
In this tutorial we introduce basic concepts
behind the Visualization Toolkit (VTK). An

overview of the system, plus some detailed examples,
will assist you in learning this system. The tutorial tar-
gets researchers of any discipline who have 2D or 3D
data and want more control over the visualization
process than a turn-key system can provide. It also
assists developers who would like to incorporate VTK
into an application as a visualization or data process-
ing engine. Although this tutorial can only provide an
introduction to this extensive toolkit, we’ve provided
references to additional material.

What is VTK?
VTK1 is an open-source (see the sidebar “Open

Source Breakout”), portable (WinTel/Unix), object-ori-
ented software system for 3D computer graphics, visu-
alization, and image processing. Implemented in C++,
VTK also supports Tcl, Python, and Java language bind-
ings, permitting complex applications, rapid applica-
tion prototyping, and simple scripts. Although VTK
doesn’t provide any user interface components, it can be
integrated with existing widget sets such as Tk or
X/Motif.

VTK provides a variety of data representations includ-
ing unorganized point sets, polygonal data, images, vol-
umes, and structured, rectilinear, and unstructured
grids. VTK comes with readers/importers and writ-
ers/exporters to exchange data with other applications.
Hundreds of data processing filters are available to oper-
ate on these data, ranging from image convolution to
Delaunay triangulation. VTK’s rendering model sup-
ports 2D, polygonal, volumetric, and texture-based
approaches that can be used in any combination.

VTK is one of several visualization systems available
today. AVS2 was one of the first commercial systems
available. IBM’s Data Explorer (DX),3 originally a com-
mercial product, is now open source and known as
OpenDX. NAG Explorer4 and Template Graphics Amira
(see http://www.tgs.com/Amira/index.html) are other
well-known commercial systems.

VTK is a general-purpose system used in a variety of
applications, as seen in Figure 1. Because VTK is open
source, faculty at many universities—including Rens-

selaer Polytechnic Institute, State University of New York
at Stony Brook, the Ohio State University, Stanford, and
Brigham and Women’s Hospital use VTK to teach cours-
es and as a research tool. National labs such as Los Alam-
os are adapting VTK to large-scale parallel processing.
Commercial firms are building proprietary applications
on top of the open-source foundation, including med-
ical visualization, volume visualization, oil exploration,
acoustics, fluid mechanics, finite element analysis, and
surface reconstruction from laser-digitized, unorga-
nized point-clouds.

VTK began in December 1993 as companion software
to the text The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics by Will Schroeder, Ken Martin,
and Bill Lorensen (Prentice Hall). In 1998 the second
edition of the text appeared, with additional authors
Lisa Avila, Rick Avila, and Charles Law. Since that time
a sizable community has grown up around the software,
including dozens of others as developers, often submit-
ting bug fixes or full-blown class implementations.
These community efforts have helped the software
evolve. For example, David Gobbi in the Imaging
Research Laboratories at the John P. Robarts Research
Institute, University of Western Ontario, has reworked
VTK’s transformation classes and is now an active 
developer.

Architecture
VTK consists of two major pieces: a compiled core

(implemented in C++) and an automatically generated
interpreted layer. The interpreted layer currently sup-
ports Tcl, Java, and Python.

C++ core
Data structures, algorithms, and time-critical system

functions are implemented in the C++ core. Common
design patterns such as object factories and virtual func-
tions insure portability and extensibility. Since VTK is
independent of any graphical user interface (GUI), it
doesn’t depend on the windowing system. Hooks into
the window ID and event loop let developers plug VTK
into their own applications. An abstract graphics model
(described in the next section) achieves graphics
portability.

0272-1716/00/$10.00 © 2000 IEEE

Tutorial

20 September/October 2000

William J. Schroeder, Lisa S. Avila, 
and William Hoffman
Kitware

Visualizing with
VTK: A Tutorial



Interpreted layer
While the compiled core provides speed and efficien-

cy, the interpreted layer offers flexibility and extensi-
bility. For example, using GUI prototyping tools such as
Tcl/Tk, Python/Tk, or Java AWT permits building pro-
fessional applications rapidly. These popular program-
ming languages come with other packages such as
Python’s numerical library NumPy.

We used Tcl in the examples in this article. You can type
in the example code included here and immediately see
the results. Follow the instructions found at http://www.
visualizationtoolkit.org/CGA/Instructions.htm to install
VTK and start a Tcl shell with VTK support.

The graphics model
VTK has two major subsystems—the graphics model

and visualization pipeline. The graphics model forms an
abstract layer above the graphics language (for example,
OpenGL) to insure cross-platform portability. When the
development of VTK began in 1993, each computer plat-
form had its own graphics language—XGL for Sun, Star-
base for Hewlett-Packard, and gl for Silicon Graphics.
Abstracting graphics concepts into a platform and device-
independent layer created the graphics model. Since that
time the industry has standardized on OpenGL. Although
this is now the only low-level graphics language sup-
ported in VTK, the abstract layer has not been abandoned.
In the future, new graphics languages are likely to become
popular and even replace OpenGL as a standard. Keep-
ing this abstract layer lets us update VTK with new tech-
nology without affecting backwards compatibility.

We adapted the names of the classes in the graphics
model from the movie-making industry. Lights, cam-
eras, actors, and props are classes that the user instan-

tiates to create a scene. You’ll find that the model used
for 3D polygonal rendering (lights, cameras, actors) is
analogous to the model used for volume and other types
of rendering (lights, cameras, volumes). In the follow-
ing sections we’ll walk through a simple example
demonstrating these classes for surface polygonal and
volume rendering. You may wish to type these com-
mands into a properly installed Tcl interpreter as
described in the previous section. Figure 2 shows the
resulting image from this example.

IEEE Computer Graphics and Applications 21

Open Source Breakout
A model of software development called open source is gaining

acceptance in the software world. Although the exact definition of
open source remains debatable, the basic premise is that the
source code is freely available to anyone who wants it. This differs
greatly from commercial software, freeware, and shareware, all of
which are normally distributed in a binary format only. The
availability of source code to a wide audience creates many
opportunities and advantages in the software development
process. Recently, several high-profile projects have brought this
model to the attention of the media and general public. Those
projects include the Linux operating system, the Apache Web
server (running 50 percent of the World Wide Web), and sendmail
(the backbone for much of the e-mail sent today). Although people
have shared source code since the beginning of computers, new
business models, software development tools, and the Internet
have allowed the practice to expand greatly in the past five years.

Open-source software has many benefits. Eric Raymond in The
Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary (O’Reilly Publishers) argues that open-
source software development (the bazaar model) is inherently
more scalable than closed-team development (the cathedral
model). With more eyes looking at source code, bugs can be
discovered and fixed faster. In addition, new developers join the
development team at no extra cost. This has created more reliable
and portable software with faster development cycles than many
closed commercial offerings. With many developers in diverse
geographical areas, testing becomes even more important.

In the past 10 years business models have emerged to support
open-source development. It may seem impossible for a company
to survive by giving away software. However, companies can thrive
around an open-source project. Some common ways of generating
revenue include consulting, training, adding features, selling
technical support, building proprietary end-user applications on
top of open-source libraries, and selling development tools.

1 VTK can be used in diverse areas including medical
visualization (left) and industrial inspection applica-
tions (right).

2 Two renderers in a rendering window combine
surface, volume, and 2D rendering. The left renderer
contains a simple cube; the right renderer contains a
polygonal isosurface and volume rendering of electron
potential. The scalar bar indicates data range and its
relationship to color.



Render window and renderers
To visualize your data, you first need to open a win-

dow on the computer screen. vtkRenderWindow is an
abstract superclass representing the object into which
one or more renderers draw. Like most graphics objects,
it automatically instantiates the correct device-depen-
dent subclass for your platform. The vtkRenderWindow
is a container class for vtkRenderer objects, and multi-
ple renderers can be tiled within a single render win-
dow to create complex visualizations. In this example
we’ll place two renderers with different background col-
ors side by side within the render window. The place-
ment location is specified using normalized (0, 1)
viewport coordinates in the render window:

vtkRenderWindow renWin

renWin SetSize 600 300

vtkRenderer ren1

ren1 SetViewport 0.0 0.0 0.5 1.0

ren1 SetBackground 0.8 0.4 0.2

renWin AddRenderer ren1

vtkRenderer ren2

ren2 SetViewport 0.5 0.0 1.0 1.0

ren2 SetBackground 0.1 0.2 0.4

renWin AddRenderer ren2

renWin Render

The vtkRenderWindow object manages the render
process, so a single Render() call will cause the window
to map onto the screen and the renderers to update their
display. At this point in the example only solid back-
ground color will appear because we haven’t defined
any props.

Props, mappers, and properties
Props are the objects added to the renderer to create

a scene. The class vtkProp is an abstract superclass for all
2D and 3D props and contains information about visi-
bility, orientation, size, and position. Props associate
with a mapper and a property object. The mapper refers
to an input data object (described in the section on the
visualization pipeline), and it knows how to render the
data object. The property object contains rendering
parameters such as color and material properties. In the
next three sections we’ll cover some concrete subclass-
es for props, mappers, and properties that can be used
for rendering 3D surface geometric data, 3D volumet-
ric data, and 2D geometry, text, and images.

Rendering 3D geometric data
One specific subclass of vtkProp that can be used to

represent 3D geometric data in a scene is vtkActor. The
actor object will automatically create a default vtkProp-
erty object, but requires the user to specify a subclass of
vtkMapper. Depending on the nature of the geometry
referred to by the mapper, either the subclasses vtk-
DataSetMapper or vtkPolyDataMapper must be used. If
the data contains points, lines, and polygons represent-
ed using a vtkPolyData, then a vtkPolyDataMapper can

be used. Otherwise, vtkDataSetMapper must be used.
The following fragment of Tcl code can be used to cre-

ate a polygonal cube and place it in the scene. In this
code segment and others following, note that lines of
code ending with a backslash (\) indicate a carryover
of code that didn’t fit onto one line. The indented line
following belongs with the preceding line. Simply delete
the \ and type in a single line of code.

vtkCubeSource cubeData

vtkPolyDataMapper cubeMapper

cubeMapper SetInput \

[cubeData GetOutput]

vtkActor cubeActor

cubeActor SetMapper cubeMapper

ren1 AddProp cubeActor

ren1 ResetCamera

renWin Render

Since the output of the vtkCubeSource object is polyg-
onal data, an instance of vtkPolyDataMapper renders
the data. The ResetCamera() method centers the cam-
era on the data.

The following fragment of Tcl code rotates the cube
and changes the color to pink:

cubeActor RotateX 30.0

cubeActor RotateY 20.0

[cubeActor GetProperty] \

SetColor 1.0 0.7 0.7

renWin Render

Use the GetProperty() method of the actor to access
the automatically created property object.

Rendering 3D volumetric data
The vtkImageData object can be used to represent

one-, two-, and three-dimensional image data. As a sub-
class of vtkDataSet, vtkImageData can be represented
by a vtkActor and rendered with a vtkDataSetMapper. In
3D this data can be considered a volume. Alternatively,
it can be represented by a vtkVolume and rendered with
a subclass of vtkVolumeMapper. Since some subclasses
of vtkVolumeMapper use geometric techniques to ren-
der the volume data, the distinction between volumes
and actors mostly arises from the different terminology
and parameters used in volumetric rendering as
opposed to the underlying rendering method.

VTK currently supports three types of volume ren-
dering—ray tracing, 2D texture mapping, and a method
that uses the VolumePro graphics board.5 Although the
example in this section uses the 2D texture mapping
approach, you could change it to use an alternative
method with only minor modifications.

To begin our volume-rendering example, we’ll load a
3D structured data set of unsigned char values and use
this as input for the volume mapper vtkVolumeTex-
tureMapper2D.

Tutorial

22 September/October 2000



vtkSLCReader negReader

negReader SetFileName “neghip.slc”

vtkVolumeTextureMapper2D negMapper

negMapper SetInput \

[negReader GetOutput]

The hardest step in volume visualization is often
defining the transfer functions that map the scalar data
values into color and opacity. In this example we’ll use
a simple ramp from 0.0 to 0.2 for opacity, with the color
function ranging through red, blue, and green.

vtkPiecewiseFunction negOpacity

negOpacity AddPoint   0 0.0

negOpacity AddPoint 255 0.2

vtkColorTransferFunction negColor

negColor AddRGBPoint  64 1.0 0.0 0.0

negColor AddRGBPoint 128 0.0 0.0 1.0

negColor AddRGBPoint 196 0.0 1.0 0.0

The first value defined when adding a point into a
transfer function is always the scalar value, with one
value following it for a vtkPiecewiseFunction or an RGB
triple following it for a vtkColorTransferFunction. Since
we’re visualizing 8-bit data, the scalar values in this
example range from 0 to 255.

Now that we’ve defined the two required transfer
functions, we can create the volume property and the
volume.

vtkVolumeProperty negProperty

negProperty SetColor negColor

negProperty SetScalarOpacity \

negOpacity

vtkVolume negVolume

negVolume SetMapper negMapper

negVolume SetProperty negProperty

ren2 AddProp negVolume

ren2 ResetCamera

renWin Render

Intermixing geometry and volumes
The VTK rendering process can combine multiple

actors and volumes in the same scene. In the following
example, a polygonal surface is displayed intermixed
with the volume.

vtkPolyDataReader posReader

posReader SetFileName \

“poshipsurface.vtk”

vtkPolyDataMapper posMapper

posMapper SetInput \

[posReader GetOutput]

vtkActor posActor

posActor SetMapper posMapper

ren2 AddProp posActor

renWin Render

The combined VTK rendering process has a few lim-
itations. VTK doesn’t support translucency of geomet-
ric data because the primitives aren’t sorted into a
back-to-front ordering before rendering. Multiple vol-
umes can be rendered in the same scene only if the
bounds of the volumes don’t overlap. Opaque geometry
can overlap volumes using the ray casting and texture
mapping approaches, but not if a vtkVolumeProMapper
is used because of limitations with this hardware.

Rendering 2D data
In addition to 3D geometric and volumetric data, VTK

visualizes 2D data such as geometry, images, and text.
In the examples given here we’ll render 2D data into a
3D renderer to intermix 2D and 3D data. Alternatively,
if we only have 2D data, we can use an image viewer for
visualization.

The concept of actors, mappers, and properties
applies to both 2D and 3D data, although some of the
specific parameters change. In the code fragment below,
we add annotation to the renderer that displays the
cube. A vtkActor2D represents the title in the scene, a
vtkTextMapper holds and renders the data (which in
this case is a string), and the vtkActor2D automatically
creates a vtkProperty2D. Note, here and in code seg-
ments following, some long individual code words
include hyphens because they didn’t fit onto one line. A
hyphen, like a \, also indicates a carryover, but of a sin-
gle word. When typing in the code, delete the hyphens
to recreate a single word.

vtkTextMapper titleMapper

titleMapper SetInput \

“This is a Pink Cube”

titleMapper \

SetJustificationToCentered

vtkActor2D titleActor

titleActor SetMapper titleMapper

[titleActor GetProperty] \

SetColor 1 1 0

set pc [titleActor \

GetPositionCoordinate]

$pc SetCoordinateSystemToNormalized-

Viewport

$pc SetValue 0.5 0.92

ren1 AddProp titleActor

renWin Render

The code required to change the color of the text
resembles the code used to change the cube’s color.
However, 3D actors are positioned using world coordi-
nates, whereas we chose to position this 2D actor in a
normalized viewport coordinate system.

Since 2D data is often used for annotation, VTK offers
several objects that combine multiple 2D actors and
mappers into one 2D actor. For example, the vtkScalar-
BarActor object combines text and 2D polygons to 

IEEE Computer Graphics and Applications 23



display a representation of a color lookup table.

vtkScalarBarActor scalarBar

scalarBar SetLookupTable negColor

scalarBar SetTitle “Density”

set sPC \

[scalarBar GetPositionCoordinate] 

$sPC SetCoordinateSystemTo-

NormalizedViewport

$sPC SetValue 0.8 0.1

ren2 AddProp scalarBar 

renWin Render

If you’d like to write your own composite actor in C++,
start with vtkScalarBarActor. This object creates the
scalar bar representation using other VTK classes and
uses the rendering functionality of these created map-
pers to display the annotation object. 

Lights, cameras, and interaction
Many VTK applications never explicitly create a vtk-

Light or a vtkCamera, since the renderer will automat-
ically create them if they’re not defined at the first
render. Once the system creates a camera, you can
access it from the renderer to change camera parameters
such as position, focal point, and field of view. The cam-
era contains some convenience methods for rotation
about the position and the focal point such as
Azimuth(), Elevation(), Roll(), Pitch(), and Yaw() (the
angles are measured in degrees).

set cam [ren2 GetActiveCamera]

$cam Azimuth 20.0

$cam Elevation 10.0

renWin Render

The light automatically created is a white light with
the same position and focal point as the camera. If you
use an interactor (as described later in this section), this
light will follow the camera. You can use the following
fragment of code to add a second light to the volume
rendered scene. This light comes from the right side and
is green. Since illumination is off by default in a volume
property (ambient = 1.0, diffuse/specular = 0.0), the
green light doesn’t alter the volume.

vtkLight light

light SetFocalPoint 0.0 0.0 0.0

light SetPosition   1.0 0.0 0.0

light SetColor      0.0 1.0 0.0

light SetIntensity  0.5

ren2 AddLight light

renWin Render

Clearly, we’d prefer to use mouse events to control the
camera’s position and orientation, and the props in the
scene. The vtkRenderWindowInteractor object provides
this functionality and can be attached to a render win-
dow as shown below.

vtkRenderWindowInteractor iren

iren SetRenderWindow renWin

iren Initialize

The interactor can be placed into joystick or trackball
mode using the “j” or “t” keys. Left mouse operations
control rotation, the middle mouse button controls pan-
ning (translation within the focal plane), and right
mouse operations control zooming (translation towards
or away from the focal point). The “r” key can always be
used to reset the camera so that all the props can be seen
in the image.

VTK also provides interactivity in an application
through user interface components. Below is a simple
example of using a Tk text entry widget to change the
title annotation.

proc changeTitle {} {

titleMapper SetInput [.top.entry \

get]

renWin Render

}

toplevel .top

entry .top.entry 

.top.entry insert 0 \

{This is a Pink Cube}

pack .top.entry

bind .top.entry <Return> changeTitle

Now you can change the text in the entry, press the
return key, and see the effect in the render window.

The visualization pipeline
VTK’s data processing pipeline transforms data into

forms that can be displayed by the graphics subsystem
described previously or into other data forms that the
pipeline can further process. For example, we may wish
to read a set of unorganized points, create a polygonal
mesh via Delaunay triangulation, then display the mesh
using polygonal (surface) rendering.

Pipeline architecture
The pipeline, or alternatively, visualization network,

is constructed by connecting process objects and data
objects (Figure 3). Data objects represent and provide

Tutorial

24 September/October 2000

3 A VTK visualization network. Process objects (filters) appear as red
spheres, data objects as blue cubes. The other objects represent props,
properties, the renderer, and the rendering window.



access to data, and process objects (or filters) operate
on data objects. These networks can be elaborate and
may include branches and loops. In implementation,
the connections are made by using the SetInput()/
GetOutput() methods (as follows in Tcl):

aFilter SetInput [bFilter \

GetOutput]

Note that data objects are typically not explicitly cre-
ated. Filters instantiate an internal data object consis-
tent with their output requirements and return it in
response to the GetOutput() method. Connections may
only be made when the input/output types match. In
the example above, bFilter returns a type that’s the same
as, or a subclass of, what aFilter’s SetInput() method
accepts. Depending on which language you use to build
a VTK application, type checking may be enforced at
compile time (for example, building with C++) or at run-
time (for example, building with Tcl).

Once constructed, the visualization pipeline’s execu-
tion must be carefully controlled. Filters should only re-
execute when their internal state changes or when the
input to the filter changes. VTK employs a distributed,
implicit update process. Each object in VTK maintains
an internal time stamp that’s automatically updated
when the object state changes (usually as a result of set-
ting an instance variable value). Process and data
objects maintain additional time stamps that are updat-
ed upon execution of the pipeline. The system compares
these time stamps (each of which is a unique, monoto-
nically increasing, unsigned long integer value) to deter-
mine which objects are out of date and therefore which
portion of the network must re-execute. Many visual-
ization systems use a centralized executive to control
network execution, which becomes a bottleneck in large
parallel applications. VTK’s distributed execution mech-
anism allows scalable parallel processing.

Data objects
Figure 4 illustrates the data objects that VTK supports.

Data objects represent information very generally as a
field (an array of arrays). Data sets are a specialization
of data objects with topological and geometric struc-
ture. Besides their structure, data sets also have attribute
data associated with their topology and/or geometry
(for example, points and cells). The attribute data con-
sist of scalars, vectors, tensors, normals, texture coor-
dinates, and field data.

Process objects
VTK offers several hundred process objects. Many

of the filters operate on just one type of data (for
example, image processing filters). Some filters such
as vtkContourFilter accept an input of one type (vol-
ume) and produce an output of another type (poly-
gons). The challenge of learning VTK involves
becoming familiar with the many possible filters and
learning how to combine them to create useful and
interesting visualizations.

Process objects are often referred to as filters. Specif-
ically, VTK classifies process objects into three cate-

gories: sources, filters, and mappers. Sources have no
VTK data inputs, but produce one or more outputs—for
example, readers or procedural source objects. Filters
accept one or more inputs and produce one or more out-
puts. Mappers terminate the visualization pipeline,
either by coupling to the graphics subsystem (as we saw
in the previous section) or writing their data to disk or
into a network connection.

Examples
We’ve already seen example pipelines in the previous

section. In the first example, we used a vtkCubeSource
to procedurally generate a polygonal representation of
a cube, then connected it to a vtkPolyDataMapper. Sim-
ilarly, the next two examples in the previous section also
created readers, then connected them directly to a map-
per. We’ll now elaborate on this theme by creating a
more complex pipeline. This example reads a polygonal
data set generated from a Cyberware laser digitizer,
reduces the triangle count via decimation, reduces sur-
face noise via Laplacian smoothing, generates surface
normals, and glyphs the surface with cones represent-
ing surface normals.

We begin by reading the polygonal file:

vtkBYUReader reader

reader SetGeometryFileName “fran.g”

Next we create the pipeline, consisting of a decima-
tor, smoother, and normal generator. We set the deci-
mator with a target reduction of 90 percent, constrained
by the requirement to preserve topology.

vtkDecimatePro deci

deci SetInput [reader GetOutput]

deci SetTargetReduction 0.9

deci PreserveTopologyOn

vtkSmoothPolyDataFilter smoother

smoother SetInput [deci GetOutput]

vtkPolyDataNormals normals

IEEE Computer Graphics and Applications 25

Images/volume
(vtkStructuredPoints)

Linear primitives
(vtkPolyData)

Unstructured data
(vtkUnstructuredGrid)

Structured data
(vtkRectilinearGrid,
vtkStructuredGrid)

4 Some of
VTK’s data
objects:
images/volume
(top left), linear
primitives (top
right), struc-
tured data
(lower left), and
unstructured
data (lower
right).



normals SetInput [smoother \

GetOutput]

normals SetFeatureAngle 60

vtkPolyDataMapper mapper

mapper SetInput [normals GetOutput]

vtkActor fran

fran SetMapper mapper

[fran GetProperty] \

SetColor 1 0.49 0.25

The next leg of the network is interesting because it
uses a filter that takes two inputs. The first input is a data
set containing some points; the second defines a glyph
represented with polygonal data. (Here we use a cone,
rotated by a transform to face in the direction expected
by the vtkGlyph3D class.) We use the filter vtkMask-
Points to randomly select the points to glyph (to avoid
visual clutter):

vtkMaskPoints ptMask

ptMask SetInput [normals GetOutput]

ptMask SetOnRatio 10

ptMask RandomModeOn

vtkConeSource cone

cone SetResolution 6

vtkTransform transform

transform Translate 0.5 0.0 0.0

vtkTransformPolyDataFilter \

transformF

transformF SetInput [cone GetOutput]

transformF SetTransform transform

vtkGlyph3D glyph

glyph SetInput [ptMask GetOutput]

glyph SetSource [transformF \

GetOutput]

glyph SetVectorModeToUseNormal

glyph SetScaleModeToScaleByVector

glyph SetScaleFactor 0.004

vtkPolyDataMapper spikeMapper

spikeMapper SetInput [glyph

GetOutput]

vtkActor spikeActor

spikeActor SetMapper spikeMapper

[spikeActor GetProperty] \

SetColor 0 .79 .34

We then add the two actors to the renderer and 
render the scene:

vtkRenderer ren3

vtkRenderWindow renWin2

renWin2 AddRenderer ren3

vtkRenderWindowInteractor iren2

iren2 SetRenderWindow renWin2

ren3 AddActor fran

ren3 AddActor spikeActor

renWin2 Render

Figure 5 shows the final image.

Extending VTK
The object-oriented design of VTK lets users add their

own data objects and filters. For example, vtkDataSet is
an abstract class that defines an application program-
ming interface (API) that all data sets must follow. By
subclassing from vtkDataSet, the user can create a data
object that all filters accepting vtkDataSet as input can
process (such as contouring). Such extensibility is true
of almost every subsystem found in VTK, including the
graphics subsystem. For further resources, see the “Addi-
tional Resources for VTK” sidebar. �

References
1. W. Schroeder, K. Martin, and W. Lorensen, The Visualiza-

tion Toolkit: An Object-Oriented Approach to 3D Graphics,
2nd ed., Prentice-Hall, Old Tappan, N.J., 1998.

2. C. Upson et al., “The Application Visualization System: A
Computational Environment for Scientific Visualization,”
IEEE Computer Graphics and Applications, Vol. 9, No. 40,
July 1989, pp. 30-42.

3. Data Explorer Reference Manual, IBM, Armonk, New York,
1991.

4. IRIS Explorer User’s Guide, Numerical Algorithms Group,
Oxford, UK, 2000.

Tutorial

26 September/October 2000

5 This figure
shows a polygo-
nal mesh
acquired from a
laser scanner
that has been
decimated,
smoothed, and
glyphed to
indicate surface
normals.



5. H. Pfister et al., “The VolumePro Real-Time Ray-Casting
System,” Proc. Siggraph 99, ACM Press, New York, Aug.
1999, pp. 251-260. 

William J. Schroeder is first
author of The Visualization Toolkit
textbook and is currently president
and co-founder of Kitware. He is also
a research faculty member at Rens-
selaer Polytechnic Institute. His
research interests include visualiza-

tion, computational geometry, and numerical analysis.
He received a BS in mechanical engineering from the Uni-
versity of Maryland College Park in 1980 and a PhD in
applied mathematics from RPI in 1991.

Lisa Sobierajski Avila is a tech-
nical contributor and vice president
of Kitware, where she is involved in
the development of volume rendering
software for medical and scientific
applications. Her research interests
include volume visualization, haptic

interaction, and level-of-detail rendering. She received her
BS, MS, and PhD in computer science from State Univer-
sity of New York at Stony Brook in 1989, 1990, and 1994,
respectively.

William A. Hoffman is currently
vice president and a technical lead at
Kitware. His research interests
include development of object-ori-
ented toolkits and systems for visu-
alization and computer vision
software. He holds a BS in computer

science from the University of Central Florida in 1990 and
an MS in computer science from Rensselaer Polytechnic
Institute in 1992.

Readers may contact the authors at Kitware, 469 Clifton
Corporate Parkway, Clifton Park, NY 12065, e-mail
{will.schroeder, lisa.avila, bill.hoffman}@kitware.com.

IEEE Computer Graphics and Applications 27

Additional Resources for VTK
Visit http://www.visualizationtoolkit.org to access the VTK

community Web site. Here you’ll find information including
instructions for obtaining the software, online documentation, the
results of the quality testing process for the nightly release, and
pointers to academic and commercial sites that use VTK.

Obtaining the software
VTK is available as an official release version and as a nightly

release. The source code for either of these versions, along with
data sets and test images may be downloaded from the VTK Web
site or obtained via anonymous CVS (a source code, revision
control system). Precompiled binaries are available on the Web site
for Windows and Linux. A CD with the latest official release may be
purchased from Kitware.

If you plan to use VTK as a tool by developing applications with it
using C++ or one of the scripting interfaces, then you’ll probably
want to download the latest official release.

If you plan to modify and extend the VTK source code, then
you’ll probably want to work with the nightly release. Users can
examine the Web-based quality dashboard (http://public.kitware
.com/vtk/quality/MostRecentResults/) and decide whether the
system is stable enough on any given day to obtain a periodic
update. The dashboard generates every night after extensive
testing across a variety of platforms.

Help
In addition to the testing described above, VTK is supported

through books, training courses, and support contracts by Kitware.
Commercial products such as Principia, Mathematica’s graphical
pipeline editor, can aid in the development of VTK applications (see
http://www.principiamathematica.com).

Descriptions of the underlying work are available from two
sources. The textbook1 describes many of the algorithms and data
structures in VTK. The User’s Guide (http://www.kitware.com)
describes how to install, use, and extend VTK.

In addition to commercial products and services, the VTK
community provides many free resources. The vtkusers mailing list
is a resource for beginners and developers alike. Approximately 900
subscribers answer questions, post bug fixes, and help VTK users
get the most out of the software. Instructions for joining the list can
be found on the VTK Web site. A searchable archive lets you find
and follow interesting technical threads.

Members of the VTK community have developed resources that
the general community can use. Sebastian Barre maintains an
extensive list of Web links at http://www.hds.utc.fr/~barre/vtk/
links.html to resources such as the source code for pipeline and
object browsers, a VTK benchmark program and results from many
platforms, and a description of the process used by Jan Sifter and
collaborators to build online VTK documentation using doxygen
(an open-source documentation system; see http://www.stack.nl/
~dimitri/doxygen/index.html).


