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Self-Similarity in World Wide Web Traffic:
Evidence and Possible Causes

Mark E. Crovella,Member, IEEE and Azer Bestavrosylember, IEEE

Abstract—Recently, the notion ofself-similarity has been shown values at any instant are typically nonnegligibly positively
to apply to wide-area and local-area network traffic. In this paper,  correlated with values at all future instants. Surprisingly (given

we show evidence that the subset of network traffic that is due to P
World Wide Web (WWW) transfers can show characteristics that the counterintuitive aspects of long-range dependence), the

are consistent with self-similarity, and we present a hypothesized Self-Similarity of Ethernet network traffic has been rigorously
explanation for that self-similarity. Using a set of traces of actual €stablished [14]. The importance of long-range dependence in
user executions of NCSA Mosaic, we examine the dependencenetwork traffic is beginning to be observed in studies such as
structure of WWW traffic. First, we show evidence that WWW [8], [13], [18], which show that packet loss and delay behavior

traffic exhibits behavior that is consistent with self-similar traffic are radicallv different when simulations use either real traffic
models. Then we show that the self-similarity in such traffic can y

be explained based on the underlying distributions of www data or synthetic data that incorporate long-range dependence.
document sizes, the effects of caching and user preference in file However, the reasons behind self-similarity in Internet traf-

transfer, the effect of user “think time,” and the superimposition  fic have not been clearly identified. In this paper, we show

of many such ftransfers in a local-area network. To do this, we 4t in some cases, self-similarity in network traffic can be
rely on empirically measured distributions both from client traces

and from data independently collected at WWW servers. explained in terms of file system characteristics and user
behavior. In the process, we trace the genesis of self-similarity

in network traffic back from the traffic itself, through the
actions of file transmission, caching systems, and user choice,

to the high-level distributions of file sizes and user event
|. INTRODUCTION interarrivals.

NDERSTANDING the nature of network traffic is critical  To bridge the gap between studying network traffic on the

in order to properly design and implement computedne hand and high-level system characteristics on the other, we
networks and network services like the World Wide Web. Rénake use of two essential tools. First, to explain self-similar
cent examinations of LAN traffic [14] and wide-area networketwork traffic in terms of individual transmission lengths,
traffic [20] have challenged the commonly assumed modeks employ the mechanism described in [30] (based on earlier
for network traffic, e.g., the Poisson process. Were traffigork in [15] and [14]). Those papers point out that self-similar
to follow a Poisson or Markovian arrival process, it wouldraffic can be constructed by multiplexing a large number of
have a characteristic burst length which would tend to N/OFF sources that haven and oFF period lengths that are
smoothed by averaging over a long enough time scale. RatHeravy-tailed, as defined in Section [I-C. Such a mechanism
measurements of real traffic indicate that significant traffmould correspond to a network of workstations, each of which
variance (burstiness) is present on a wide range of time scaleseither silent or transferring data at a constant rate.

Traffic that is bursty on many or all time scales can be Our second tool in bridging the gap between transmission
described statistically using the notion élf-similarity Self- times and high-level system characteristics is our use of the
similarity is the property we associate with one type ofVorld Wide Web (or Web) as an object of study. The Web
fractal—an object whose appearance is unchanged regardj@swvides a special opportunity for studying network traffic
of the scale at which it is viewed. In the case of stochastic obecause its traffic arises as the result of file transfers from
jects like time series, self-similarity is used in the distributionaln easily studied set, and user activity is easily monitored.
sense: when viewed at varying scales, the object’s correlationalio study the traffic patterns of the Web, we collected
structure remains unchanged. As a result, such a time sefig®rence data reflecting actual Web use at our site. We in-
exhibits bursts—extended periods above the mean—at a wiltumented NCSA Mosaic [10] to capture user access patterns
range of time scales. to the Web. Since, at the time of our data collection, Mosaic

Since a self-similar process has observable bursts at a Wigigs by far the dominant Web browser at our site, we were able
range of time scales, it can exhibiing-range dependente g capture a fairly complete picture of Web traffic on our local
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The paper takes two parts. First, we consider the possibilityOne of the attractive features of using self-similar mod-
of self-similarity of Web traffic for the busiest hours weels for time series, when appropriate, is that the degree of
measured. To do so, we use analyses very similar to thasdf-similarity of a series is expressed using only a single
performed in [14]. These analyses support the notion thadrameter. The parameter expresses the speed of decay of
Web traffic may show self-similar characteristics, at least whéime series’ autocorrelation function. For historical reasons, the
demand is high enough. This result in itself has implicationmarameter used is théurst parametetrf = 1—3/2. Thus, for
for designers of systems that attempt to improve performarself-similar series with long-range dependencé < H < 1.
characteristics of the Web. As H — 1, the degree of both self-similarity and long-range

Second, using our Web traffic, user preference, and file sidependence increases.
data, we comment on reasons why the transmission times
and quiet times for any particular Web session are heavy-
tailed, which is an essential characteristic of the propos&d Statistical Tests for Self-Similarity
mechanism for the self-similarity of traffic. In particular, we |n this paper, we use four methods to test for self-similarity.
argue that many characteristics of Web use can be modefatbse methods are described fully in [2], and are the same
using heavy-tailed distributions, including the distribution ofethods described and used in [14]. A summary of the relative
transfer times, the distribution of user requests for docume%,curacy of these methods on Synthetic datasets is presented
and the underlying distribution of documents sizes availabjg [27].
in the Web. In addition, using our measurements of userThe first method, theariance—time platrelies on the slowly
interrequest times, we explore reasons for the heavy-tailgécaying variance of a self-similar series. The variance of

distribution of quiet times. X (™) is plotted againstn on a log—log plot; a straight line
with slope(—/3) greater thar-1 is indicative of self-similarity,

Il. BACKGROUND and the parameteH is given byH = 1 — /2. The second

method, theR/S plot, uses the fact that for a self-similar

A. Definition of Self-Similarity dataset, theescaled rangeor 12/S statistic grows according

For a detailed discussion of self-similarity in time seriel® & Power law with exponenif as a function of the number
data and the accompanying statistical tests, see [2], [29]. (lirPoints included(n). Thus, the plot ofR/S againstn on
discussion in this subsection and the next closely follows tho@d9—10g plot has a slope which is an estimatefbf The

sources. third approach, theeriodogrammethod, uses the slope of the
Given a zero-mean, stationary time seris= (X;; t = power spectrum of the series as frequency approaches zero.
1,2,3,-.+), we define them-aggregated serie((™ = On a log-log plot, the periodogram slope is a straight line

with slope3 — 1 = 1 — 2H close to the origin.

While the preceding three graphical methods are useful
for exposing faulty assumptions (such as nonstationarity in
the dataset), they do not provide confidence intervals, and as
developed in [27], they may be biased for lae The fourth
method, called thiVhittle estimatordoes provide a confidence
interval, but has the drawback that the form of the underlying
stochastic process must be supplied. The two forms that are
If X is H-self-similar, it has the same autocorrelation functiomost commonly used are fractional Gaussian noise (FGN) with
r(k) = E[(X; — p)(Xeqn — p)]/0? as the serieX (™ for all parameted /2 < H < 1, and fractional ARIMA(p, d, q) with
m. Note that this means that the seriedlistributionallyself- 0 < d < 1/2 (for details, see [2], [4]). These two models differ
similar: the distribution of the aggregated series is the sarme their assumptions about the short-range dependences in
(except for a change in scale) as that of the original. the datasets; FGN assumes no short-range dependence, while

As a result, self-similar processes can shimmg-range fractional ARIMA can assume a fixed degree of short-range
dependenceA process with long-range dependence has aependence.
autocorrelation functionr(k) ~ k=% ask — oo, where Since we are concerned only with the long-range depen-
0 < B < 1. Thus, the autocorrelation function of such @ence in our datasets, we employ the Whittle estimator as
process follows a power law, as compared to the exponenfiallows. Each hourly dataset is aggregated at increasing levels
decay exhibited by traditional traffic models. Power-law decay, and the Whittle estimator is applied to eachaggregated
is slower than exponential decay, and sinde< 1, the dataset using the FGN model. This approach exploits the
sum of the autocorrelation values of such a series approachesperty that any long-range dependent process approaches
infinity. This has a number of implications. First, the variancEGN when aggregated to a sufficient level, and so should
of the mean ofn samples from such a series does ndie coupled with a test of the marginal distribution of the
decrease proportionally tb/n (as predicted by basic statisticsaggregated observations to ensure that it has converged to the
for uncorrelated datasets), but rather decreases proportionatbymal distribution. Asn increases, short-range dependences
to n~%. Second, the power spectrum of such a series ase averaged out of the dataset; if the valueEbfremains
hyperbolic, rising to infinity at frequency zero—reflecting theelatively constant, we can be confident that it measures a
“infinite” influence of long-range dependence in the data. true underlying level of self-similarity. Since aggregating the

(X,Em); k =1,2 3,---) by summing the original serieX
over nonoverlapping blocks of siza. Then we say thaf{
is H-self-similar, if for all positive m, X(™ has the same
distribution asX rescaled bym . That is,

tm
X, L H Z X; for all m € N.
i=(t—1)m+1



CROVELLA AND BESTAVROS: SELF-SIMILARITY IN WWW TRAFFIC 837

series shortens it, confidence intervals will tend to grow ased in each case, and show the resulting fitted line used to
the aggregation level increases; however, if the estimatesestimatec.

H appear stable as the aggregation level increases, then wAnother approach we used to estimating tail weight is the
consider the confidence intervals for the unaggregated dataddiit estimator (described in detail in [30]). The Hill estimator

to be representative. uses thek largest values from a dataset to estimate the value
of « for the dataset. In practice, one plots the Hill estimator for
C. Heavy-Tailed Distributions increasing values of, using only the portion of the tail that

ppears to exhibit power-law behavior; if the estimator settles

The distributions we use in this paper have the propert . ) : .
pap property 0 a consistent value, this value provides an estimaie. of

being heavy-tailed A distribution is heavy-tailed if
PIX > z]~277, as r—oo, 0<a<2 ll. RELATED WORK

That is, regardless of the behavior of the distribution for small The first step in understanding WWW traffic is the col-
values of the random variable, if the asymptotic shape of ifgetion of trace data. Previous measurement stu_dles of the
distribution is hyperbolic, it is heavy-tailed. Web have focu_sed on reference patterns established bgsed
The simplest heavy-tailed distribution is tiareto distri- N 109s of proxies [11], [25] or servers [21]. The authors in
bution. The Pareto distribution is hyperbolic over its entire] captured client traces, but they concentrated on events at

range: its probability mass function is the user interface level in or_der to study prowser and page

design. In contrast, our goal in data collection was to acquire

p(z) = ak®z™ 7L, o, k>0, x>k a complete picture of the reference behavior and timing of

user accesses to the WWW. As a result, we collected a large

and its cumulative distribution function is given by dataset of client-based traces. A full description of our traces
F(z) = PIX <a] = 1— (k/z). (which are available for anonymous FTP) is given in [6].

Previous wide-area traffic studies have studied FTP, TEL-

The parametet: represents the smallest possible value of tH8ET. NNTP, and SMTP traffic [19], [20]. Our data comple-
random variable. ment those studies by providing a view of WWW (HTTP)
Heavy-tailed distributions have a number of properties th#gffic at a “stub” network. Since WWW traffic accounts for a
are qualitatively different from distributions more commonlyarge fraction of the traffic on the Internéynderstanding the
encountered such as the exponential, normal, or Poisson éture of WWW traffic is important. o
tributions. If o« < 2, then the distribution has infinite variance; 1he benchmark study of self-similarity in network traffic is
if o« < 1, then the distribution has infinite mean. Thus,cas [14], and our study uses many of the same methods used in
decreases, an arbitrarily large portion of the probability malat work. However, the goal of that study was to demonstrate
may be present in the tail of the distribution. In practical term)€ self-similarity of network traffic; to do that, many large
a random variable that follows a heavy-tailed distributiof@tasets taken from a multiyear span were used. Our focus is
can give rise to extremely large values with nonnegligibl@0t On establishing self-similarity of network traffic (although
probability (see [20] and [16] for details and examples). We do so for thg interesting subset of network tra.ffi.c that
To assess the presence of heavy tails in our data, we empRy/Veb-related); instead, we concentrate on examining the
log—log complementary distributiofLLCD) plots. These are féasons behind self-similarity of network traffic. As a result

plots of the complementary cumulative distributidi{z) = of this different focus, we do not analyze traffic datasets for
1 — F(z) = P[X > z] on log-log axes. Plotted in this way,low, normal, and busy hours. Instead, we focus on the four
heavy-tailed distributions have the property that busiest hours in our logs. While these four hours are well

described as self-similar, many less busy hours in our logs do
not show self-similar characteristics. We feel that this is only
the result of the traffic demand present in our logs, which is

much lower than that used in [14]; this belief is supported by

for somef. To check for the presence of heavy tails in practic o : . . :
we form the LLCD plot, and look for approximately Iinear?he findings in that study, which showed that the intensity of

. - .. self-similarity increases as the aggregate traffic level increases.
behavior over a significant range (three orders of magnitudée . T
. . Our work is most similar in intent to [30]. That paper
or more) in the tail.

It is possible to form rough estimates of the shape paramelo?ked at network traffic at the packet level, identified the

o from the LLCD plot as well. First, we inspect the LLCD ows betwe_en_lndlwdugl soqrce/destlnatlon pairs, and showed
that transmission and idle times for those flows were heavy-

plot, and choose a value férabove which the plot appears totailed. In contrast, our paper is based on data collected at the

be linear. Then we select equally spaced points from amoggplication level rather than the network level. As a result,

the LLCD points larger thad, and estimate the slope usin . . : o
. . . e are able to examine the relationship between transmission
least squares regressibithe proper choice of is made based . ' .
times and file sizes, and are able to assess the effects of

on inspecting the LLCD plot; in this paper, we identify the caching and user preference on these distributions. These

1Equally spaced points are used because the point density varies cdBservations allow us to build on the conclusions presented
the range used, and the preponderance of data points at small values would
otherwise unduly influence the least squares regression. 2See, for example, data http://www.nlanr.net/INFO/

dlog F(x)

dlogz - v>0
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in [30], and confirm observations made in [20] by showing TABLE |

that the heavy-tailed nature of transmission and idle times is ~ SUMMARY STATISTICS FOR TRACE DATA USED INTHIS Stuby

not primarily a result of network protocols or user preferenceessions 4700
but rather stems from more basic properties of informatioHsers 591

storage and processing: both file sizes and user “think timegRLs Requested 575,775

. Files Transferred 130,140
are themselves strongly heavy-tailed.

Unigue Files Requested 46,830

Bytes Requested 2713 MB

Bytes Transferred 1849 MB
IV. EXAMINING WEB TRAFFIC SELF-SIMILARITY Unique Bytes Requested 1088 MB

In this section, we show evidence that WWW traffic can
be self-similar. To do so, we first describe how we measuredTo collect our data, we installed our instrumented version
WWW traffic; then we apply the statistical methods describest Mosaic in the general computing environment at Boston

in Section Il to assess self-similarity. University’'s Department of Computer Science. This environ-
ment consists principally of 37 SparcStation-2 workstations
A. Data Collection connected in a local network. Each workstation has its own

) . local disk; logs were written to the local disk, and subsequently

In order to relate traffic patterns to higher level effect§,,nsterred to a central repository. Although we collected

we needed to capture aspects of user behavior as welld%&a from November 21, 1994 through May 8, 1995, the
network demand. The approach we took to capturing boffi, ysed in this paper are only from the period January 17,
types of data simultaneously was to modify a WWW browsaiggs 1o February 28, 1995. This period was chosen because

so as 1o log all user accesses to the Web. The browser Wg,artmental WWW usage was distinctly lower (and the pool
used was Mosaic since its source was publicly available aggl,qers |ess diverse) before the start of classes in early
permission has been granted for using and modifying the cogle, a1y and because by early March 1995, Mosaic had ceased

for research purposes. A complete description of our dgf@pe the dominant browser at our site. A statistical summary
collection methods and the format of the log files is givegs ihe trace data used in this study is shown in Table I.
in [6]; here, we only give a high-level summary.

We modified Mosaic to record the uniform resource locator o )
(URL) [3] of each file accessed by the Mosaic user, as well & Self-Similarity of WWW Traffic
the time the file was accessed and the time required to transfetUsing the WWW traffic data we obtained as described in
the file from its server (if necessary). For completeness, e previous section, we show evidence consistent with the
record all URLs accessed whether they were served fraranclusion that WWW traffic is self-similar on time scales of
Mosaic’s cache or via a file transfer; however, the traffic time s and above. To do so, we show that for four busy hours
series we analyze in this section consist only of actual netwdrom our traffic logs, the Hurst parametéf for our datasets
transfers. is significantly different from 1/2.

At the time of our study (January and February 1995), We used the four methods for assessing self-similarity
Mosaic was the WWW browser preferred by nearly all usedescribed in Section Il: the variance—time plot, the rescaled
at our site. Hence, our data consist of nearly all of the WW\tange (orR/S) plot, the periodogram plot, and the Whittle
traffic at our site. Since the time of our study, users hawstimator. We concentrated on individual hours from our traffic
come to prefer commericial browsers which are not availabderies, so as to provide as nearly a stationary dataset as
in source form. As a result, capturing an equivalent set pbssible.

WWW user traces at the current time would be more difficult. To provide an example of these approaches, analysis of a
The data captured consist of the sequence of WWW figingle hour (4-%.m, Thursday, February 5, 1995) is shown in
requests performed during each session, where a sessioFRigs 1. The figure shows plots for the three graphical methods:
one execution of NCSA Mosaic. Each file request is identifiadariance—time (upper left), rescaled range (upper right), and
by its URL, and session, user, and workstation ID; associatpdriodogram (lower center). The variance-time plot is linear,

with the request is the time stamp when the request wasd shows a slope that is distinctly different fres (which is
made, the size of the document (including the overhead siiown for comparison); the slope is estimated using regression
the protocol), and the object retrieval time. Time stamps weas —0.48, yielding an estimate faH of 0.76. TheR/S plot
accurate to 10 ms. Thus, to provide three significant digits gihows an asymptotic slope that is different from 0.5 and from
our results, we limited our analysis to time intervals greatérO (shown for comparision); it is estimated using regression
than or equal to 1 s. To convert our logs to traffic time series,@s 0.75, which is also the corresponding estimaté/ofThe
was necessary to allocate the bytes transferred in each regpesiodogram plot shows a slope-60.66 (the regression line is
equally into bins spanning the transfer duration. Although thghown), yielding an estimate éf as 0.83. Finally, the Whittle
process smooths out short-term variations in the traffic flow eftimator for this dataset (not a graphical method) yields an
each transfer, our restriction to time series with granularity ektimate ofid = 0.82 with a 95% confidence interval of (0.77,

1 s or more—combined with the fact that most file transfes87).

are short [6]—means that such smoothing has little effect onAs discussed in Section 1I-B, the Whittle estimator is the
our results. only method that yields confidence intervals @&f but it
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Fig. 1. Graphical analysis of a single hour.

requires that the form of the underlying time series be praetwork measured in [14]. Moving from the busier hours to the
vided. We used the fractional Gaussian noise model, soléss busy hours, the estimatestfseem to decline somewhat,
is important to verify that the underlying series behaves likend the variance in the estimatefincreases, which are also
FGN, namely, that is has a normal marginal distribution, ar@nclusions consistent with previous research.

that additional short-range dependence is not present. We cafmhus, the results in this section show evidence that WWW
test whether lack of normality or short-range dependencetigffic at stub networks might be self-similar when traffic
biasing the Whittle estimator by.-aggregating the time seriesdeémand is high enough. We expect this to be even more
for successively large values of, and determining whether pronounced on backbone links, where traffic from a multitude
the Whittle estimator remains stable since aggregating tAESources is aggregated. In addition, WWW ftraffic in stub

series will disrupt short-range correlations and tend to maR§Works is likely to become more self-similar as the demand
the marginal distribution closer to the normal. for, and utilization of, the WWW increase in the future.

The results of this method for four busy hours are shown
in Fig. 2. Each hour is shown in one plot, from the busiest
hour (largest amount of total traffic) in the upper left to the
least busy hour in the lower right. In these figures, the solid While the previous section showed evidence that Web
line is the value of the Whittle estimate &F as a function of traffic can show self-similar characteristics, it provides no
the aggregation leveh of the dataset. The upper and |Owerexplanation for this result. This section pr_ovjdes a possible
dotted lines are the limits of the 95% confidence interval O%planatlon, based on measured characteristics of the Web.
H. The three level lines represent the estimateiofor the
unaggregated dataset as given by the variance—fitng, and A. Superimposing Heavy-Tailed Renewal Processes

periodogram methods. Our starting point is the method of constructing self-similar
The figure shows that for each dataset, the estimatff of processes described in [30], which is a refinement of work
stays relatively consistent as the aggregation level is increasgéhe by Mandelbrot [15] and Taqqu and Levy [28]. A self-
and that the estimates given by the three graphical methasisilar process may be constructed by superimposing many
fall well within the range ofH estimates given by the Whittle simple renewal reward processes, in which the rewards are
estimator. The estimates & given by these plots are in therestricted to the values 0 and 1, and in which the interrenewal
range 0.7-0.8, consistent with the values for a lightly loadditnes are heavy-tailed. As described in Section Il, a heavy-

V. EXPLAINING WEB TRAFFIC SELF-SIMILARITY
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Fig. 2. Whittle estimator applied to aggregated datasets.

tailed distribution has infinite variance, and the weight of it§hus, to answer these questions, we can analyze the char-
tail is determined by the parameter< 2. acteristics of our client logs.

This construction can be visualized as follows. Consider a
large number of concur.rent processes that are gach either B. Examining Transmission Times
OFF. TheoN andorr periods for each process strictly alternate, o o ] .
and either the distribution obN times is heavy-tailed with 1) The Distribution of Web Transmission TimeSur  first
parametery;, or the distribution ofoFF times is heavy-tailed o_bservaﬂon is that the_ dlstrlbutlon_qf Web file transm|53|on
with parameter,, or both. At any point in time, the value Oft!mes_ show§ nonnegligible probabilities over a wide range of
the time series is the number of processes inthstate. Such file sizes. Fig. 3(a) shows the LLCD plo_t of the durations of
a model could correspond to a network of workstations, ea@H .130 140 transfers that occurred. durlng_the meaSL_Jrement
of which is either silent or transferring data at a constant ra eriod. The shape of the upper tail on this plot, while not

For this model, it has been shown that the result of aggregatlsmCtly linear, shows only a slight downward trend over

. I : . host four orders of magnitude. This is evidence of very
many such sources is a self-similar fractional Gaussian nojse

. . igh variance (although perhaps not infinite) in the underlyin
process, it = (3 —min(a, )2 80 gggpbuatee (Houanperep ) "
Adopting this model to explain the self-similarity of Web From this plot, it is not clear whether actuak times in

traffic requires an explanation for the heavy-tailed distributiqrple Web would show heavy tails because our assumption
of eitheron or OFFtimes. In our systemoN times correspond gqating file transfer durations with actuah times is an

to the transmission durations of individual Web files (althou%\/ersimplification (e.g., the pattern of packet arrivals during
this is not an exact fit since the model assumes constant tragg-transfers may show large gaps). However, if we hypothe-
mission rate during then times), ancoFFtimes correspond 10 sjze that the underlying distribution is heavy-tailed, then this
the intervals between transmissions. So we need to ask whefh@perty would seem to be present for values greater than
Web_file transmission times or quiet times are heavy-taileglhout 0.5, which corresponds roughly to largest 10% of all
and if so, why. transmissionglog, ,(P[X > z]) < —1).

Unlike traffic studies that concentrate on network-level A least squares fit to evenly spaced data points greater
and transport-level data transfer rates, we have availaitan —0.5 (R? = 0.98) has a slope of-1.21, which yields
application-level information such as the names and sizes@®t 1.21. Fig. 3(b) shows the value of the Hill estimator for
files being transferred, as well as their transmission timegryingk, again restricted to the upper 10% tail. The Hill plot
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Fig. 3. (a) Log—log complementary distribution and (b) Hill estimator forlg' 4. LLCD and Hill estimator for sizes of Web file transfers.
transmission times of Web files.

Interestingly, the authors in [20] found that the upper tail
shows that the estimator seems to settle to a relatively constghthe distribution of data bytes in FTP bursts was well fit to
estimate, consistent with ~ 1.2. a Pareto distribution wit).9 < « < 1.1. Thus, our results

Thus, although this dataset does not show conclusive eifjdicate that with respect to the upper tail distribution of file
dence of infinite variance, it is suggestive of a very high &izes, Web transfers do not differ significantly from FTP traffic;
infinite variance condition in the underlying distributionafi however, our data also allow us to comment on the reasons
times. Note that the result of aggregating a large number kghind the heavy-tailed distribution of transmitted files.
ON/OFF processes in which the distribution of ON times is An important question then is: Why do file transfers show a
heavy-tailed withoe = 1.2 should yield a self-similar processheavy-tailed distribution? On the one hand, it is clear that the
with H = 0.9, while our data generally show values Hfin  set of files requested constitutes user “input” to the system. It
the range 0.7-0.8. is natural to assume that file requests therefore might be the

2) Why Are Web Transmission Times Highly Variabld? primary determiner of heavy-tailed file transfers. If this were
understand why transmission times exhibit high variance, we case, then perhaps changes in user behavior might affect
now examine size distributions of Web files themselves. Fir¢e heavy-tailed nature of file transfers, and by implication,
we present the distribution of sizes for file transfers in ouhe self-similar properties of network traffic.
logs. The results for all 130 140 transfers are shown in Fig. 4,In fact, in this section, we argue that the set of file requests
which is a plot of the LLCD and the Hill estimator for the setnade by users isotthe primary determiner of the heavy-tailed
of transfer sizes in bytes. Again, choosing the point at whidgtature of file transfers. Rather, file transfers seem to be more
power-law behavior begins is difficult, but the figure showstongly determined by the set of filesailablein the Web.
that for file sizes greater than about 10 000 bytes, transfer sizdfo support this conclusion, we present characteristics of
distribution seems reasonably well modeled by a heavy-tailegdo more datasets. First, we present the distribution of the
distribution. This is the range over which the Hill estimatoset of all requests made by users. This set consists of 575775
is shown in the figure. files, and contains both the requests that were satisfied via the

A linear fit to the points for which file size is greater thametwork and the requests that were satisfied from Mosaic’s
10000 yieldsy = 1.15 (R? = 0.99). The Hill estimator shows cache. Second, we present the distribution of the sanhizfue
some variability in the interval between 1 and 1.2, but itiles that were transferred. This set consists of 46 830 files, all
estimates seem consistent with~ 1.1. different. These two distributions are shown in Fig. 5.
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, C an infinite cache, despite its finite resources: from Table I,

The figure shows that both distributions appear to be heavy- : ) )

. , : ) can calculate that NCSA Mosaic achieved a 77% hit rate
tailed. For the set of file requests, we estimated the tail to st

at approximately sizes of 10000 bytes: over this range, t —130140/575775), while a cache of infinite size (shared by

: > af users) would achieve a 92% hit rgte— 46 830/575 775).
Slﬁﬁegthﬁlll‘l‘ctp pltot yleIQS ag‘ (t)f about 1'22(3 ? ?919)0 What, then, determines the distribution of the set of unique
while the HIll estimator varies between approximately 1.0 affje o5 1o help answer this question, we surveyed 32 Web

1.3. For the set of unique files, we estimated _the tail to St%%rvers scattered throughout North America. These servers
a approxmately 30000 bytes. The slope est!mate. over tk}\'/%re chosen because they provided a usage report based on
range isé of about 1.12(R? = 0.99), and the Hill estimator v\ stat 1.0[23]. These usage reports provide information
over this range varies between 1.0 and 1.15. sufficient to determine the distribution of file sizes on the
The relationship between the three sets can be seen MQIR,er (for files accessed during the reporting period). In each
clearly in Fig. 6, which plots all three distributions on th%ase, we obtained the most recent usage reports (as of July
same axes. This figure shows that the set of file transfersl§95)’ for an entire month if possible. While this method is
intermediatein characteristics between the set of file request$yi 5 random sample of files available in the Web, it sufficed
and the set of unique files. For example, the median size g} the purpose of comparing distributional characteristics.
the set of file transfers lies between the median sizes for thp fact, the distribution of all of the available files present
sets of file requests and unique files. on the 32 Web servers closely matches the distribution of the
The reason for this effect can be seen as the natural regigf of unique files in our client traces. The two distributions
of caching. If caches were infinite in size and shared by alte shown on the same axes in Fig. 7. Although these two
users, the set of file transfers would be identical to the sgiktributions appear very similar, they are based on completely
of unique files since each file would miss in the cache onbjifferent datasets. That is, it appears that the set of unique files
once. If finite caches are performing well, we can expegan be considered, with respect to sizes, to be a sample from
that they are attempting to approximate the effects of ahe set of all files available on the Web.
infinite cache. Thus, the effect of caching (when it is effective) This argument is based on the assumption that cache man-
is to adjust the distributional characteristics of the set agement policies do not specifically exclude or include files
transfers to approximate those of the set of unique files. based on their size; and that unique files are sampled without
the case of our data, it seems that NCSA Mosaic was abéspect to size from the set of available files. While these
to achieve a reasonable approximation of the performanceassumptions may not hold in other contexts, the data shown
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in Figs. 6 and 7 seem to support them in this case. Thus, (g 9 Comparison of Unix file sizes with Web file sizes.

conclude that as long as caching is effective, the set of files
available in the Web is likely to be the primary determiner of The fact that file size distributions have very long tails
the heavy-tailed characteristics of files transferred—and th#ts been noted before, particularly in file-system studies [1],
the set of requests made by users is relatively less importd®i. [17], [22], [24], [26], however, they have not explicitly
This suggests that available files are of primary importance éxamined the tails for power-law behavior, and measurements
determining actual traffic composition, and that changes in usdra values have been absent. As an example, we compare
request patterns are unlikely to result in significant changestte distribution of Web files found in our logs with an overall
the self-similar nature of Web traffic. distribution of files found in a survey of Unix file systems.
3) Why Are Available Files Heavy-Tailed?f  available While there is no truly “typical” Unix file system, an aggregate
files in the Web are, in fact, heavy-tailed, one possib@icture of file sizes on over 1000 different Unix file systems
explanation might be that the explicit support for multimedi#as collected by Irlam in 1993In Fig. 9, we compare the
formats may encourage larger file sizes, thereby increasing figtribution of document sizes we found in the Web with those
tail weight of distribution sizes. While we find that multimediglata. The figure plots the two histograms on the same log-log

does increase tail weight to some degree, in fact, it is not tAg&le: _ _ _
root cause of the heavy tails. This can be seen in Fig. 8.  Surprisingly, Fig. 9 shows that in our Web data, there is a

Fig. 8 was constructed by categorizing all server files ingjrongerpreference for small files than in Unix file systefhs.

one of seven categories, based on file extension. The categofia§ Web favors documents in the 256-512 byte range, while

we used wereimages, text, audio, video, archives, prefor?Nix files are more commonly in the 1-4 kbyte range. More

matted textand compressed filesThis simple categorization mPortantly, the tail of the distribution of Web files is not
was able to encompass 85% of all files. From this set tﬂﬁarly as heavy as the tail of the distribution of Unix files.
T

categoriesmages, text, audioand video accounted for 97%. us, despite the emphasis on multimedia in the Web, we

The cumulative distribution of these four categories, express%(a"'dwe that Web file systems are currently more biased

as a fraction of the total set of files, is shown in Fig. 8. I}]oward small_ files than are typlgal Unix file systems.
' L e In conclusion, these observations seem to show that heavy-
the figure, the upper line is the distribution of all acceSSf?gi

. T . . . led size distributions are not uncommon in various data
files, which is the same as the available files line shown In

Fig. 7. The three intermediate lines are the components s(ﬁpra.ge systems. It Seems 'that'the p955|bll|ty of very large
file sizes may be nonnegligible in a wide range of contexts,

that distribution attributable to images, audio, and video. Tré%d that in particular, this effect is of central importance in

Iow_est line (at the extreme right-hand point) is the COmponeﬂ'ﬁderstanding the genesis of self-similar traffic in the Web.
attributable to text (HTML) alone.

The figure shows that the effect of adding multimedia file
to the set of text files serves to translate the tail to the right.
However, it also suggests that the distribution of text files IN Section V-A, we attributed the self-similarity of Web
may itself be heavy-tailed. Using least squares fitting for tHEaffic to the superimposition of heavy-tailediorrprocesses,
portions of the distributions in whictbg,o(z) > 4, we find where theoN times correspond to the transmission durations
that for all files availabley = 1.27, but that for the text files Of individual Web files andbrr times correspond to periods
only, & = 1.59. The effects of the various multimedia typeé"’he” a workstation is not receiving Web data. Wiletimes

are also evident from the figure. In the approximate rangé® the result of a positive event (transmissi@ry times are
of 1000-30000 bytes, tail weight is primarily increased by 3These data are available fronttp:/www.base.com/gordoni/

images. In the approximate range of 30000-300000 byt&&93-htm

. . .. . L However, not shown in the figure is the fact that while there are virtually
tail We'ght is increased ma'nly by audio files. Beyond 300 OQQ) Web files smaller than 100 bytes, there is a significant number of Unix

bytes, tail weight is increased mainly by video files. files smaller than 100 bytes, including many zero- and one-byte files.

Examining Quiet Times
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a negative event that could occur for a number of reasons. & 4| T,
The workstation may not be receiving data because it has =~ 0 K
. . . . . - [ R
just finished receiving one component of a Web page (say,
text containing an inlined image), and is busy interpreting, M <
formatting, and displaying it before requesting the next com- 12 o5 o o5 1 15 2 25 s as a4
ponent (say, the inlined image). Or, the workstation may not "~ log10(URL Interarrival Time in Seconds)

be receiving data because the user is inspecting the res%_slz_
of the last transfer, or not actively using the Web at all. We

will call these two conditions “activeFrF’ time and “inactive

OFF’ time. The difference between actizertime and inactive indicates that the heavy-tailed natureasf=times is primarily

OFF time is important in understanding the distributionasfc  due to inactiveorrtimes that result from user-induced delays,
times considered in this section. rather than from machine-induced delays or processing.

To extractorFtimes from our traces, we adopt the following Another way of characterizing these two regimes is
definitions. Within each Mosaic session, tetbe the absolute through the examination of the interarrival times of URL
arrival time of URL request. Let ¢; be the absoluteomple- requests—namely, the distribution @f;; — a;. Fig. 12 shows
tion time of the transmission resulting from URL request that distribution.

It follows that (Ci — ai) is the random variable of ON times The “dip” in the distribution in Flg 12 reflects the presence
(whose distribution was shown in Fig. 3), wher¢as,; —¢;) Of two underlying distributions. The first is the interarrival of
is the random variable afFr times. Fig. 10 shows the LLCD URL requests generated in response to a single user request
plot of (aif1 — ¢i). (or user click. The second is the interarrival of URL requests

In contrast to the other distributions we study in this papegenerated in response to two consecutive user requests. The
Fig. 10 shows that the distribution @fFF times is not well difference between these distributions is that the former is
modeled by a distribution with constant Instead, there seemaffected by the distribution obn times and the distribution
to be two regimes fot. The region from 1 ms to 1 s forms one0f active OFF times, whereas the latter is affected by the
regime; the region from 30 to 3000 s forms another regimgi,stribution of ON times, activeFF times, and inactiveorFr
in between the two regions, the curve is in transition. times. A recent study [7] confirmed this observation by ana-

The difference between the two regimes in Fig. 10 can hzing and characterizing the distribution of document request
exp|ained in terms of activ®FF time versus inactiveore arrivals at access links. This Study, which was based on two
time. Active OFF times represent the time needed by the cliefigtasets different from oufsconcluded that the two regimes
machine to process transmitted files (e.g., interpret, form&hibited in Fig. 10 could be empirically modeled using a
and d|sp|ay a document Component)_ It seems reasonable W&!bu“ distribution for the interarrival of URL requeStS during
OFF times in the range of 1 ms—1 s are not primarily duthe active regime, and a Pareto distribution for the inactive
to users examining data, but are more likely to be strongBFF times.
determined by machine processing and display time for dataFor self-similarity via aggregation of heavy-tailed renewal
items that are retrieved as part of a multipart document. THi§ocesses, the important part of the distributioe times is
distinction is illustrated in Fig. 11. For this reason, Fig. 18S tail. Measuring the value af for the tail of the distribution
shows the 1 ms—1 s region as activer time. On the other (OFF times greater than 30 s) via the slope method yields
hand, it seems reasonable that very fawbeddedomponents & = 1.50 (R* = 0.99). Thus, we see that theFr times
would require 30 s or more to interpret, format, and displaj€asured in our traces may be heavy-tailed, but with lighter
Thus, we assume thafrtimes greater than 30 s are primaril)lans than the distribution obN times. In addition, we argue
user-determined, inactiverF times.

This delineation between active and inactioer times 5Namely, the Web traffic monitored at a corporate firewall during two 2-h
explains the two notable slopes in Fig. 10; furthermore, stssions.

Histogram of interarrival time of URL requests.
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that any heavy-tailed nature affF times is a result of user sources increases, the statistical confidence in judging self-
think timerather than machine-induced delays. similarity increases; however, it is not clear whether the
Since we saw in the previous section tlmat times were important effects of self-similarity (burstiness at a wide range
heavy-tailed witha &~ 1.0-1.3, and we see in this section thatof scales and the resulting impact on buffering, for example)
OFFtimes are heavy tailed with ~ 1.5, we conclude that ON remain even at low levels of traffic demand.
times (and, consequently, the distribution of available files in
the Web) are more likely responsible for the observed level of
traffic self-similarity, rather tharorr times. ACKNOWLEDGMENT
The authors thank M. Tagqqu and V. Teverovsky of the
Department of Mathematics, Boston University, for many
VI. CONCLUSION helpful discussions concerning long-range dependence. The

In this paper, we have shown evidence that traffic diithors also thank V. Paxson and an anonymous referee
to World Wide Web transfers shows characteristics that apose comments substantially improved the paper. C. Cunha
consistent with self-similarity. More importantly, we havdnstrumented Mosaic, collected the trace logs, and extracted
traced the genesis of Web traffic self-similarity along tw§0mMe of the data used in this study. Finally, the authors also
threads: first, we have shown that transmission times may thank the other members of the Oceans Research Group at

heavy-tailed, primarily due to the distribution of available fil&0ston University for many thoughtful discussions.

sizes in the Web. Second, we have shown that silent times
also may be heavy-tailed, primarily due to the influence of
user “think time.”

Comparing the distributions afN and oFrF times, we find
that theoN time distribution is heavier tailed than tlogrtime
distribution. The model presented in [30] indicates that when
comparing theoN and ofFfr times, the distribution with the
heavier tail is the determiner of actual traffic self-similarity [3]
levels. Thus, we feel that the distribution of file sizes in[4]
the Web (which determin®nN times) is likely the primary
determiner of Web traffic self-similarity. In fact, the work
presented in [18] has shown that the transfer of files whos@!
sizes are drawn from a heavy-tailed distribution is sufficientg
to generate self-similarity in network traffic.

These results seem to trace the causes of Web traff
self-similarity back to basic characteristics of information
organization and retrieval. The heavy-tailed distribution of filel8]
sizes we have observed seems similar in spirit to Pareto dis-
tributions noted in the social sciences, such as the distributigg]
of lengths of books on library shelves, and the distribution
of word lengths in sample texts (for a discussion of thegey
effects, see [16] and citations therein). In fact, in other work
[6], we show that the rule known as Zipf's law (the degre@l]
of popularity is exactly inversely proportional to the rank
of popularity) applies quite strongly to Web documents. Thié2|
heavy-tailed distribution of user think times also seems to tffa]
a feature of human information processing (e.g., [21]).

These results suggest that the self-similarity of Web traffic

(1]

is not a machine-induced artifact; in particular, changes I
protocol processing and document display are not likely to
fundamentally remove the self-similarity of Web traffic (al{!°!
though some designs may reduce or increase the intensity of
self-similarity for a given level of traffic demand). [16]

A number of questions are raised by this study. First, t
generalization from Web traffic to aggregated wide-area traffic
is not obvious. While other authors have noted the heavy-tailed
distribution of FTP transfers [20], extending our approach thg
wide-area traffic in general is difficult because of the many
sources of traffic and determiners of traffic demand.

A second question concerns the amount of demand requil%ga
to observe self-similarity in a traffic series. As the number of
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