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Chapter 6 – Visualization 
Techniques for Vector Fields
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6.1 Introduction
Vector fields are common in science and 
engineering:

Displacement fields in elasticity theory, 
velocity fields in computational fluid 
dynamics (CFD), force fields (e.g. 
gravitation), displacement fields

In general vector fields have an 
orientation and are then termed signed, 
though unsigned vector fields, such as 
eigenvector fields, also exist. 
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Introduction (cont’d)
Many visualisation techniques for vector fields were specifically 
developed for velocity fields. 

Steady flows are constant over time. 
Unsteady flows vary over time

Laminar flows are characterized 
by layers of fluid elements with 
similar velocities 
Turbulent flows the velocities in 
neighbouring fluid elements vary 
randomly.
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6.2 Vector Glyphs
Draw arrow or line segment in the direction of the vector with 
length equal to the vector magnitude.

Advantages:
Good perception of visualized 
data (use illuminated volumetric 
icons for 3D vector field 
visualization).

Disadvantages:
Not clear which data point vector 
represents
Leads to visual cluttering
Requires a lot of screen space
Easy to miss important features
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Vector Glyphs (cont’d)

© 1994, Frits H. Post and Jarke J. van Wijk, Visual 
representation of vector fields: recent developments
and research directions, in “Scientific Visualization: Advances 
and Challenges”, Academic Press.

The length, curvature and the candy 
stripes of the cylindrical shaft visualise 
magnitude, local streamline curvature 
and rotation of the flow field.
The half ellipsoid at the bottom of the 
shaft encodes acceleration of velocities.
The bending circular membrane 
describes convergence or divergence.
The angle of the ring shaped surface with 
respect to a reference frame encodes 
shear.

Flow field probe (de Leeuw & van Wijk)
Visualises additionally neighbourhood information derived from the local 
velocity gradient.
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6.3 Particle Advection

Flow direction and speed can be 
emphasized by blurring the 
particles.
Intuitive and easily understood for 
visualising fluid flows.
Well suited for turbulent flows where 
icons computed by integral curves 
and surfaces become highly 
irregular.
Lack of interactivity if the particle 
number is too high.
Difficulties in perceiving the 3D 
structure of the flow.

© 1994, Frits H. Post and Jarke J. van Wijk, Visual 
representation of vector fields: recent developments
and research directions, in “Scientific Visualization: Advances and 
Challenges”, Academic Press.

Distribute a set of particles over the domain and advect
them with the vector field.
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A streamline s(t) for a vector field v(t) is 
defined as the solution to the differential 
equation

0
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6.4 Streamlines
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Need shading and 
occlusion to better 
perceive the 3D 
geometry of 
streamlines

Fit thin tube 
around the lines

Streamlines (cont’d)
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A simple algorithm to compute a streamline:
Approximate streamline by polyline
where

and      is computed by 1 ( )i i it+ = + ∆x x v x

Streamlines (cont’d)
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The Problem …
The above simple minded ODE solving method is called 
Euler’s Method
Errors accumulate steadily
Can be unstable

e.g. imagine too long a time step
Vector at two time steps has opposite direction
Converging solution can blow up!

Need to use very small step sizes to get tolerable results
Expensive and inefficient

Need a better method to solve differential equations

Streamlines (cont’d)
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The mid-point method
Can write xi+1=s(t + ∆t) as a Taylor expansion

Euler’s method takes first two terms on RHS. Improve by taking 
more.
If take three, get
mid-point method:

In words: 
compute Euler step to get first guess at s(t+ ∆t)
Determine mid point s(t)+s(t+ ∆t)
Evaluate ds/dt (i.e. the vector field) at this point
Use this value to compute a new step
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d t d t

∆+ ∆ = + ∆ + +s ss s L

( ) ( ) ( ( ( ) ( ( ))))2

where     ( ( ))

tt t t t f t f t

df t
dt

∆+ ∆ = + ∆ +

=

s s s s

ss

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 12

Other issues

Even mid-point method often not good enough
Use even higher-order methods, e.g. fourth-order Runge Kutta

Need adaptive step sizes for best efficiency - use long time steps 
when things are moving slowly, short ones when changes are 
rapid.
Test for vector field singularities
Fundamental limitation of “explicit” ODE solvers:

Don’t work well for “stiff” equations (common in computational 
fluid dynamics)
Better to use implicit methods
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6.5 Line Integral Convolution

Convolute noise texture with vector field

Equivalent to averaging weighted  pixel intensities 
along small streamlines 

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

Line Integral Convolution (cont’d)
For any pixel I(q,r) of the input texture the centre p0=(q+0.5,r+0.5) of 
it is used as the centre of a streamline which is advected forwards 
and backwards by a length L. 
The pixels intersected by the streamline in the forward direction have 
the indices where

and is the distance to the pixel boundary and
Pixels intersected in the backward direction are computed 
analogously and are indicated by negative indices.
For each line segment [si, si+1] of the streamline intersecting pixel pi
an exact integral of a convolution kernel k(w) is computed and used 
as weight in the LIC
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Line Integral Convolution (cont’d)

The output pixel O(q,r) is then  given by

In the simplest case the convolution kernel is a box filter so that 
the output texture represents the weighted input texture along the 
streamline. 
Vector magnitude is represented either by using colour mapping 
or by varying the length L of the filter kernel.
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Line Integral Convolution (cont’d)

Influence of parameters
Top row: LIC with a kernel 
length of 40. From left to 
right: using white noise, 
using low pass filtered 
white noise, using low 
pass filtered white noise 
and contrast stretching the 
output texture. 

Bottom row: kernel length 
of 10,20, and 160. All 
images are contrast 
stretched and use low-
pass filtered white noise
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Line Integral Convolution (cont’d)
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A vector field v(x) can be characterized by considering 
its critical points which are points with zero vector 
magnitude. 
Critical points are the only points where streamlines are 
non-parallel and therefore indicate important flow 
features. 
A critical point x0 can be classified by considering the 
eigenvalues of the Jacobian

6.6 Vector Field Topology
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Vector Field Topology (cont’d)

The type of a critical point indicates the flow pattern in its 
immediate neighbourhood.

In two dimensions the Jacobian of a vector field is a 2x2 matrix 
and therefore has two eigenvalues with real components R1 and 
R2 and imaginary components I1 and I2.

The type of a critical point and hence the local flow topology 
depends on the signs of these components. 

Real components greater or smaller than zero represent 
repelling or attracting flow features, respectively.
Non-zero imaginary components  symbolise circular flows.
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Vector Field Topology (cont’d)
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Vector Field Topology (cont’d)

© 1994, Lambertus
Hesselink and Thierry 
Delmarcelle, Chapter 26: 
Visualization of vector and 
tensor data sets, in 
“Scientific Visualization: 
Advances and 
Challenges”, Academic 
Press.

The vector 
field topology 
is obtained by 
connecting 
critical points 
by special 
streamlines
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