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Abstract— We present the concept of network traffic streams, and the
ways they aggregate into flows through Internet links. We describe a
method of measuring the size and lifetime of Internet streams, and use this
method to characterise traffic distributions at two different sites.

We find that although most streams (about 45% of them) are dragonflies,
lasting less than 2 seconds, a significant number of streams have lifetimes
of hours to days, and can carry a high proportion (50% to 60%) of the total
bytes on a given link. We define tortoises as streams that last longer than
15 minutes. We point out that streams can be classified not only by lifetime
(dragonflies and tortoises) but also by size (mice and elephants), and note
that stream size and lifetime are independent dimensions.

We submit that Service Providers (ISPs) need to be aware of the distribu-
tion of Internet stream sizes, and the impact of the difference in behaviour
between short and long streams. In particular any forwarding cache mech-
anisms in Internet routers must be able to cope with a high volume of short
streams. In addition ISPs should realise that Long-Running (LR) streams
can contribute a significant fraction of their packet and byte volumes –
something they may not have allowed for when using traditional ‘flat rate
user bandwidth consumption’ approaches to provisioning and engineering.

I. BACKGROUND

A. Measuring Internet traffic

The Internet is a global internetwork, sharing information
among millions of computers throughout the world. Internet
users send packets of information from one machine to another
using various Internet protocols; TCP and UDP are the most
common transport protocols, but other newer standard protocols
are starting to appear.

Packets are carried through various links, e.g. from user host
to regional Internet Service Provider (ISP), regional to backbone
ISP, etc. Between such links packets are forwarded by routers
using the Internet protocol (IP); IP version 4 is most common,
but version 6 is now beginning to be deployed [1].

Typical users are not interested in packets on the Internet; they
simply run application programs such as web browsers, which
exchange packets with other computers as they carry out user re-
quests. Groups of packets exchanged in this way are commonly
referred to as traffic flows.

To measure traffic flows one examines packet headers as they
pass by on a given link, determines which flow each packet be-
longs to using information extracted from its header, and counts
packets and bytes for each flow. A system that gathers flow data
in this way is called a traffic meter. Such a meter may be free-
standing or may be built into a device such as a router.
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For our investigations we use RTFM, an Internet standard Re-
altime Traffic Flow Measurement system [2]. The RTFM archi-
tecture defines three entities:
Meters gather data from packets so as to produce flow data.
Meter Readers collect flow data from meters.
Managers specify real-time data reduction by downloading

configuration data (called rulesets) to meters, and also
specify the intervals at which meter readers read flow data.

We make our flow measurements with NeTraMet [3], an open-
source implementation of RTFM. NeTraMet includes an RTFM
meter, a combined manager/meter reader, and a compiler for
SRL (the Simple Ruleset Language, RTFM’s high-level lan-
guage for specifying rulesets).

B. Traffic mix: mice and elephants

On any Internet link there is always a mix of flows from a
variety of applications, carried by various transport protocols,
especially TCP and UDP. UDP provides unreliable datagram
delivery, i.e. an application sends UDP packets, but UDP itself
provides no feedback to the sender. UDP is therefore unaware of
any network congestion; streaming applications often continue
to send data at constant high byte rates.

TCP, on the other hand, not only provides reliable byte stream
delivery, but also uses feedback from receiving hosts to control
its sending rate. TCP’s congestion management algorithms al-
low a TCP stream to vary its byte rate, seeking to use the highest
possible rate but lowering the rate when the network becomes
congested. For this reason, TCP is considered network-friendly.

Early analyses and simulations of TCP behaviour focused
on steady state behaviour, using ‘infinite source’ workloads,
e.g. large file transfers, and assumed that high volume TCP
streams (network elephants) would not be significantly affected
by the presence of small TCP streams (network mice). The
fundamental difference between network mice and elephants is
that an elephant’s TCP session extends past TCP’s slow start
phase, so its behaviour, including the way it interacts with other
TCP sessions, is controlled by TCP’s feedback-based conges-
tion management algorithms. However, mice cannot be con-
trolled by feedback since they are sent and received in their en-
tirety before TCP has an opportunity to apply feedback control.

More recent models of TCP behaviour have increasingly fo-
cused on interactions between elephants and mice. For example,
Joo et al. [4] analyzed the expected throughput of TCP streams
and how concurrent streams interact. They found that multi-
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1(a): Traffic summary at Auckland (UA), kb/s vs time for 5 m intervals
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1(b): Traffic summary at San Diego (UCSD), kb/s vs time for 5 m intervals

Fig. 1. Cumulative rate (kb/s) for various traffic kinds vs time of day (HHMM)
at Auckland (UA) and San Diego (UCSD) for 24 hours from midnight local
time on Wed, 12 Jun 02.

ple elephants can synchronise with each other, which may cause
routers to drop packets. They state, “although elephants are re-
sponsible for a major proportion of the bytes on the network,
the number of packets generated by mice can be sufficient to
create losses from time to time.” Joo et al. [4] also examined the
dynamics of packet drops and concluded that mice can break
up synchronization effects, leading to a more efficient use of
network resources. This breakup effect may explain why best-
effort datagram delivery has served the Internet so well as a low-
est common denominator of network service.

As an alternative to classifying flows by size (number of
bytes), i.e. as elephants or mice, one can also classify flows by
their lifetime (in seconds). Shaikh, Rexford and Shin [5], using
a 60-second timeout, observed flow lifetimes up to 2000 seconds
and found that such ‘long-lived’ flows accounted for a high pro-
portion of bytes on a link. They propose that ‘load-sensitive’
routers might attempt to find better routes for long-lived flows,
thus improving overall link utilisation.

C. Streams, flows and torrents, traffic kinds

The term flow has various meanings in different contexts. For
example, in routing a flow is a set of packets with the same
source and destination IP addresses, all travelling in the same
direction. Internet researchers often use 5-tuples, i.e. protocol,
source and destination IP address and port number; they refer to
these as microflows.

In this paper, we use the terminology proposed by Brownlee
& Murray [6], i.e.:

� Streams are individual IP sessions (e.g. TCP or UDP)
between ports on pairs of hosts.

� Flows are sets of packets travelling in either direction between
a pair of end-points (which may be hosts, networks, etc.).

� A torrent refers to all the traffic on a given link.

For our investigations we classify all traffic within a torrent into
four kinds, distinguished by transport protocol: UDP; TCP (the
most common); and other. Because web is a dominant applica-
tion at some sites, we subdivide TCP into web (TCP) and non-
web TCP. We aggregate all streams for each kind of traffic into
one of four flows; we present data for these flows in figures 1
and 4.

II. MEASUREMENT METHODOLOGY

The NeTraMet implementation of streams creates a data
structure for each stream within a flow, and counts each stream’s
packets and bytes until the stream times out, i.e. no packets are
observed for a dynamically specified timeout interval [6]. When
a stream times out, its packet and byte counts are used to add a
point to its flow’s stream size and lifetime distributions. Streams
that remain active for long periods of time make no contribution
to the stream distributions.

We have extended the NeTraMet meter to monitor stream life-
times, and to automatically create flows in the meter’s flow table
when a stream remains active for more than a specified time.
Flows created for such long-running (LR) streams have their
packet and byte counters updated for every packet. We collect
data for these LR-stream flows with every meter reading, so as to
obtain time series of packet and byte counts for each LR stream.

Our NeTraMet ruleset produces one flow for each of our four
traffic kinds. For each flow we build five distributions:
1-2 To/From Bytes: Bytes in each direction of streams.

41 bins, log scale, 30 B to 600 kB
3-4 To/From Packets: Packets in each direction of streams.

41 bins, log scale, 1 to 32768 packets
5 Flow Time: Stream lifetime.

41 bins, log scale, 2 s to 15 minutes

We read our NeTraMet meters every five minutes, producing a
set of five distributions for each five-minute interval. The coun-
ters for each distribution bin are never reset – instead we com-
pute the distribution for each reading interval as the difference
between successive readings. We can therefore observe varia-
tions in the distributions over periods of hours to days, with a
time resolution of five minutes.

In order to provide higher resolutions for small and/or short-
lived streams we use log scales for the distributions. Streams
with size or lifetime greater than a distribution’s upper limit are
counted in that distribution’s ‘overflow’ bin.



0

10

20

30

40

50

60

70

80

0000 0200 0400 0600 0800 1000 1200 1400 1600 1800 2000 2200 0000
0

5

10

15

20

25

%   

Local Time

   %

(left scale)   2s streams
(left scale)  LR streams
LR Bytes  (right scale)

2(a): Stream and Byte % at Auckland (UA) vs time for 5 m intervals
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2(b): Stream and Byte % at San Diego (UCSD) vs time for 5 m intervals

Fig. 2. Percentage of Short and Long-Running streams (black symbols using
left-hand axis), and percentage of Bytes in LR streams (grey symbols using
right-hand axis) vs time of day (HHMM) at Auckland (UA) and San Diego
(UCSD) for 24 hours from midnight local time. Note that:

– 40% to 70% of streams are dragonflies, (black diamonds)
lasting 2 seconds or less.

– About 1.5% of streams (black dots) are tortoises, i.e. LR streams
lasting more than 15 minutes. They contribute 5% to 50% of a
torrent’s bytes (grey circles).

Although we collect byte and packet stream size distributions,
in this paper we only present ‘Bytes From’ distributions, mainly
due to space limitations, but also because the other distributions
are generally similar to the ‘Bytes From’ ones. Similarly, the
percentage of ‘other’ traffic we observe is negligible compared
to our other three traffic kinds; we have not shown it on our plots.

Both our NeTraMet meters run on Linux systems located at
two sites. Our OC3 meter (Auckland) observes packet headers
using a commodity 100BaseT Ethernet card via libpcap [7]; our
OC12 meter (UCSD) uses a Dag 3.2 card [8] via direct Linux
drivers.

A. Short vs long-Running (LR) streams;
dragonflies and tortoises

When configuring a NeTraMet meter one must specify a
stream-to-flow time; the meter creates Long-Running (LR)

flows for all streams lasting longer than stream-to-flow seconds.
In choosing a stream-to-flow value one must balance the desire
to observe streams lasting for shorter periods against the costs
of collecting and working with larger data sets. For this investi-
gation we experimented with 5- and 10-minute lifetimes before
choosing 15 minutes as the maximum lifetime of a short stream,
i.e. our tortoises are LR streams with lifetimes greater than 15
minutes. We find that 15 minutes is a reasonable compromise,
generating manageable data set sizes that still yield substantial
insights into LR stream behaviour.

Measuring distributions of shorter flows is complicated by an
‘edge effect.’ Since a stream is only counted when it times out,
the distribution counts include streams that started in an earlier
interval but timed out in a given reading interval. The first bin
in our Flow Time distributions counts flows with lifetimes up to
two seconds, which limits the ‘edge effect’ error to a maximum
of 0.6%. We find that a high proportion of streams fall in this
first bin, so we describe them as Very-Short streams, i.e. streams
with lifetimes of two seconds or less.

To summarise, we classify streams by lifetime as:
� Very-Short dragonflies, lasting up to two seconds,
� Short, lasting up to 15 minutes, and
� Long-Running (LR) tortoises, lasting more than 15 minutes.

We emphasise that stream size is independent of stream lifetime.

B. Observation sites

In this section we discuss the Internet traffic observed at two
sites, the University of Auckland (UA), and UC San Diego
(UCSD). We have collected data at both sites for eight complete
days. Traffic patterns vary little over those days; our figures
show data for Wednesday, 12 June 2002.

The University of Auckland (UA) runs a campus network
serving about 35,000 users. The campus is connected to the
Internet via an OC3 (155 Mb/s) ATM link, however this link
is rate-limited to 9 Mb/s by the university’s Internet provider.
Our NeTraMet meter is connected to a 100 Mb/s Ethernet hub
located between the university’s access router and its firewall.

Figure 1(a) shows stacked bar plots of web TCP, non-web
TCP and UDP traffic at Auckland versus local time. We read
our meters every five minutes, then plot the average bit rate for
each five-minute interval. The bit rate for each kind of traffic is
indicated by the distance between its trace and the one below it.
Furthermore, the topmost trace shows the whole torrent’s traffic.

Figure 1(a) shows a typical day for a small enterprise site.
There is little traffic in the early morning hours, except for a few
brief spikes; these probably indicate periods during which mir-
roring servers at Auckland were updating their content. From
about 7 a.m. the load grew; there was a slight dip around
lunchtime, then the load remained steady through the afternoon.
At about 6 p.m. the load decreased sharply, rose again slightly
in the early evening, then decreased toward midnight. On this
link web traffic was dominant; the ratio of web to non-web TCP
traffic remaining fairly steady at about 80%. UDP traffic con-
tributed few bytes to the load, and there was almost no traffic
other than TCP and UDP.

One distinctive feature of this site is that the University of
Auckland recovers the costs of Internet connectivity directly
from its users, charging for each MB of data sent or received.



Departments are billed monthly for staff usage and students are
charged by a real-time access control and billing system. Clearly
the Internet usage patterns of Auckland users are influenced by
the knowledge that they are paying for it. For example, Auck-
land has not (yet) seen widespread use of peer-to-peer file shar-
ing.

UC San Diego (UCSD) is connected to the Internet via an
OC12 (622 Mb/s) ATM link to the San Diego Supercomputer
Centre (SDSC). SDSC has high speed links to three research
networks as well as a lower speed connection to the commodity
Internet. Our NeTraMet meter is attached to UCSD’s OC12 link
via a passive optical splitter.

Figure 1(b) shows stacked bar plots of UCSD traffic. UCSD
does not attempt to recover per-byte Internet usage costs, nor
does it impose rate limits on individual Internet connections. In
this environment Internet usage is limited only by congestion,
which will increase as the university’s total Internet usage in-
creases. Occasionally UCSD upgrades its commodity Internet
capacity, historically allowing the load and congestion cycle to
build up again.

UCSD’s total traffic byte volume is 16 times greater than
Auckland’s nearly all the time, but still utilises only about 15%
of their OC12 link’s maximum capacity. UCSD also has more
UDP traffic than Auckland; 1 Mb/s at night, rising to around 10
Mb/s during the day.

At Auckland web was the dominant TCP application, but
UCSD’s web to non-web TCP ratio is only about 50% (much
less than Auckland’s 80%), indicating that at UCSD a higher
proportion of TCP traffic is generated by non-web applications.

Overall, the diurnal variations for web and UDP traffic sug-
gest that these kinds of traffic follow human activities. Non-
web TCP however has a fairly high background level (about 0.5
Mb/s at Auckland and 70 Mb/s at UCSD); it varies about this
level, with its UCSD minimum around 8 a.m. and its maximum
around 10.30 p.m.

C. Percentage of streams and bytes in a torrent

As well as producing stream packet and byte size distribu-
tions, our NeTraMet ruleset records the total number of packets
and bytes observed in each traffic flow. For each meter reading
we sum the LR-stream byte counts; from these sums we com-
pute the percentage of bytes in LR streams. In this section we
discuss the LR byte percentages, together with the percentages
of Very-Short (

���
2s) and LR ( � 15 m) streams at our two

observation sites. Figure 2 plots these three measures at five-
minute intervals over a day for Auckland (UA) and San Diego
(UCSD).

First, the percentage of Long-Running streams is plotted with
black dots (bottom trace) in figure 2, using the left-hand y-axis
scale. At UCSD (figure 2(b)) about 1.5% of the streams were
LR, and this level varied little during the day. In Auckland (fig-
ure 2(a)) there were only about 0.5% LR streams during the day,
but nearly 1.5% from midnight until dawn.

Second, the percentage of Very-Short streams is plotted with
black diamonds (top trace) in figure 2, also using the left-hand
y-axis scale. At UCSD (figure 2(b)) there was a clear diurnal
variation of the Very-Short stream percentage from 38% around
4 a.m. to about 55% around 3 p.m., corresponding well with
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3(a): Stream lifetimes at Auckland (UA) at 5-min intervals
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3(b): Stream lifetimes at UC San Diego (UCSD) at 5-min intervals

Fig. 3. Stream lifetime distributions at Auckland (UA) and UC San Diego
(UCSD). Percent streams vs lifetime (minutes) for eight hours, 9 a.m. to 5
p.m. local time on Wed, 12 Jun 02. Note that although the link data rates
differ, the shape of the distribution is similar for both sites.

UCSD’s diurnal variation in web traffic shown in figure 1(b).
At Auckland however (figure 2(a)) about 70% of the streams
were Very-Short nearly all day. Between 5 a.m. and 7 a.m. the
Very-Short stream percentage dropped to 50%; during that inter-
val there were considerably fewer TCP web bytes than non-web
bytes.

Third, the percentage bytes in LR streams is plotted with open
circles (middle trace) in figure 2, using the right-hand y-axis
scale. At UCSD (figure 2(b)) about 50% of all bytes were in
Long-Running streams, and this percentage varied little during
the day. At Auckland (figure 2(a)) only about 5% of all bytes
were in Long-Running streams, most likely because Auckland
had much less non-web TCP traffic than UCSD.

To summarise:
� About 1.5% of UA and UCSD streams were

Long-Running (LR).
� 40% (UCSD) to 70%(UA) of the streams were Very-Short,

and most of them appear to be web traffic.
� 5% (UA) to 50% (UCSD) of all bytes were in LR streams,

and most of them appear to be non-web traffic.



III. SHORT STREAM BEHAVIOUR

A. Lifetime distributions

Figure 3 shows lifetime distributions for short streams,
i.e. those with lifetimes up to 15 minutes, at Auckland (figure
3(a)), and UCSD (3(b)). In both these plots at least 45% of the
counted streams lie in the first bin, i.e. they had lifetimes of two
seconds or less. We use a logarithmic scale for the distribution’s
y-axis, to reveal the whole range of percentages. The rest of the
distribution falls away quickly at Auckland, where there are few
streams with lifetimes above 2.5 minutes. At UCSD the lifetime
distribution falls away more slowly, but there are few streams
with lifetimes above 5 minutes. However, above these lifetimes,
the lifetime distributions slope down gently toward 15 minutes,
our maximum short stream lifetime.

As defined in section II-A, our LR streams have lifetimes
greater than 15 minutes. When an LR stream times out, the
meter increments the overflow bin for its distributions (i.e. the
distributions for that stream’s flow). The lifetime distribution
overflow counts appear as the high values plotted for y values
above 15 minutes, i.e. the spikes at the right-hand edge of fig-
ures 3(a) and 3(b). As we saw on the LR byte percentage plots
(figure 2), although there are few LR streams, they can account
for a high percentage of a flow’s total bytes throughout the day.

The most striking feature of the distributions in figure 3 is
that their shapes are similar. At both sites we observe that the
distributions do not change rapidly with time. At UCSD (3(b))
there was little change in the shape of the distributions over the
eight hours shown. At Auckland (3(b)), where the link capacity
is lower, the proportion of streams with lifetimes between 7.5
and 12.5 minutes increased during the afternoon. This increase
could indicate that when the Auckland’s link’s byte load is high,
not only are there more users, but those users are working with
larger files.

B. Byte size distributions

Figure 4 shows byte size distributions for short streams at
UCSD; byte size distributions at Auckland (not shown) are sim-
ilar. The distributions are collected using 41 bins in a log scale
from 30 bytes to 600 kB. The jagged appearance for small
stream sizes, i.e. below about 300 bytes, is an artifact of the
limited bin resolution for streams with only a few packets.

For short UDP streams (figure 4(a)), the byte size distribution
has peaks at about 30 and 80 bytes, indicating that a high propor-
tion of UDP streams have only one or two packets in their from
(i.e. destination to source) direction. Short UDP stream sizes
fall steadily (on a log scale) from about 300 bytes to 20 kB;
they also have a noticeable percentage of streams in the over-
flow bin, i.e. with sizes above 600 kB. Successive five-minute
distributions vary somewhat over periods of about 15 minutes,
producing the corrugated effect on the plot.

Short Web streams (figure 4(b)) have high peaks at 30, 50, 100
and 200 bytes, a local maximum from about 300 to 800 bytes,
a plateau from 1 kB bytes to about 40 kB, and a fairly steep
fall from there. Since web streams use TCP, they require at least
two packets in each direction, hence the size distribution’s peaks
below 300 bytes indicate streams that most likely failed to estab-
lish a TCP session. The local maximum from 300 to 800 bytes is
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4(a): UDP stream sizes at UC San Diego (UCSD) at 5-min intervals
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4(b): Web stream sizes at UC San Diego (UCSD) at 5-min intervals
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4(c): Non-web TCP stream sizes at UC San Diego (UCSD) at 5-min intervals

Fig. 4. Size distributions for short streams at UCSD. Percent of streams vs
stream size (kB) for eight hours, 9 a.m. to 5 p.m. local time on Wed, 12 Jun
02. Note the clear differences between the three flow kinds.

probably for streams carrying small web objects (buttons, ‘file
not found’ messages, etc.), and the plateau suggests that web
objects have a fairly flat file size distribution below about 40
kB, with a power law fall (linear on the log plot, figure 4(b))
for large files. The five-minute web stream size distributions are
remarkably steady, suggesting that web usage patterns at UCSD
are stable over long periods.
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Fig. 5. Long-running (LR) stream histories, Auckland (UA) on Thu 4 Apr 02 (b,c) and San Diego (UCSD) on Thu 28 Mar 02 (a,d,e,f). Bit rate (kb/s) vs elapsed
time (minutes)

Short non-web TCP stream distributions (figure 4(c)) have a
stream size peak at 30 and 50 bytes, smaller peaks at 180 and
1500 bytes, and a steady fall from there to 600 kB. The steady
fall suggests that non-web stream sizes also have a power law
distribution, at least for stream sizes from about 1500 bytes to
300 kB.

There are also noticeable local maximum at 5 kB for web
streams and 90 kB for non-web streams, indicating transmission
of many objects this size; we have not yet determined what they
were.

To summarise:
� Short stream size distributions for UDP, non-web and

web TCP traffic are distinctly different and stable
over periods of hours.

� Our study only reflects data collected at Auckland
and UCSD, but at this stage we believe these sites are
representative examples of medium to large Internet-
edge networks.

IV. LONG-RUNNING STREAM (tortoise) BEHAVIOUR

We find that long-running streams, i.e. streams lasting more
than 15 minutes, occur frequently at both Auckland and UCSD.
To gain a better understanding of their behaviour we selected a
representative set of LR streams and produced ‘thumbnail’ plots
of their bit rates (kb/s) vs time (minutes), as shown in figure 5.
In this section we comment on the behaviour of these streams.

� Figure 5(a) shows three streams with bit rates below 60 b/s. At
such low bit rates our bit rate resolution is poor, producing the
stepped effect in the traces. The top trace was an NTP stream.

These are always present, serving to keep end-system clocks
synchronised. The middle trace was an SSH stream that was
mostly quiescent but had occasional intervals reflecting user ac-
tivity. The lower trace was a DNS stream with a diurnal bit rate
pattern, highest during the afternoon.

� Figure 5(b) shows a 24-hour web stream that consisted en-
tirely of 20 b/s bursts at half-hour intervals, suggesting that it
was carrying a web page that was ‘refreshed,’ i.e. re-displayed,
every half hour. The apparent size of the bit rate bursts depends
on whether they happen to fall in one or two of our five-minute
reading intervals.

� Figure 5(c) shows an FTP file transfer, taking five hours at
a high but variable rate, 50 to 200 kb/s. Its high bit rate vari-
ance suggests that this stream was traversing severely congested
Internet paths.

� Figure 5(d) shows two streams that ran at 180 and 320 kb/s
nearly all day, moving about 2.9 and 1.4 Gigabytes. Although
they were TCP streams their data rates did not vary much, in-
dicating that there was little congestion on their Internet paths.
These streams effectively reduced the link’s available capacity
by several hundred kb/s.

� Figure 5(e) shows two near identical Doom streams that ran
for nine hours at 80 to 200 kb/s. They were UDP streams, hence
their steady rate for long periods. Their sudden rate changes
presumably correspond to changes in the state of the game.

� Figure 5(f) shows a RealAudio stream that ran at 180 kb/s for
15 hours, transferring 1.2 Gigabytes. This was a UDP stream;
its rate varied only about +/- 5 kb/s, much less than the TCP
streams in figure 5(d).



To summarise:
� Long, continuous LR streams may be low-rate (service

support or user interaction), or high-rate (audio/video
data streams).

� Brief and medium-duration LR streams tend to be high-rate,
running until some user-initiated activity is completed.

� TCP LR streams show rate variation as Internet congestion
changes over time, with rate variations similar for streams
sharing congested links in their Internet paths.

� UDP streams tend to run at fairly constant bit rates, but these
rates change in response to application dynamics.

A. LR stream lifetimes

0.01

0.1

1

10

20 50 100 200 500 1000

%  

minutes

UCSD, 12 Jun 02
UA, 13 Jun 02

Fig. 6. Stream Lifetime Distributions, UCSD and UA. Percentage of LR streams
in torrent vs stream lifetime (minutes).

Figure 6 is a log-log scatter plot showing percentage of LR
streams vs LR stream lifetime (minutes) for Auckland and
UCSD. The two plots cluster around a line, suggesting that
stream sizes follow a power law distribution. The spread of
points around this line is narrow for lifetimes from 20 to about
100 minutes; the spread increases for longer lifetimes.

More points are plotted for UCSD than for Auckland, pro-
viding more detail for lifetimes above 500 minutes. Similarly,
because there are fewer points for Auckland (reflecting the lower
traffic rate at Auckland), the y-axis has lower resolution for the
Auckland plot, producing the line at stream percentage 0.06%.
The two plots are nonetheless similar, indicating that users at the
two sites are running similar application cross-sections.

V. CONCLUSION

As recently as July 2000, Zhang et al. [9] observed that “Inter-
net traffic is now dominated by mice, i.e. small objects 10-20 kB
in size; the average web document is only around 30 kB,” but in
contrast reported that “the majority of the packets and bytes be-
long to elephants.” Similarly, in April 2001 Brownlee et al. [10]
measured stream byte size distributions and found that TCP data
streams had a 95th percentile of approximately 15 kB.

Since 2000 Internet link speeds increased as users migrated
to cable modem and DSL connections, backbone links were up-
graded from OC3 (155 Mb/s) toward OC48 (2.4 Gb/s), and ISPs
installed newer, faster routers to handle increasing packet loads.

At the same time computer hardware improved; systems with 1
GHz processors, 512 MB memory, 20 GB disk drives and ever-
increasing I/O bus speeds became common. This dramatic in-
crease in network and computer capability has allowed users to
work with ever larger files. As a result we now observe that
the average size of web objects has increased considerably, with
web objects up to 50 kB becoming common.

Along with increasing file size, the last few years have seen
the rapid growth in usage of an ever increasing set of peer-to-
peer file sharing systems. e.g. Napster, Gnutella, E-Donkey, etc.
These peer-to-peer applications have significantly changed the
traffic mix, so that a higher overall proportion of their streams
have large numbers of bytes. In addition to streaming protocols
carrying audio and video programs, VoIP or multimedia con-
ferencing are increasingly common. Clearly these trends will
continue.

Our current observations confirm that most streams are very
short. At least 45% of streams have lifetimes of 2 seconds or
less, (dragonflies), and about 98% of them last less than 15 min-
utes. However, the remaining one or two percent, which we call
Long-Running (LR) streams (tortoises), have lifetimes of hours
to days and can carry a high proportion (50% to 60%) of the
total bytes on a link.

We submit that Internet Service Providers (ISPs) need to be
aware of the behaviours of short streams. In particular any for-
warding cache mechanisms in Internet routers must be able to
cope with the high volume, both absolute and as a percentage, of
short streams. In addition, ISPs should realise that LR streams
can contribute a significant fraction of their packet and byte vol-
umes, reducing the available bandwidth of their Internet links.

Lastly, we emphasise that streams can be classified not only
by their size (mice and elephants), but also by their lifetime
(dragonflies and tortoises). Furthermore, stream size and life-
time are independent dimensions; both are of interest in under-
standing the overall behaviour of streams in a torrent.
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