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Chapter 5 – Visualization 
Techniques for Scalar Fields
5.1 Overview
5.2 Colour Mapping
5.3 Height Fields
5.4 Quick View Techniques
5.5 “Marching Cubes” Algorithm
5.6 Direct Volume Rendering 
5.7 References
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5.1 Overview

Scalar data can be defined as
Continuous field f(x,y,z) - defined for all (x,y,z)

Usually obtained as solution to a mathematically 
problem or by interpolating sampled data 

Sampled volume data fijk - defined only at particular 
points (xi,yj,zk)

Most commonly on a cartesian grid
Sample values are called voxels
A cuboidal region with voxels at all 8 vertices is 
called a cell

Cell

Voxel
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Suitability of Visual Attributes for 
Displaying Quantitative Information

Highest accuracy 
of representation Position on scale

Interval length

Slope/angle

Area

Volume

Colour
Lowest accuracy 
of representation

0.0 1.0
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Visualisation Methods
Colour mapping

Associate scalar field values with colours
Visualizes field over a surface
Perception of qualitative information limited

"Quick look" techniques
Easy to program & fast to compute
Weak visualization

Surface-fitting methods
Define surface(s) of constant field values f(x,y,z)=c
Called iso-level or iso-value surfaces, often abbreviated to isosurfaces
Choose "interesting" values (isosurface levels) 

e.g. between soft tissue and bone
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Visualization Methods (cont’d)

Surface-fitting methods (cont’d)
Usually use polygonal meshes
3D equivalent of contour lines
Fast to display (e.g. OpenGL)
Only displays data at the selected isosurface level

Direct Volume Rendering
Use an optical model to define the colour and opacity/transparency of 
the continuous medium as a function of f
Display "whole volume" (e.g. by ray tracing)
Slow
Fuzzy
Contains more information (potentially)
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5.2 Colour Mapping

Used to visualize scalar field 
over a surface

Associate field’s range of 
values with a colour scale
Colour each point on 
surface according to its field 
value
Colour scales can also be 
mapped onto other 
visualization icons 
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Colour Mapping (cont’d)

Advantages
Easy to implement
Gives overall impression of                                     
distribution of a scalar field
Can be mixed with other                                         
visualization icons
Can use discontinuous colour scale                                                          
for accurate information along contours

Disadvantages
Quantitative information displayed by colour can not be perceived 
accurately for a continuous colour map
Effectiveness of colour map depends on the colour scale used and 
perceptual issues
No information about scalar field values outside the mapped surface



© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

Colour Mapping (cont’d)

Desirable properties of a good colour scale
Colours should be perceived as preserving the order of the scalar values 
they represent.
Colours should convey the distances between values they represent and 
should associate related values and separate unrelated values.
Colours should be continuous for a continuous range.
Accentuates important features.

NOTE:
If colour mapping an illuminated surface choose colour scale with hue 
variations only if.
If we want to maximising the range of differentiable values then we choose 
a colour scale with hue and intensity/brightness variations.
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Colour Mapping (cont’d)
Common colour scales

E.g. H. Levkowitz and G. T. Herman. Colour scales for image data. IEEE 
Computer Graphics & Applicatios, 12(1):72-80, January 1992.
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Colour Mapping (cont’d)

Implemented using Gouraud shaded polygons (a) or 
1D texture maps (b).  
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5.3 Height Fields

Used to visualize a field over a 
(planar) surface

Visualize field’s values over 
the surface by constructing                                     
an offset surface.
Height of offset surface at 
each point proportional                                         
to the field value at that point.
Can colour map the height 
field to encode additional                                    
information.
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Height Fields (cont’d)
Advantages

Accurate display of quantitative information
Can be colour mapped to display several scalar                               
fields simultaneously                                           
– good for displaying correlation

Disadvantages
Works best for planar surfaces.
For curved surfaces height values difficult to perceive and offset surface 
might self-intersect 
Requires a large amount of screen space - might interfere with other 
visualization icons
Often not obvious for which surface the scalar field is visualized
No information about scalar field values outside the mapped surface
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5.4 Quick-look Techniques
Slicing

May just display as images                                      
slices along coordinate axes
Better to allow arbitrary slicing plane
Perhaps animate motion of slicing                               
plane to improve visualization

Wire-frame contours
Take the sampled data in slices
Compute iso-value contours in the slice planes
Display those contours as lines in 3 space
Possibly do on more than one axis
Is a simple example of "surface fitting"
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Surface Fitting
Is just contouring in 3D

Contours are now surfaces
Easiest method – "Opaque Cubes"

For each cell in the volume

If cell's voxel values encompass the 
isolevel then Display the cell as a solid 
cube 

Is really another "quick look" method
Builds "Lego" approximation 
to object
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5.5 “Marching Cubes” Algorithm

Approximates isosurface through each cell with a set of 
polygons

Low resolution mesh Low resolution mesh 
rendered as Gouraud

shaded surface

High resolution mesh 
rendered as Gouraud

shaded surface
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“Marching Cubes” Algorithm (cont’d)

Easy in principle
For each cubical cell
For each edge of cell

If endpoint voxel values encompass the 
isosurface
value determine the intersection point

Connect all intersection points in cell to give 
one or more polygons representing surface 
through cell

Can make it fast by building look-up table of all possible cell 
configurations
Easier to understand by doing 2D case first
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Contour Computation in 2D
Picture shows contour for isosurface level = 5

Compute where contour crosses each square cell. Connect 
intersection points
Ambiguous if 4 intersection points – see assignment!

5.4 4.1 2.9 1.8 0.9 0.0 -1.0 -2.1

6.2 4.8 3.7 2.7 1.8 1.0 0.0 -1.1

6.8 5.5 4.5 3.7 2.9 2.1 1.1 0.0

7.4 6.3 5.5 4.8 4.1 3.2 2.2 1.1

8.1 7.4 6.8 6.2 5.4 4.4 3.2 2.1

9.2 8.7 8.2 7.6 6.6 5.4 4.1 2.9

10.7 10.3 9.7 8.8 7.6 6.2 4.8 3.7

5.5 4.5

6.3 5.5
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3D Case
Categorise each voxel of cell as above (1) or below (0) 
the iso-value.

Forget equality. Floating point numbers are never equal!

Encode each voxel into one bit. 8 voxels ⇒ 8-bit code 
⇒ 256 configurations
Excluding rotations, reflections and complements, only 
15 topologically distinct cases

See next slide
As in 2D, have some ambiguous cases. UDOO: which 
ones?

See assignment for method of resolving these
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The 15 Cases
In figure below, a circled vertex = 1, uncircled = 0
… or vice-versa!!
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Marching Cubes Algorithm
// Build look-up table [Table is constructed only once during initialisation]
For config = 0 to 255

intersectingEdges = set of all intersecting edges computed from bit pattern of config
LUTable[config].polygons = [];
While unused intersectingEdges remain

currentIntersectingEdge = any unused edge from intersectingEdges
Initialise new outputPolygon
firstIntersectingEdge = currentIntersectingEdge
repeat

outputPolygon.add(currentIntersectingEdge)
Choose face to right of currentIntersectingEdge (if going 0→1)
currentIntersectingEdge = first intersecting edge clockwise around face 

from currentIntersectingEdge
until currentIntersectingEdge = firstIntersectingEdge
LUTable[config].polygons += outputPolygon
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Marching Cubes Algorithm (cont’d)

// "March" through volume, outputing all polygons
For each cell in volume

Classify voxels at the 8 vertices as 0 or 1 to get 8-bit config value
For each entry in LUTable[config].polygons

For each “edge” stored in polygon
Compute actual isosurface intersection point given the sample 
values at the edge endpoints – this is a vertex of the new polygon
Compute isosurface normal at that vertex from the gradient (or its 
inverse)

Output the polygon
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Notes on Marching Cubes
The normal to the isosurface at polygon vertices is given by the 
direction of the field gradient or its negation (careful!)

Either trilinearly interpolate the central difference estimates at sample points 
or directly evaluate the original (unsampled) field function at the vertex, if 
that’s possible.

Although only 15 distinct topologies, it's not worth compressing the 
256-element table
Often subdivide all polygons into triangles (since generally non-
planar)

But renderer (e.g. OpenGL) usually does that, so why bother?
Can get huge number of polygons. Sometimes follow MC with a 
mesh-optimization algorithm that combines near-planar adjacent 
faces (see Wünsche & Lobb paper).
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MC Notes (cont’d)
Can have multiple isosurfaces

make outermost one partially transparent
use different colours for different surfaces

Handling ambiguities complicates the algorithm
Probably not important for performance, since these cases are 
relatively rare (mainly confined to regions of rapid change)

Term Marching Cubes comes from paper by Lorensen and Cline
Patent for the algorithm has expired – now free to use
Wyvill and McPheeters came up with a similar (and in some 
ways better) algorithm the previous year. 
Because of the patent some authors avoided the term 
Marching Cubes, and didn't reference Lorensen and Cline.



© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

MC Notes (cont’d)
Above algorithm is O(n3) where n is number of samples in each direction.

Alternative is to track surface starting from given “seed” points. 
Is then O(n2). 
But more complicated, and need that seed point!

Tetrahedral subdivision of space is also possible ("Marching Tetrahedra")
Simple table with no ambiguities
Cubical cell can be subdivided 
into 5, 6 or 24 tetrahedra

5-tetrahedron case requires flipping adjacent cells for continuity across faces
Tends to give excessive fragmentation and "ripply" surfaces
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Dividing Cubes
Marching cubes can give huge number of polygons.
Can be very slow to render without special-purpose hardware –
poor interactivity
A faster method in such cases is Dividing Cubes. Not widely 
known/used.
Simple idea – like opaque cubes but

recursively subdivide each cube that contains isosurface until its projection 
area is pixel-sized.
then colour the pixel(s) it projects onto with a shade computed using a 
standard illumination model. Use the gradient at the centre of the cube as the 
surface normal.

Can get real-time frame rates on modern PCs if you're sufficiently 
cunning.
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5.6 Direct Volume Rendering

Regard scalar field values as densities of a gas-like material
Gas emits light, and also attenuates light coming from behind.
Let ελ be the emission per unit length along a ray for some 
wavelength λ
Let βλ be the attenuation coefficient                              along 
the ray, defined by

where Iλ is intensity.

dI I
dt

λ
λ λβ= −

© 2003 Kitware Inc., Schroeder, 
Martin, Lorensen. The 
Visualization Toolkit
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The Emission-Absorption Model

Then can easily derive the emission-absorption model:

where ελdt is the light emitted by an element of the ray path, 
and e-thingo is the attenuation factor of the medium between the 
eye and the element. Iλ is just the integral over the whole ray 
path.
Good reference: Nelson Max "Optical Models for Direct Volume 
Rendering", IEEE Trans. Vis. and Computer Graphics", 1(2) 
June 1995.
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Opacity, Transparency and Colour

Papers often talk about opacity or transparency of the medium.
Confusing. Defined only for a fixed distance through the medium

Usually a "slab" of the medium, i.e. the spacing between 
voxel slices

Transparency of a slab = Intensity Out / Intensity In
So transparency of two consecutive slabs with transparencies 
T1 and T2 is just T1 T2

Opacity α = 1 – Transparency
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Opacity, Transparency and Colour (cont’d)

UDOO: If the opacity of a 2 mm thick section of tissue in 0.8, 
what is the opacity of a 1mm thick section?

No, it is not 0.4.
Should get 1 – Sqrt(1– 0.8) ≈ 0.55

The simple optical model assumes medium is populated with 
small opaque particles with emissive colour C
For a thin slab, α represents the probability that a photon will 
not pass through the slab.
α C then represents the colour emitted by the slab (since α is 
a measure of "coverage")
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Solving the Emission-Absorption Equation

Contribution of shaded slab = α CTtot = α C(1– αtot)

Opacity αtot

= 1 – Ttot

Effective colour αC

Ray from eye into volume
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Solving the E-A Equation (cont’d)

Accumulate colour and opacity working through 
slabs from front to back
At each step,

Ttot' = Ttot TthisLayer

C'tot = Ctot + Ttot (αthisLayer CthisLayer )

= Ctot + Ttot (1 – TthisLayer) CthisLayer
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Notes

In a simple minded model, α is proportional to "density" f(x,y,z), 
and CthisLayer is constant
When viewing from arbitrary angles, "slabs" aren't really slabs at 
all – just steps along ray path
For efficiency, should ideally vary step size according to 
magnitude of contribution to Ctot

Can cut off calculation along ray when Ttot falls below some 
small minimum
Slow in software but fast in hardware (use fragment program –
best on NVIDIA GeForce 6800 or higher)
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Notes (cont’d)

Method as described so far just tends to produce a foggy 
mess. So:

Compute CthisLayer using a pseudo-surface reflection model, 
e.g. Lambert or Phong illumination
Assume some lighting configuration
Take –grad f as the surface normal
Also possibly weight colour by | grad f | to emphasise high 
gradient regions, representing e.g. transitions between 
tissue types

Even with above, may still be a foggy mess unless pre-process 
dataset as in next slide
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Classification
If different density ranges represent different physical 
properties (e.g. different tissues, with CT scan), want different 
colours for those different ranges
So now α and C are more complex functions of density  
f(x,y,z)



© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 35

Results

© 2003 Kitware Inc., Schroeder, Martin, Lorensen. The Visualization Toolkit

Maximum Intensity projection Composite (unshaded) Composite (shaded)
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Direct Projection Methods

Ray tracing technique described above is an exact solution to 
Emission-Absorption equation.
Called an “image order” method, since traverse volume one ray 
at a time, i.e. in an order determined by image
Also have a range of “object order” methods, where we attempt 
to determine the contribution to the final image of each cell or
voxel in turn.
Can do exactly ("Vbuffer algorithm" or similar) or approximately 
("Splatting" algorithms).
Nowadays hardware implemented methods are most common

Use  2D or 3D texture mapping
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GPU Based Volume Rendering

© 2004, Markus Hadwiger, 
Christof Rezk-Salama, Klaus 
Engel, Joe M. Kniss, Aaron E. 
Lefohn, Daniel Weiskopf, “Real-
Time Volume Graphics”, ACM 
SIGGRAPH ’04, Course no. 28.
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Volume Visualization in VTK

Three steps:
1. Classification

- Opacity transfer function (use vtkPiecewiseFunction)
- Colour transfer function (use vtkColorTransferFunction)
- Add to volume properties

2. Define a mapper (rendering technique)
- Ray casting (vtkVolumeRayCastMapper and   

vtkVolumeRayCastCompositeFunction)
- Texture mapping (vtkVolumeTextureMapper2D)

3. Render
- Add properties and mapper to the volume and add it to the render
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Example – Microscopy images of a sea sponge

Slice 0 Slice 1

(slices 2-37 not shown)

Slice 38 Slice 39

The resulting volume 
visualization with VTK

Data obtained with kind permission from the Biomedical Imaging 
Research Unit (BIRU), University of Auckland, New Zealand
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