes cannot form patterns with desired properties. Exponen-
tially distributed probe pattern inter-arrivals have been suggested
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for packet pairs [20], and packet trains [9]. However, there is no
theoretical rationale for this. In active probing PASTA applies only
to a stream of Poisson packets, and cannot justify any inference
based on temporal behaviour between probes of a pair, where inter-
actions are not memoryless.
Beyond delay, inversion bias dominates: The techniques of ac-
tive probing frequently look beyond end-to-end delay. As the tar-
get Z∗(t) moves from the observable itself to quantities which are
far removed from it (such as details of CT at individual hops), the
inversion task becomes increasingly complex. Even in the non-
intrusive case, complex inversion is required (which if poorly per-
formed results in large inversion bias) except in very special cases
such the system end-to-end delay. PASTA does not solve this prob-
lem, indeed Poisson probing prevents probe patterns from being
designed which could help circumvent the hard inversion problem.

There is no single probing guideline which offers optimality for
all probing purposes, and in particular, it is beyond the scope of this
paper to derive optimal probe patterns. Instead, we wish to provide
a new default for probe sending to replace exponential separation in
contexts where the sending of many separate probe patterns applies.
We seek the following features:

• Suitable for separating probe patterns, not only probes,
• Generic, to allow freedom in probe pattern design: we spec-

ify pattern separations, not the entire process,
• Compatible with mixing, to reduce the risk of phase-lock,
• Tunable, to enable bias/variance tradeoffs.

The following choice satisfies these criteria:
Probe Pattern Separation Rule: select inter-probe (or probe pat-
tern) separations as i.i.d. positive random variables, with a dis-
tribution which contains an interval where the density is bounded
above zero, and whose support is lower bounded away from zero.

In the special case where each probe pattern is a single probe, this
separation rule fully specifies a probing arrival process, namely a
mixing renewal process. An example is given by the renewal pro-
cess with inter-arrivals uniformly distributed over [0.9μ, 1.1μ] of
Figure 6. Since the support is lower bounded at 0.9μ, probes are
guaranteed to be well separated, enabling them to act more inde-
pendently, thereby reducing variance. Whereas the mean separa-
tion μ can be used to control probe rarity, the lower bound (and
distribution shape) can be tuned to tradeoff sampling bias, inver-
sion bias and variance.

In the case of probe patterns, the rule does not by itself specify
the probe process, nor, therefore, determine all of its properties.
However, selecting separations to be i.i.d. inherently ‘encourages’
mixing (recall section 3.4 in the non-intrusive case). Again, the
enforced separation helps the patterns to make uncorrelated mea-
surements, reducing variance. Finally, note that the support can
be tuned close to zero if necessary, so Poisson-like probing is not
excluded, for the (rare) cases where this is truly appropriate.

5. RELATED WORK
The problem of identifying the conditions under which observa-

tions of a stochastic system coincide with the stationary distribution
of the observed process has a long history, starting with Descloux
in 1967 [4]. Wolff named, gave the first rigorous proof for, and
popularized the PASTA principle [22], although that principle was
known earlier. Refer to [11] for a thorough review of pre-1990
work. Melamed and Whitt [11] later derived conditions for ASTA
(Arrivals that See Time Averages) to hold.

The use of PASTA to justify network measurements of at Pois-
son epochs was pioneered by Paxson. He [13, 14], carried out mea-

surements of the “routing state”, delays, losses and TCP bulk trans-
fers at Poisson epochs. The IETF IP Performance Metrics (IPPM)
Group [7] built upon PASTA and Paxson’s results to recommend
the use of Poisson sampling, for example in RFC 2330 [15]. RFC
2330 also observes that non-Poisson probes such as uniform, geo-
metric, additive random, or other probes can be used for a variety of
practical reasons; for example, the interval between Poisson probes
can be arbitrarily large or small, and such probes cannot be im-
plemented in real systems, hence the need to use implementable
and “close enough to Poisson” probes such as truncated Poisson
probes. Note that all the probing processes mentioned above have
the mixing property required for the NIMASTA theorem to hold.

Since then, Poisson probing has become part of the conventional
wisdom of network measurements [23, 20, 9]. Recent work has
attempted to better understand the impact of PASTA and the design
of estimators for active probing. Bin Tariq et al. [12] empirically
examined the difference between Poisson and periodic sampling,
and show that, in many cases, the difference between estimates of
delay and loss obtained with Poisson and periodic probes are not
significant. Sommers et al. [19] set out to understand the probing
process best suited to measure packet loss. They propose the use of
a geometrically distributed packet pair to estimate the duration of
loss periods better than can be done with Poisson probes. Roughan
analyzed the Poisson probing of queueing systems and the impact
of correlations in the observed (delay) process [18, 17]. Roughan’s
work is another step towards developing estimators that take not
just bias but also variance into account.

There is a substantial literature on perturbation analysis (see [6])
which addresses the ‘reversed’ problem of determining the behav-
ior of a perturbed system from that of the unperturbed one. How-
ever, there are no immediate or simple answers to the difficult inver-
sion problems of active probing, for example as explored in [10].

6. CONCLUSION
We provide a rigorous analysis of the precise role and relevance

of PASTA in designing estimators for network measurement. Con-
ventional wisdom holds that Poisson sampling must be used to
avoid bias, and the PASTA property is cited as justification. Us-
ing end-to-end delay as a tractable example, we show that this is
simplistic, and ignores two important crucial aspects of probing -
inversion to the parameter of interest, and intrusiveness. We derive
’NIMASTA’, the fact that zero sampling bias is shared by a large
set of mixing probing processes in the non-intrusive case, which
also avoid phase-lock problems. The zero estimation bias property
is exclusive to Poisson only when probes are intrusive. However,
it is extremely challenging to invert from observed delay values to
the target parameter, resulting in inversion bias, which can dom-
inate over sampling bias. Hence, even with Poisson probes, it is
desirable to make them non-intrusive, by sending them as rarely as
possible, and we give a theorem making this precise. In the rare
case however (as well as generally) the choice of the best prob-
ing stream is dependent on the total bias (sampling and inversion)
and variance, and furthermore, we explain why PASTA cannot be
used to justify exponentially separated packet pairs or trains. We
conclude that Poisson probing is rarely indicated, and recommend
a Probe Pattern Separation Rule as an alternative default for both
probes and probe patterns, which offers several advantages.

7. APPENDIX
Sketch of proof of Theorem 4 The idea of the proof is: if probes
are separated by a time which is long compared to the ”speed of
convergence to steady state” of the unperturbed system, then probes
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should sample a distribution close to that of the unperturbed sys-
tem. To make this rigorous, we need assumptions on the speed of
this convergence. The Doeblin property is one such assumption.

Let α ∈ (0, 1). A Markov P kernel is α-Doeblin if it can be rep-
resented in the form P = (1−α)A+αQ where Q is some Markov
kernel on E and A is a rank 1 Markov kernel, namely the matrix A
has all its lines equal. A sufficient condition for a Markov kernel
P to be α-Doeblin is that ∀j, P (i, j) ≥ (1 − α)φ(j) uniformly
on i, for some probability measure φ on E . Our assumption is that
the Markov kernel J of the embedded chain of Ht is s.t. Jn is
α-Doeblin for some constant 0 < α < 1 and some integer n > 0.

The proof relies on the following classical properties, where ||.||
denotes the L1 norm. (1) All Markov kernels P on E are non-
expansive for the L1 norm in the sense that if ν and ν′ are prob-
ability measures, then ||νP − ν′P || ≤ ||ν − ν′||. (2) All α-
Doeblin Markov kernels P are α-contracting for that norm, that is
such that for all ν and ν′ as above ||νP − ν′P || ≤ α||ν − ν′||
which is immediate from the representation P = (1 − α)A + αQ
and (1). (3) All α-Doeblin Markov kernels P that admit an in-
variant probability κ are such that for all probability measures ν,
||νP n − κ|| ≤ αn||ν − κ|| (this follows from (2)). This uniform
contraction property gives the uniform speed of convergence al-
luded to above. (4) If K is an arbitrary Markov kernel on E and H
is α-Doeblin, then KH and HK are both α-Doeblin.

We will also use the following lemma, which shows that any
probability measure which is ”nearly invariant” w.r.t. an α-Doeblin
Markov kernel is close to the invariant measure of this kernel:

LEMMA 7.1. If P is an α-Doeblin Markov kernel with station-
ary distribution π and if ν is a probability measure such that ||ν −
νP || ≤ ε, then ||π − ν|| ≤ ε/(1 − α).

The proof follows from: ||π − ν|| = ||π − νP + νP − ν|| ≤
||πP − νP || + ||νP − ν|| ≤ α||π − ν|| + ε.

The first step to prove Theorem 4 is to show that, ∀a large enough,bHa =
R

HatI(dt) is β-Doeblin for some coefficient β that does
not depend on a. Let B be a Borel set of R such that I(B) > 0 and
such that b, the infinimum of the points of B, is positive (such a set
exists because of our assumption on I). In view of the exponential
law of the sojourn times in the state of the continuous time Markov
chain {Ht}, there is a probability q > 0 that there are n jumps of
the chain in the interval [0, b]. Hence for a > 1:

bHa =

Z
HatI(dt) ≥

Z
B

HatI(dt)

=

Z
B

HbHat−bI(dt) = Hb

Z
B

Hat−bI(dt) ≥ qJnGa,

where Ga is the sub-Markov kernel
R

B
Hat−bI(dt). Since we as-

sumed Jn to be α-Doeblin we get that, bHa ≥ qJnGa ≥ q(1 −
α)AGa = βBa, where Ba = AGa is a substochastic matrix of
rank 1 and where 0 < β = q(1 − α) < 1 does not depend on a,
which concludes the proof of the first step in view of Property 4.

The second step consists in showing that for all probability mea-
sures ν on E , lima→∞ ||π − ν bHa|| = 0. Since {Ht} is Doeblin,

lim
a→∞

||νHat − π|| = 0 ∀ t > 0. (11)

This concludes the proof of the second step since we have

lim
a→∞

||π − ν bHa|| = lim
a→∞

||
Z

t

(π − νHat)I(dt)|| ≤

lim
a→∞

Z
t

||π − νHat||I(dt) =

Z
t

lim
a→∞

||π − νHat||I(dt) = 0,

where we used Lebesgue’s dominated convergence theorem to in-
terchange the integral and the limit, and then (11).

The first step and Property 4 imply that Pa = K bHa is β-Doeblin.
When choosing ν = πK in the second step, we get that ∀ε > 0,
||π−ν bHa|| = ||π−πPa|| ≤ ε for a large enough. Hence, Lemma
7.1 implies that for a large enough, ||π − πa|| ≤ ε

1−β
. The result

then follows from immediate bounds. 
�
Enhancements to NS-2 to measure ground truth Z∗(t)
Using the traces of all arrivals and departures from a single hop,
we store the queue size Wh(t) of hop h at any time t by exploiting
the fact that it is piecewise linear. The Wi(t) are combined over
hops to calculate Zp(t), the delay that a packet of size p injected
at an arbitrary time t would have experienced. If Dh denotes the
propagation delay of hop h, then Zp(t) is given recursively by

Zp(t) = W1(t) + p/C1 + D1 +

W2(t + W1(t) + p/C1 + D1) + p/C2 + D2 +

W3(. . .) . . . to the last hop. (12)
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