
On the Self-Similar Nature of Ethernet Traffic

Will E. Leland~
wel@bellcore. com

Walter Willinger~

walter@bellcore .com

f’Bellcore

445 South Street
Morristown, NJ 07960-6438

Abstract

We demonstrate that Ethernet local area network (LAN) traffic

is statistically self-similar, that none of the commonly used

traffic models is able to capture this fractal behavior, and that
such behavior has serious implications for the design, control,
and analysis of high-speed, cell-based networks. Intuitively, the
critical characteristic of this self-similar traffic is that there is no
natural length of a “burst”: at every time scale ranging from a
few milliseconds to minutes and hours, similar-looking traffic
bursts are evident we find that aggregating streams of such
traffic typically intensifies the self-similarity (“burstiness”)
instead of smoothing it.

Our conclusions are supported by a rigorous statistical analysis
of hundreds of millions of high quality Ethernet traffic
measurements collected between 1989 and 1992, coupled with a
discussion of the underlying mathematical and statistical
properties of self-similarity and their relationship with actual
network behavior. We also consider some implications for
congestion control in high-bandwidth networks and present
traffic models based on self-similar stochastic processes that are
simple, accurate, and realistic for aggregate traffic.

1. INTRODUCTION

The main objectives of this paper are (i) to establish in a

statistically rigorous manner the self-similarity characteristic or,
to use a more popular notion, the fractal nature of the high
time-resolution Ethernet traffic measurements of Leland and
Wilson (1991), (ii) to illustrate some of the most striking

differences between self-similar models and the standard models
for packet traffic currently considered in the literature, and (iii)

to demonstrate some of the serious implications of self-similar
network traffic for the design, control, and performance analysis

of high-speed, cell-based communications systems.

Intuitively, self-similar phenomena display structural similarities

across all (or at least a very wide range of) time scales. In the
case of Ethernet LAN traffic, self-sirnikuity is manifested in the
absence of a natural length of a “burst”; at every time scale
ranging from a few milliseconds to minutes and hours, bursts
consist of bursty subperiods separated by less bursty subperiods.
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We also show that the degree of self-similarity (defined via the

Hurst parameter-) typically depends on the utilization level of
the Ethernet and can be used to measure “burstiness” of LAN
traffic. The term “self-similar” was formally defined by

Mandelbrot. For applications and references on the theory of

self-similar processes, see Mandelbrot (1983) and the extensive

bibliojgaphy by Taqqu (1985). For an early application of the

self-similarity concept to communications systems, see the

seminal paper by Mandelbrot (1965).

In this paper, we use very high quality, high time-resolution

LAN traffic data collected between August 1989 and February
1992 on several Ethernet LANs at the Bellcore Morristown

Research and Engineering Center (MRE). Leland and Wilson
(1991 ) present a preliminary statistical analysis of this unique
high-quality data and comment in detail on the presence of

“burstiness” across an extremely wide range of time scales:
traffic “spikes” ride on longer-term “ripples”, that in turn ride on
still longer term “swells”, etc. This self-similar or apparently

fractal-like behavior of aggregate Ethernet LAN traffic is very

different both from conventional telephone traffic and from

currently considered formal models for packet traffic (e.g., pure
Poisson or Poisson-related models such as Poisson-batch or

Markov-Modulated Poisson processes (Heffes and Lucantoni

(1986)), packet-train models (Jain and Routhier (1986)), and

fluid flow models (Anick et al. (1982)), etc.). These differences

require a new look at modeling the traffic and performance of

broadband networks. For example, our analysis of the Ethernet
data shows that the generally accepted argument for the
“Poisson-like” nature of aggregate traffic, namely, that aggregate

traffic becomes smoother (less bursty) as the number of traffic

sources increases, has very little to do with reality. In fact, the

burstiness (degree of self-similarity) of LAN traffic typically

intensifies as the number of active traffic sources increases,

contraxy to commonly held views.

Because of the growing market for LAN interconnection

services, LAN traffic is rapidly becoming one of the major
potential traffic contributors for high speed networks of the
future such as B-ISDN. Another expected major contributor is
variable-bit-rate (VBR) video service. Since VBR video traffic
has recently been shown to display the same self-similarity

property as LAN traffic (see Beran et al. (1992)), self-similar
models provide simple, accurate, and realistic descriptions of
traffic scenarios to be encountered during high-bandwidth

network deployment.

In light of this new understanding of the nature of broadband

traffic, we also address some of the serious implications of self-
similar traffic for issues related to the design, control, and
performance analysis of high-speed, cell-based networks. As

one specific example, we consider the area of congestion
management and show that the nature of congestion produced
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by self-similar traffic differs drastically from that predicted by

traffic models currently considered in the literature and is far

more complex than has been typically assumed in the past. As a

result, proposed congestion control schemes that work well

assuming conventional traffic models typically perform less than
satisfactorily in a self-similar traffic environment. Finally, we

mention two approaches for modeling self-similar network
traffic.

The paper is organized as follows. In Section 2, we first briefly

describe the available Ethernet traffic measurements and
comment on the changes of the Ethernet environment during the

measurement period from August 1989 to February 1992. In

Section 3, we give the mathematical definition of self-similarity,
identify classes of stochastic models which are capable of

accurately describing the self-similar behavior of the traffic

measurements at hand, and present statistical techniques for
dealing with self-similar data. Section 4 describes our statistical

analysis of the Ethernet data, with emphasis on testing for self-

similarity. We illustrate our statistical methods with a variety of
different sets of Ethernet traffic data, taken at different times

during the measurement period, with quite different user

populations and gross traffic rates. We typically deal with time
series with hundreds of thousands of observations and are,
therefore, in the unique situation to rely on statistical results

known to hold asymptotically in the number of observations.
Finally, in Section 5 we discuss the significance of self-

similarity for traffic engineering, and for operation, design, and

control of B-ISDN environments. Among the implications

discussed are (i) infinite variance source models for individual
Ethernet users, (ii) inadequacies of commonly used notions of

“burstiness”, and (iii) better understanding of the nature of

congestion for broadband network traffic. We conclude with a
brief discussion of two different approaches for modeling self-

similar network traffic.

2. TRAFFIC MEASUREMENTS

The monitoring system used to collect the data for the present
study is custom built, records all packets seen on the Ethernet
under study with accurate timestamps, and will do so for very
long runs without interruption. The monitoring system is

designed so that traffic analysts need make no a priori decisions

as to what they are searching for when the data is taken other

than how much of each packet is to be saved. The monitor was

custom-built in 1987/88 and has been in use to the present day
with one upgrade. The original version is described at length,

including extensive testing of its capaci~ and accuracy, in

Leland and Wilson (1991). There is only one major difference
between the two versions: the updated version records

timestamps accurate to 20 ys versus the original version’s
accuracy of 100 ps.

2.1 BELLCORE’S NETWORK ENVIRONMENT

The MRE environment is probably typical of a research or
software development environment where workstations are the

primary machines on people’s desks. Table 1 gives a summary
description of the traffic data analyzed later in the paper. We
consider 4 sets of traffic measurements, each one representing

between 20 and 40 consecutive hours of Ethernet traffic and
each one consisting of tens of millions of Ethernet packets. The
data were collected on different intracompany LAN networks at
different periods in time over the course of approximately 4
years (August ’89, October ’89, January ’90, and February ‘92).
The traffic was mostly from services that used the Internet
Protocol (1P) suite for such capabilities as remote Iogin or
electronic mail, and the Network File SystemTM (NFS) protocol

for file service from servers to workstations. While it is not our

intent to provide here a detailed description of the particular
MRE network segments under study, some words about the

network environment from which each data set was taken are

appropriate.

The first two data sets were collected from a typical workgroup

or laboratory network which was isolated from the rest of the

Bellcore network by a router. At the time of collection of the
first (August ’89) data set, the laboratory consisted of about 140

people, most of whom had diskless Sun-3 TM-class workstations

on their desks. The network in the laboratory consisted of two
cable segments separated by a bridge, implying that not all
traffic within the laboratory could be seen by the monitor. The

hosts on this network consisted of workstations, their file

servers, and a pair of DEC 8650TM-class minicomputers. Only a
small number of hosts were reduced instruction set (RISC)

based. However, by the time the second data set (October ’89)
was collected, a massive upgrade of the Sun-3 class machines to

RISC-based SPARCstation lTM and DEC 3100-class machines

had taken place on this network, along with a small increase in

the number of hosts (from about 120 who spoke up during the

first collection to about 140 in the second set). This extensive

upgrade is the reason for the large increase in traffic volume
seen between the first two data sets. Note, for example, that the
“busy hour” from this October ’89 data set is indeed busy:
30.7% utilization as compared to 15.1% during the August ’89

busy how, similar increases can also be observed for the low
and normal hours. Less than 570 of the total traffic observed in

these two data sets was from conversations with hosts in the rest

of Bellcore or the outside world during the busy periods this

figure was more typically 1-2% of the total traffic observed.

The third data set, taken in January 1990 (row 3 in Table 1),

came from an Ethernet cable that linked the two wings of the

MRE facility that were occupied by a second laboratory. At the
time the data set was collected, this second laboratory comprised
about 160 people engaged in work similar to the first laboratory.
This particular Ethernet segment was unique in that it was also
the segment serving Bellcore’s link to the outside Internet
world. Thus the traffic on this cable was from several sources:

(i) two very active file servers (Sun 4/490TM’s) directly
connected to the segmen~ (ii) traffic (file service and remote

Iogin) between the two wings of this laboratory, (iii) traffic

between the laboratory and the rest of Bellcore, and (iv) traffic

between Bellcore as a whole and the larger Internet world. This

Ethernet segment was specifically monitored to capture this last

type of traffic, which we term external traffic. We studied both
the aggregate and external traffic from this and the last data set,

but as we shall see in Section 4 the external traffic was no
different from internal traffic as far as our analysis is concerned.
This segment was separated from both the Bellcore intemet and

the two wings of the laboratory by bridges, and from the outside
world by a vendor-controlled router programmed to pass

anything with a Bellcore address as source or destination. In

contrast to the two earlier data sets, over 1200 hosts spoke up
during the 40 hour monitoring period on this segment.

The last data set, taken in February 1992 (row 4 in Table 1) was
taken from the Ethernet “backbone” in the MRE facility.

Because of rising concern about network security, Bellcore’s
connection to the Internet world was moved to a Bellcore-
controlled “firewall” security router directly connected to the

buildlng backbone. Many major workgroups and laboratories
also inserted routers between their networks and the backbone;
previously they had been either directly connected or bridged.
The traffic on this backbone cable therefore consisted of (i)
traffic between workgroups and laboratories within the MRE
facility, including traffic between the two laboratories
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Traces of Ethernet Traffic Measurements

Measurement Period II data set \ total number I total number I Ethe et

of bvtes of packets utilization

AUGUST 1989 - total (27.45 hours) 11,448,753,134 27,901,984 9.3%

Start of trace:

Aug. 29, 11 :25am

End of trace:
Aug. 30, 3:10pm

OCTOBER 1989

Start of trace:

Oct. 5, 1 l:ooam

End of trace:

Oct. 6, 7:51am

JANUARY 1990

Start of trace:
Jan. 10, 6:07am

End of trace:

Jan. 11, 1017pm

FEBRUARY 1992

Start of trace:

Feb. 18, 5:22am

End of trace:

Feb. 20,5: 16am

low hour AUG89.LB 224,315,439 5.0%
(6:25am-7:25 am) AUG89.LP 652,909

normal hour IIAUG89.MB I 380,889,404 I I 8.5%
(2:25pm-3:25pm) AUG89.MP 968,631

busy hour AUG89.HB 677,715,381 15.1%
(4:25pm-5:25um) AUG89.HP 1,404.444

total (20.86 hours) 14,774,694,236 27,915,376 15.7%
11 , 1 I I

low hour II0CT89.LB I 468,355,006 I I 10.4%
(2:OOam-3:OOam) 0CT89.LP 978,911

normal hour 0CT89.MB 827,287,174 18.49Z0
(5:00pm-6:OOpm) 0CT89.MP 1,359,656

busy hour 0CT89.HB 1,382,483,551 30.7%
(11 :OOam-1200am) I 0CT89.HP 2,141,245

total (40. 16 hours) 7,122,417,589 27,954,961 3.9%

low hour (Jan. 11, JAN90.LB 87,299,639 1.9~o

8:32pm-9:32pm) JAN90.LP 310,038

normal hour (Jan. 10, JAN90.MB 182,636,845 4,1%

9:32am-10:32am) JAN90.MP 643,451

busy hour (Jan. 11, JAN90.HB 711,529,370 15.8%
10:32am-ll:32am) JAN90.HP 1,391,718

total (47.91 hours) 6,585,355,731 27,674,814 3.1%

low hour (Feb. 20, FEB92.LB 56,811,435 1.3%
l:21am-2:21am) FEB92.LP 231,823

normal hour (Feb. 18, FEB92.MB 154,626,159 3.4%
8:21pm-9:21pm) FEB92.MP 524,458

busy hour (Feb. 18, FEB92.HB 225,066,741 5.0%
ll:21am-12:21am) FEB92.HP 947,662

Table 1. Qualitative description of the sets of Ethernet traffic measurements used in the analysis in Section 4.

previously discussed, (ii) traffic from some individual hosts still

directly connected to the backbone, (iii) traffic from MRE to
other Bellcore locations via a mesh of bridged interlocution
links, and finally (iv) externol traffic from Bellcore to the

outside Internet world. Because there is very little workstation to
fileserver traffic on this cabIe, the overall load on this cable is

the lowest of any of the three data collection points considered.

The most radical difference between this data set and the others
is that the traffic is primarily router to router rather than host to

host. About 600 hosts spoke up during this measurement period

(down from about 1200 active hosts during the January ’90

measurement period), and the five most active hosts were

routers. The updated version of the monitor was used to collect
this data set. Overall, the 4 data sets cover a wide range of

network utilizations and host populations over a 4 year period.

3. SELF-SIMILAR STOCHASTIC PROCESSE5

The presentation below of the mathematical and statistical
properties of self-similar processes closely follows Cox (1984)
and Beran et al. (1992).

3.1 SELF-SIMILARITY BY PICTURE

For 27 consecutive hours of monitored Ethernet traffic from the
August 1989 measurements (first row in Table 1), Figure 1

depicts a sequence of simple plots of the packet counts (i.e.,
number of packets per time unit) for 5 different choices of time
units. Starting with a time unit of 100 seconds (a), each

subsequent plot is obtained from the previous one by increasing

the time resolution by a factor of 10 and by concentrating on a
randomly chosen subinterval (as indicated by the darker shade).

Recall that the time unit corresponding to the finest time scale is

10 milliseconds (e). Observe that aIl plots look intuitively very

“similar” to one another (in a distributional sense) and are

dktinctively different from white noise (i.e., an independent and
identically distributed sequence of random variables). Notice
also the scaling property (y-axis) and the absence of a natural
length of a “burst”: at every time scale ranging from
milliseconds to minutes and hours, bursts consist of bursty
subpenods separated by less bursty subperiods. This scale-
invariant or “self-similar” feature of Ethernet traffic is

drastically different from both conventional telephone traffic and
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Figure 1 (a)-(e). Pictorial “proof’ of self-similarity:

Ethernet traffic (packets per time unit for the August

’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic

on the different time scales.)

from stochastic models for packet traffic currently considered in

the literature. The latter typically produce plots of packet counts

which are indistinguishable from white noise after aggregating

over a few hundred milliseconds. This pictorial “proof’ of the

self-similar nature of Ethernet packet traffic suggests that
Ethernet traffic on one time scale is statistically identical (at
least with respect to its second-order statistical properties) to

Ethernet traffic on a different time scale and, thus, motivates the
use of self-similar stochastic processes for traffic modeling

purposes.

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive

description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xl: t = O, 1, 2, ...) be

a covariance stationary (sometimes called wide-sense

stationary) stochastic process; that is, a process with constant
mean p = E [Xt], finite variance 02 = E [(Xf – p)z], and an

autocorrelation function r(k) = E [(X, – f.L)(Xt, ~ – w)]
/E [(X, – W)2] (k= O, 1, 2, ...) that depends only on k. In

particular, we assume that X has an autocorrelation function of
the form

r(k) -alk-~, as k +CO, (3.2.1)

where O < ~ < 1 (here and below, a ~, a*, . . . denote finite

positive constants). For each m=l,2,3, ..., let

X(m) = (X~mJ: k = 1, 2, 3, ...) denote a new time series obtained

by averaging the original series X over non-overlapping blocks

of size m. That is, for each m = 1, 2, 3, . . . . X@J is given by
X~m)= l/m(Xh_m+l+ . . . +Xh), (k 2 1). Note that for

each m, the aggregated time series X ‘“’) defines a covaria.nce
stationary process; let r(m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) seCf-similar with

self-similarity parameter H = 1 – ~/2 if the corresponding
aggregated processes X ‘n) have the same correlation structure as

X,i.e., r(m)(k) =r(k), forallm=l,2, . . . (k=l,2,3, ..).
In other words, X is exactly self-similar if the aggregated

processes X(”’) are indistinguishable from X—at least with
respect to their second order statistical properties. An example

of an exactly self-similar process with self-similarity parameter

H is fractional Gaussian noise (FGN) with parameter

112< H <1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) selj-similar with self-similarity parameter
H = 1 – fV2 if r(m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).

The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with

0< d <112 are examples of asymptotically second-order self-

similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hoslcing

(1981 ).)

Intuitively, the most striking feature of (exactly or

asymptotically) self-similar processes is that their aggregiited
processes X(m) possess a nondegenerate correlation structure as
m + =. This behavior is precisely the intuition illustrated with

the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated

time series X(lW), X(lW), X(lW), and X(lO), respectively. All of
the plots look “similar”, suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of

equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X(m)) - a2rn-b,

as m + CO, with O < ~ < 1; (ii) the autocorrelations decay

hyperbolically rather than exponentially fast, implying a rlon-
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summable autocorrelation function ~~ r(k) = co (long-range

dependence), i.e., r(k) satisfies relation (3.2. 1); and (iii) the
spectral density ~ (. ) obeys a power-law behavior near the

origin (l/j-noise), i.e., ~(k) - a3Aq , as A + O, with O < y <1
andy=l–~.

The existence of a nondegenerate correlation structure for the

aggregated processes X ‘m) as m -+ = is in stark contrast to

typical packet traffic models cmently considered in the
literature, all of which have the property that their aggregated
processes X(m) tend to second order pure noise, i.e., r(m)(k)+ O,

asm-+_(k=l,2, . . . ). Equivalently (see COX(1984)), they
can be characterized by (i) a variance of the sample mean that
decreases like the reciprocal of the sample mean, (ii) an

autocomelation function that decreases exponentially fast,

implying a summable autocorrelation function ~~ r (k) < ~

(short-range dependence), or (iii) a spectral density that is

bounded at the origin,

Historically, the importance of self-similar processes lies in the
fact that they provide an elegant explanation and interpretation
of an empirical law that is commonly referred to as Hurst’s km

or the Hurst effect. Briefly, for a given sgt of observations

(X~: k = 1, 2, .... n) with sample mean X(n) and sample
variance S 2(n ), the resealed adjusted range or the RIS statistic is

given by R (n)/S(n) = I/S(n) [max(O, WI, Wz, .... W.) –

mjn(O, WI, W2, .... W.)], with Wk=(X1 +X2+ . . . +XJ -

H(n), k =1, 2, .... n. Hurst (1955) found that many naturally

occurring time series appem to be well represented by the
relation .!3[R (n)/S(n)] - a4nH, as n+=, with Hurst
parameter H “typically” about 0.73. On the other hand, if the

observations X~ come from a short-range dependent model, then

Mandelbrot and Van Ness (1968) showed that
EARLS] -a5n05, as n +=. This discrepancy is
generally referred to as the Hurst effect or Hurst phenomenon.

Finally, for an attempt to explain self-similarity in terms of
representing some underlying physical process, we refer to a
construction originally introduced by Mandelbrot (1969) (see

also Taqqu and Levy (1986)) of self-similar processes based on

aggregating many simple renewal reward processes exhibiting
inter-renewal times with infinite variances (i.e., “heavy-tails”).

That is, the distribution of the inter-renewal times U satisfies

P[fJ2z4]-a6u=, as u + W, 1< ct <2 (e.g., stable (Pareto)

distributions with parameter 1< a < 2). Producing self-
similarity by aggregating more and more i.i.d. copies of

elementary renewal reward processes relies crucially on thk
“heavy-tail property” of the inter-renewal times and provides an
intuitive explanation for the occurrence of self-similarity in

high-speed network traffic (see Section 5).

3.3 THE STATISTICS OF SELF-SIMILARITY

Since slowly decaying variances, long-range dependence, and a

spectral density obeying a power-law behavior are different
manifestations of one and the same property of the underlying

covariance stationary process X, namely that X is
(asymptotically or exactly) self-similar, we can approach the

problem of testing for and estimating the degree of self-

simikwity from three different angles: (1) time-domain analysis
based on the R/S-statistic, (2) analysis of the variances of the

aggregated processesX(m), and (3) periodogram-based analysis
in the frequency-domain. This subsection provides a brief

discussion of the graphical R/S analysis and briefly mentions
methods (2) and (3). We witl illustrate the use of these methods
in our analysis of the Ethernet data in Section 4 below.

The objective of the R/S analysis of an empirical record is to

infer the degree of self-similarity H (Hurst parameter) in relation

(3. 1.6) for the self-similar process that presumably generated the

record under consideration. In practice, R/S analysis is based on

a heuristic graphical approach (originally described in detail in

Mandelbrot ‘and Wallis (1969)) that tries to exploit as fully as

possible the information in a given record. The following

gaphical method has been used extensively in the past. Given a
sample of N observations (X~ : k = 1, 2, 3, . . . , N), one
subdivides the whole sample into K non-overlapping blocks and

computes the resealed adjusted range R (ti$ n)/S (ti, n) for each
of the new “starting points” tl= 1, tz=NIK+l,
t3=2NlK+l, . . . which satisfy (ji - 1) + n s N. Here, the

R/S-statistic R (t,, n)/S (t,, n) is defined as above with W~

replaced by W,, +~ – W(l and S2(ti, n) is the sample variance of

X,,+1,X,,+2, “.. ,Xt,+n. Thus, for a given value (“lag”) of n,

one obtains many samples of R/S, as many as K for small n and

as few as one when n is close to the total sample size N. Next,
one takes logarithmically spaced values of n, starting with

n ~ 10. Plotting log (R (t,, n)/S (ti, n)) versus log (n) results in
the resealed adjusted range plot (also called the po,x diagram of
R/S). When the parameter H is well defined, a typical resealed

adjusted range plot starts with a transient zone representing the
nature of short-range dependence in the sample, but eventually

settles down and fluctuates in a straight “street” of a certain

slope. Graphical R/S analysis is used to determine whether such

asymptotic behavior appears supported by the data. In the

affirmative, an estimate H of the self-similarity parameter H is

given by the street’s asymptotic slope (typically obtained by a

simple least squares fit) which can take any value between 1/2
and 1. For practical purposes, the most useful and attractive

feature of the R/S analysis is its relative robustness against

changes of the marginal distribution. This feature allows for
practically separate investigations of the self-simikdy property

of a given empirical record and of its distributional
characteristics.

We have observed that for self-similar processes, the variances
of the aggregated processes X(m) (m = 1, 2, 3, . . . ) decrease
linearly (for large m) in log-log plots against m with slopes

arbitrarily flatter than –1. The so-called variance-time plots are

obtained by plotting log(v~(X(m))) against log(m) (“time”) and

by fitting a simple least squares line through the resulting points

in the pl~ne, ignoring the small values for m. Values of the

estimate ~ of the asymptotic slope between – 1 and O suggest

self-similar$y, and qn estimate for the degree of self-similarity

is given by H = 1 – fi12.

The absence of any limit law results for the statistics
corresponding to the R/S analysis or the variance-time plot

makes them inadequate for a more refined data analysis (e.g.,
requiring confidence intervals for the degree of self-similarity H,
model selection criteria, and goodness of fit tests). In contrast, a

more refined data analysis is possible for maximum likelihood

type estimates (MLE) and related methods based on the

periodogram and its distributional properties. In particular, for

Gaussian processes, Whittle’s approximate MLE has been

studied extensively and has been shown to have desirable
statistical properties (Fox and Taqqu (1986), and Dahlhaus

(1989)). Combined, Whittle’s approximate MLE approach and
the aggregation method dkcussed earlier give rise to the
following operational procedure for obtaining confidence
intervals for the self-similarity parameter H. For a given time

series, consider the corresponding aggregated processes X ‘m)
with m = 100, 200, 300, . . . . where the largest m-value is
chosen such that the sample size of the corresponding series
X(m) is not less than about 100. For each of the aggregated

series, estimate the self-similarity parameter H yi$}he Whittle

estimate. This procedure results in estimates H of H and
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co espondiqg, say, 9$~-confidence intervals of the form
‘ $!)

H + 1.960~, where OH n given by a known central limit

theorem res It (see Dahlhaus (1989)). Finally, we plot the
estimates film)

of H together with their 95%-confidence
intervals versus m. Such plots will typically vary widely for

small aggregation levels, but will stabilize after a while and
fluctuate around a constant value, our final estimate of the self-

similarity parameter H.

4. THE SELF-SIMILAR NATURE OF ETHERNET

TRAFFIC

In this section, we establish in a statistically rigorous manner
(using the graphical and statistical tools described in the
previous section) the self-similar nature of (internal) Ethernet

traffic and of some of its major components (e.g., external traffic
and external TCP traffic). For each of the 4 measurement
periods described in Table 1, we identified what are considered

“typical” low-, medium-, and high-activity hours. With the

resulting data sets, we are able to investigate features of the

observed traffic (e.g., self-similarity) that persist across the
network as well as across time, irrespective of the utilization

level of the Ethernet.

401 ETHERNET TRAFFIC OVER A l-DAY PERIOD

We first consider the August ’89 snapshot of Ethernet traffic
(row 1 in Table 1) and analyze the 3 subsets AUG89.LB,

AUG89.MB, and AUG89.HB. Each sequence contains 360000
observations, and each observation represents the number of
bytes sent over the Ethernet every 10 milliseconds.

Figure 2 depicts the pox plot of R/S (a), the variance-time curve

(b), and the periodogram plot (c) corresponding to the sequence

AUG89.MB. The pox plot of R/S (Figure 2 (a)) show an

asymptotic slope that is distinctly different from 0.5 (lower

dotted line) and 1.0 (upper dotted line) and is easily estimated

(using the points) to be about 0.79. The variance-time curve
(Figure 2 (b)), which has been normalized by the corresponding

sample variance, shows an asymptotic slope that is clearly
different from -1 (dotted line) and is easily estimated to be about

-0.40, resulting in a practically identical estimate of the Hurst
parameter H of about 0.80. Finally, looking at the penodogram
plot corresponding to the time series AUG89.MB, we observe

that although there are some pronounced peaks in the high-

frequency domain of the periodogram, the low-frequency part is
characteristic for a power-law behavior of the spectral density

around zero. In fact, by fitting a simple least-squares line using
only the ~lowest 10% of atl frequencies, we obtain a slope

estimate y= 0.64 which results in a Hurst parameter estimate of

about 0.82. Thus, together the 3 graphical methods suggest that
the sequence AUG89.MB is self-similar with self-similarity
parameter H = 0.80. Moreover, Figure 2 (d) indicates that the
normal hour Ethernet traffic of the August ‘ 89 data is (exactly)
self-similar rather than asymptotically self-similar (see Section
3.2). Figure 2 (d) shows the estimates of the Hurst parameter H
for selected aggregated time series derived from the sequence
AUG89.MB, as a function of the aggregation level m. For

aggregation levels m = 1, 5, lQ,[~~O, 100, 500, 1000, we plot

the Hurst parameter estimate H (based on the pox plots of
R/S (“*”), the variance-time curves (“ O“), and the penodogram
plots (“Cl”)) for the aggregated time series X(m) against the
logarithm of the aggregation level m. Notice that the estimates
are extremely stable and practically constant over the depicted
range of aggregation levels 1< m S 1000. Thus, in terms of
their second-order statistical properties, the aggregated series
X(m) (m 2 1) can be considered to be identical and produce,
therefore, realizations that have similar overall structure and
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Figure 2 (a)-(d). Graphical methods for checking
for self-similarity of the sequence AUG89.MB. ((a)
pox plot of R/S, (b) variance-time plot, (c)
periodogam plot, and (d) Hurst parameter estimates

as a function of the aggregation level m ( * is method
(a), O is method (b), and ❑ is method (c).)

look very much alike.

In addition to the sequence AUG89.MB, we also analyzed the
sequences AUG89.LB and AUG89.HB. While both series
behave very much like the sequence AUG89.MB, Jhe resulting
Hurst parameter Estimates H differ slightly H = 0.75 for

AUG89.LB, and H = 0.85 for AUG89.HB. This difference
suggests that although Ethernet traffic over approximately a 24-
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hour period is self-similar, the degree of self-similarity depends

on the utilization level of the Ethernet and increases as the
utilization increases. Finally, we also analyzed the sequences

AUG89.LP, AUG89.MP, and AUG89.HP, i.e., the time series

representing the total number of Ethernet packets rather than the

total number of bytes in every 10 millisecond interval. Not

surprisingly, the packet traffic is also self-similar, but with

slightly larger H-values than the corresponding bytes/time unit

data. For a more detailed analysis of Ethernet traffic at the

packet level, see Section 4.2 below.

4.2 ETHERNET TRAFFIC OVER A 4-YEAR PERIOD

As discussed in Section 2, Ethernet LANs are generally known

to change significantly during the course of a few years. By

analyzing additional data sets (see Table 1), similar to the
August ’89 ones but taken at different points in time and at

different physical locations within the network, we show below

that Ethernet traffic is self-similar, irrespective of when and
where the data were collected in the Bellcore Morristown

network during the 4-year period August ‘ 89—February ’92.

In contrast to Section 4.1, our analysis below results in point

estimates of the self-similarity parameter H together with their
respective 95%-confidence intervals. As discussed in Section

3.3, such a refined analysis resulting in confidence intervals for

H is possible if maximum likelihood type estimates (MLE) or

related estimates based on the penodograrn are used instead of

the mostly heuristic graphical estimation methods illustrated in

the previous section. Plots (a)-(d) of Figure 3 show the result

of the MLE-based estimation method when combined with the
method of aggregation. For each of the 4 sets of traffic

measurements described in Table 1, we use the time series

representing the packet counts during normal traffic condhions
(i.e., AUG89.MP in (a), OCT89.MP in (b), JAN90.MP in (c),

and FEB92.MP in (d)), and consider the correspondhtg

aggregated time series X(m) with m = 100, 200, 300, .... 1900,

2000 (representing the packet counts per 1, 2, ....20A ~:;onds,

respectively). We plot the Hurst parameter estimates H of H

obtained from the aggregated series X(m), together with their

95%-confidence intervals, against the aggregation level m.
F@u-e 3 shows that for the packet counts during normal traffic

10 s (irrespective of the measurement period), the values of
#A

are quite stable and fluctuate only slightly in the 0.85 to

0.95 range throughout the aggregation levels considered. The

same holds for the 9570-confidence interval bands, indicating
strong statistical evidence for self-similarity of these 4 time

series with degrees of self-similarity ranging from about 0.85 to

about 0.95. The t+t$ively stable behavior of the Hurst

parameter estimates H for the different aggregation levels in

atso confirms our earlier finding that Ethernet traffic during

normal traffic hours can be considered to be exactly self-similar
rather than asymptotically self-similar. Plots (a)---(d) of Figure

3 suggest that this property holds irrespective of when and

where the Ethernet was monitored. For exactly self-simihw time

series, determining a single point estimate for H and the
corresponding 95%-confidence interval is straightforward and

can be done by visual inspection of plots such as the ones in

Figure 3 (see below). Notice that in each of the four plots in
Figure 3, we added two lines corresponding to the Hurst

parameter estimates obtained from the pox diagrams of R/S and

the variance-time plots, respectively. Typically, these lines fall
well within the 95%-confidence interval bands which shows that
for these long time series considered here, graphical estimation
methods based on R/S or variance-time plots can be expected to

be very accurate.

In addition to the 4 normal hour packet data time series, we also
applied the combined MLE/aggregation method to the other

.g ~
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~l~yre 3 (a)-(d). Periodogram-based MLE estimate

H of H (solid line) and 95%-confidence intervals

(dotted lines), as a function of the aggregation level m,
for sequences AUG89.MP (a), OCT89.MP (b),

JAN90.MP (c), and FEB92.MP (d). For example, plot

(a) shows that m = 300 is an appropriate aggregation
level for :equ~~~, AUG89.MP, yielding a point

estimate H = H = 0.90 and a 95%-confidence

interval [0.85,0,95]. For comparison, we also added to
each plot the estimate of H based on the variance-time
plot ( –.-.-) and the R/S-based estimate of H

(---).

traffic data sets described in Table 1. Figure 4 (a) depicts all
Hurst parameter estimates (together with the 95%-confidence
interval corresponding to the choice of m discussed earlier) for

each of the 12 packet data time series, while Figure 4 (b)

summarizes the same information for the time series
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Figure 4 (a)-(b). Summary plot of estimates of the

Hurst parameter H for all data sets (representing the
number of packets (a) and the number of bytes (b)) in
Table 1. (o denotes the periodogram-based MLE

estimate and corresponding 95%confidence interval,
O the point estimate of H based on the asymptotic

slope of the variance-time plot, and * the point
estimate of H based on the asymptotic slope of the pox
plot of R/s.)

representing the number of bytes per 10 milliseconds during a
typical low, normal, and busy hour for each of the four
measurement periods. We also included in these summary plots
the Hurst parameter estimates obtained via the R/S analysis

(“*”) ~d variance-time plots (“ O“) in order to indicate the
accuracy of these “graphical” estimators when compared to the

statistically more rigorous Whittle estimator (“o”).

Concentrating first on the packet data, i.e., Figure 4 (a), we see

that despite the transition from mostly host-to-host workgroup

traffic during the August ‘89 and October ‘ 89 measurement
periods, to a mixture of host-to-host and router-to-router traffic

during the January ’90 measurement period, to the
predominantly router-to-router traffic of the February ’92 data

set, the Hurst parameter corresponding to the typical normal and

busy hours, respectively, are comparable, with slightly higher
H-values for the busy hours then for the normal traffic hours.
Thk latter observation might be surprising in light of
conventional traffic modeling where it is commonly assumed
that as the number of sources (Ethernet users) increases, the
resulting aggregate traffic becomes smoother. In contrast to this
generally accepted argument for the “Poisson-like” nature of

aggregate traffic, our analysis of the Ethernet data shows that, in
fact, the aggregate traffic tends to become less smooth (or, more

bursty) as the number of active sources increases (see also our
discussion in Section 5). In fact, while there were about 120
hosts that spoke up during the August ’89 or October ’89 busy

hour, we heard from about 1200 hosts during the January ’90

high traffic hou~ the comparable number of active hosts during
the February ’92 busy hour was around 600. The major

difference between the early (pre-1990) measurements and the

the later ones (post- 1990, i.e., January ’90 and February ’92) can

be seen during the low traffic hours. Intuitively, low period

router-to-router traffic consists mostly of machine-generated

packets which tend to form a much smoother arrival process
than low period host-to-host traffic, which is typically produced

by a smaller than average number of actual Ethernet users, i.e.,
researchers working late hours.

Next, turning our attention to Figure 4 (b), i.e., the Hurst

parameter estimates for the bit rates, we observe that as in the

case of the packet data, the degree of self-similarity H increases
as we move from low to normal to high traffic hours. Moreover,
while there is practically no difference between the two post-

1990 data sets, the two pre-1990 sets clearly differ from one

another but follow a similar pattern as the post-1990 ones. The

difference between the August ’89 and October ’89

measurements can be explained by the transition from diskless
to “dataless” workstations (workstations with the operating

system on a local disk but all user files on a remote fileserver)

that occurred during the latter part of 1989 (see Section 2).

Except during the low hours, the increased computing power of
many of the Ethernet hosts causes the Hurst parameter to
increase and gives rise to a bit rate that nearly matches the self-

similar feature of the corresponding packet process. Also note

that the 95%-confidence intervals corresponding to the Hurst

parameter estimates for the low traffic hours are typically wider
than those corresponding to the estimates of H for the normal
and high traffic hours. This widening indicates that Ethernet

traffic during low traffic periods is asymptotically self-similar
rather than exactly self-similar.

The Ethernet traffic analyzed in Section 4.2 is called internal
traffic and consists of all packets on a LAN. In addition to this

internal traffic, we also analyzed external or remote Ethernet

traffic, and external Z’CP traffic, the portion of external traffic
using the Transmission Control Protocol (TCP) and IF’.

Repeating the same laborious statistical analysis for these
important components of internal Ethernet traffic, we find that in

terms of its self-similar nature, external traffic and external TCP

traffic do not differ from the internal traffic studied earlier, and
that our findings for the internal traffic apply directly.

5. SIGNIFICANCE OF SELF-SIMILARITY FOR
TRAFFIC ENGINEERING

Our measured data show dramatically different statistical
properties than those predicted by the stochastic models

currently considered in the literature. Almost all these models
are characterized by an exponential y decaying autocorrelation

function. A: a result, they give rise to a Hurst parameter

estimate of H = .50, producing variance-time curves, R/S plots,
and frequency domain behavior strongly disagreeing with the

self-similar behavior of actual traffic (see Section 4). In terms
of the aggregation procedure described above, the theoretical
models have the property that typically, after aggregating over
non-overlapping blocks of about 10-100 observations, the
aggregated series become indistinguishable from second-order
pure noise. The fact that one can distinguish clearly-with
respect to second-order statistical properties-between the
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existing models for Ethernet traffic and our measured data is

surprising and clearly questions some of the modeling

assumptions that have been made in the past. Potential traffic

engineering implications of this distinction are currently under

intense scrutiny. In this section, we emphasize three direct

implications of the self-similar nature of packet traffic for traffic

engineering purposes: modeling individual Ethernet sources,

inadequacy of conventional notions of “burstiness”, and effects

on congestion management for packet networks. We conclude
with some guidelines toward modeling self-similar traffic and

suggest some open problems.

5.1 ON THE NATURE OF TRAFFIC GENERATED BY
AN INDIVIDUAL ETHERNET USER

In Section 4, we showed that irrespective of when and where the

Ethernet measurements were collected, the traffic is self-similar,

with different degrees of self-similarity depending on the load

on the network. We did so without first studying and modeling

the behavior of individual Ethernet users (sources). Although
historically, accurate source modeling has been considered an

absolute necessity for successful modeling of aggregate traffic,
we show here that in the case of self-similar packet traffic,
knowledge of fundamental ch=dcteristics of the aggregate

traffic can provide new insight into the nature of traffic

generated by an individual user. To this end, we recall
Mandelbrot’s construction of self-similar processes (see

Mandelbrot (1969)) by aggregating many simple renewal reward

processes, which provides a physical explanation for the visually

obvious (see Figure 1) and statistically significant (see Figure 4)

self-similarity property of Ethernet LAN traffic in terms of the
behavior of individual Ethernet users. In fact, the renewal

rewards for one such process represent the amount of traffic (in

bytes or packets) generated by a single user during successive
time intervals whose lengths obey the “heavy-tail” property
discussed in Section 3.2. If bytes are the prefemed units, the

renewal reward process source model resembles the popular
class of fluid models (see Anick et al. (1982)). On the other
hand, if we think of packets as the underlying unit of

information, the renewal reward process is basically a packet

train model in the sense of Jain and Routhier (1986). For

simplicity, one can restrict the “rewards” to the values O and 1,

where O means that the corresponding source is inactive and 1

means that it is active (and generating traffic at a fixed rate).

Note that the crucial property that distinguishes this model from

fluid models and packet train models is that the lengths of the

inactive/active periods are heavy-tailed in the sense of Section
3.2. Intuitively, this property means that there is no
characteristic length of a busy period or packet train: individual
inactive/active periods can be arbitrarily long with significant
probability (for evidence in support of this “heavy-tail behavior”

in related traffic studies, see the recent work by Meier-Hellstem

et al. (1991)). Mandelbrot (1969) and Taqqu and Levy (1986)

showed that aggregating the traffic of many such source models

produces a self-similar superposition process with self-similarity

parameter H =(3 – rx)/2, where a is the parameter that

characterizes the “thickness” of the tail of the distribution.

5.2 SELF-SIMILARITY AND SOME COMMONLY USED
NOTIONS OF BURSTINESS

Section 4 has shown that data sets with higher self-similarity H
satisfy intuitive notions of higher “burstiness”. Similarly, the
greater the variability (smaller et) of the inactive/active periods
in our individual source model, the higher the H and the burstier

the aggregate traffic. The fact that the self-similarity parameter
H captures the intuitive notion of burstiness in a mathematically

rigorous manner can be contrasted with the behavior of many
commonly used measures of “burstiness”, including the index of

dispersion, the peak-to-mean ratio, and the coejlicienl of
variation. The index of dispersion (for counts) has recently

attracted considerable attention (e.g., Heffes and Lucantoni

(1986)) as a measure for capturing the variability of traffic over
different time scales. For a given time interval of length L, the

index of dispersion for counts (IDC) is given by the variance of
the number of arrivals during the interval of length L. divided by

the expected value of that same quantity.
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Figure 5 (a)-(b). Index of dispersion for counts
(IDC) as a function of the length L of the time interval

over which IDC is calculated, for the January ’90 busy
hour (a) and the February ’92 busy hour (b). The solid
lines are the IDC curves for the sequences JAN90.HP
and FEB92.HP (internal traffic) and the dashed lines

depict the IDC curves for the corresponding hours of

external traffic. The dotted lines are the IDC curves

predicted by a self-similar model fitted to the time

series JAN90.HP and FEB92.HP, respectively. Note

that the asymptotic slopes of the solid lines agree with
the slopes of the dotted lines.

the IDC increases monotonically throughout a time span that
covers nearly 5 orders of magnitude (Figure 5), in stark contrast
to conventional traffic models where the IDC is either constant
or converges to a fixed value rapidly. Simple self-similar traffic
models with parameter H are easily shown to produce a

monotonically increasing IDC proportional to L W -1, exactly

matching the straight-line appearance of the log-log plot of the

actual data. For self-similar traffic, both the peak-to-mean ratio

and the coefficient of variation are unsatisfactory measures:

essentially any peak-to-mean ratio is possible, depending on the

length of the interval over which the peak is determined, and

essentially any ratio of the standard deviation of interarrival

times to the expected value is possible, depending on the sample
size.

5.3 CONGESTION MANAGEMENT IN THE PRESENCE
OF SELF-SIMILAR TRAFFIC

In order to illustrate the effect of self-similar traffic on basic

architectural issues concerning high-speed, high-bandwidth
communications systems of the future, we revisit some aspects
of congestion management first explored using simulation by
Fowler and Leland (1991) and Leland and Wilson (1991).
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Because of the statistical groundwork established in Section 4,
their conclusions about the nature of congestion and the task of

congestion management for B-ISDN provide convincing
evidence for the significance of self-similar network traffic for

engineering future integrated high-speed networks. In light of
the same self-similar behavior of VBR video traffic (see Beran

et al. (1992)), their conclusions are likely to also apply to more

heterogeneous B-ISDN traffic.

Leland and Wilson (1991) consider the access control scheme

proposed for Switched Multimegabit Data Service (SMDS) on
public B-ISDN. SMDS is a connectionless data service where

packets arriving from a LAN are buffered at the interface and
delivered to the cell-based network at some maximum rate,

subject to traffic shaping intended to reduce the burstiness of the

submitted LAN traffic. Simple conventional models based on
the observed external LAN traffic suggest that proposed SMDS
quality of service requirements can readily be met. However,

packet loss and delay behaviors differ radically between trace-

driven simulations based on the actual traffic measurements and
those based on these formal traffic models. In particular, overall

packet loss decreases very slowly with increasing buffer

capacity, in sharp contrast to Poisson-based models where losses
decrease exponentially fast with increasing buffer size.
Moreover, packet delay always increases with buffer capacity,

again in contrast to the formal models where delay does not
exceed a fixed limit regardless of buffer size. This distinctive
loss and delay behavior can be precisely explained in terms of

the frequency domain manifestation of self-similarity (see
Section 3.2). Because both low and high frequencies are
significant, heavy losses and long delays occur during long

time-frame bursts (due to the presence of low frequencies) and
can, therefore, not be dealt with effectively by larger buffers.

This observation is also backed by a recent analytic study by

Norros (1992) who studies a model for connectionless traffic

based on fractional Brownian motion. The mathematical

properties of self-similarity also explain the results of Fowler

and Leland (1991), who also observed the ineffectiveness of

buffering to manage congestion and went on to observe that
when congestion occurs, losses are severely concentrated and

are far greater than the background loss rate. While many
formal standard network traffic models provably show that
congestion control “works” (e.g., large buffers provide
protection against congestion and average loss rates are a

sensible quality of service measure) self-similar traffic models
reveal a far more challenging picture for broadband congestion

management.

5.4 PARSIMONIOUS MODELS FOR SELF-SIMILAR

TRAFFIC

Self-similarity is often explained as being equivalent to the
existence of a multilevel hierarchy of underlying mechanisms.
For packet traffic, it is practically impossible to demonstrate
why such mechanisms should result, for example, in an

asymptotic power law for the autocorrelations of the form
(3.2. 1). Even if their physical reality could be established, the
resulting models for packet traffic are likely to have a large

number of parameters. Similarly, conventional modeling
approaches that stress the importance of source modeling
produce highly overparameterized models for aggregate traffic.
Two alternative approaches are far more parsimonious for self-

similar traffic, yielding models with a small number of

parameters where every parameter can be given a physically
meaningful interpretation.

As we have noted in Section 4, self-similar stochastic models fit
Ethernet traffic very well using very few parameters. For
example, FGN is characterized by just 3 parameters (mean L,

variance 02, and H), each with a natural physical interpretation.
Parameter estimation techniques are known for FGN and

fractional ARIMA models, but often tam out to be
computationally too intensive for large data sets. However,

Section 4 illustrates how to estimate the parameter H for large

data sets, and methods to adapt the existing parameter
estimation techniques to long time series are currently being

studied. Another promising approach to modeling packet traffic

uses deterministic chaotic maps (lkramilli and Singh (1990)).
Generating a packet stream using this approach is appealingly

easy, however, the problem of deriving an appropriate nonlinear

chaotic map based on a set of actual traffic measurements
currently requires considerable experimenting. Developing more

rigorous statistical estimation methods for dynamical systems

has recently attracted considerable attention in the statistics
literature (e.g. Berliner (1992) and references therein). Both
approaches offer a simple description of the complex packet

traffic generation process, and each yield a single parameter that
describes the fractal-like nature of traffic (H and the fractal
dimension, respectively). While traditional performance

modeling favors the use of stochastic input models, studying

arrival streams to queues that are generated by non-linear
chaotic maps may well provide new insight into the performance

of queueing systems where the arrival processes exhibit fractal-

like properties.

6. CONCLUSIONS

Understanding the nature of traffic in high-speed, high-
bandwidth communications systems such as B-ISDN is essential
for engineering, operations, and performance evaluation of these
networks. In a first step toward this goal, it is important to know

the traffic behavior of some of the expected major contributors

to future high-speed network traffic. In this paper, we analyze

LAN traffic offered to a high-speed public network supporting

LAN interconnection, an important and rapidly growing B-
ISDN service. The main findings of our statistical analysis of a

few hundred million high quality, high time-resolution Ethernet

LAN traffic measurements are that (i) Ethernet LAN traffic is

statistically self-similar, irrespective of when during the 4-year

data collection period 1989-1992 the data were collected and
where they were collected in the network, (ii) the degree of
self-similarity measured in terms of the Hurst parameter H is
typically a function of the overall utilization of the Ethernet and
can be used for measuring the “burstiness” of the traffic

(namely, the burstier the traffic the higher H), and (iii) major

components of Ethernet LAN traffic such as external LAN

traffic or external TCP traffic share the same self-similar
characteristics as the overall LAN traffic.

An important implication of the self-similarity of LAN traffic is

that aggregating streams of such traffic typically does not
produce a smooth (“Poisson-like”) superposition process but
instead, intensifies the burstiness (i.e., the degree of self-

similarity) of the aggregation process. Thus, self-similarity is
both ubiquitous in our data and unavoidable in future, more
highty aggregated, traftic. However, none of the currently
common formal models for LAN traffic is able to capture the
self-similar nature of real traffic. We briefly mention two novel
methods for modeling self-similar LAN traffic, based on
stochastic self-simikw processes and deterministic nonlinear

chaotic maps, that provide accurate and parsimonious models.

Implications of the self-similar nature of packet traffic for

engineering, operations, and performance evaluation of high-
speed networks are ample: (i) source models for individual
Ethernet users are expected to show extreme variability in terms
of interarrival times of packets (the infinite variance syndrome),
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(ii) the Hurst parameter provides a more satisfactory measure of
“burstiness” for self-similar traffic than such commonly used
measures as the index of dispersion, the peak-to-mean-ratio, or

the coefficient of variation (which become ill-defined for self-
similar traffic), and (iii) the nature of congestion produced by

self-similar network traffic models differs drastically from that
predicted by standard formal models and displays a far more

complicated picture than has been typically assumed in the past.

Finally, in light of the same self-similar behavior recently
observed in VBR video traffic-another major contributor to
future high-speed network traffic-the more complicated nature

of congestion due to the self-similar traffic behavior can be
expected to persist even when we move toward a more
heterogeneous B-ISDN environment. Thus, we believe based on

our measured traffic data that the success or failure of, for
example, a proposed congestion control scheme for B-ISDN will
depend on how well it performs under a self-similar rather than
under one of the standard formal traffic scenarios.
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