
© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 1

Chapter 5 – Visualization
Techniques for Scalar Fields
5.1 Overview
5.2 Colour Mapping
5.3 Height Fields
5.4 Quick View Techniques
5.5 “Marching Cubes” Algorithm
5.6 Direct Volume Rendering
5.7 References

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 2

5.1 Overview

Scalar data can be defined as
Continuous field f(x,y,z) - defined for all (x,y,z)

Usually obtained as solution to a mathematically
problem or by interpolating sampled data

Sampled volume data fijk - defined only at particular
points (xi,yj,zk)

Most commonly on a cartesian grid
Sample values are called voxels
A cuboidal region with voxels at all 8 vertices is
called a cell

Cell

Voxel

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 3

Suitability of Visual Attributes for
Displaying Quantitative Information

Highest accuracy
of representation Position on scale

Interval length

Slope/angle

Area

Volume

Colour
Lowest accuracy
of representation

0.0 1.0

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 4

Visualisation Methods
Colour mapping

Associate scalar field values with colours
Visualizes field over a surface
Perception of qualitative information limited

"Quick look" techniques
Easy to program & fast to compute
Weak visualization

Surface-fitting methods
Define surface(s) of constant field values f(x,y,z)=c
Called iso-level or iso-value surfaces, often abbreviated to isosurfaces
Choose "interesting" values (isosurface levels)

e.g. between soft tissue and bone

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 5

Visualization Methods (cont’d)

Surface-fitting methods (cont’d)
Usually use polygonal meshes
3D equivalent of contour lines
Fast to display (e.g. OpenGL)
Only displays data at the selected isosurface level

Direct Volume Rendering
Use an optical model to define the colour and opacity/transparency of
the continuous medium as a function of f
Display "whole volume" (e.g. by ray tracing)
Slow
Fuzzy
Contains more information (potentially)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 6

5.2 Colour Mapping

Used to visualize scalar field
over a surface

Associate field’s range of
values with a colour scale
Colour each point on
surface according to its field
value
Colour scales can also be
mapped onto other
visualization icons

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 7

Colour Mapping (cont’d)

Advantages
Easy to implement
Gives overall impression of
distribution of a scalar field
Can be mixed with other
visualization icons
Can use discontinuous colour scale
for accurate information along contours

Disadvantages
Quantitative information displayed by colour can not be perceived
accurately for a continuous colour map
Effectiveness of colour map depends on the colour scale used and
perceptual issues
No information about scalar field values outside the mapped surface

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

Colour Mapping (cont’d)

Desirable properties of a good colour scale
Colours should be perceived as preserving the order of the scalar values
they represent.
Colours should convey the distances between values they represent and
should associate related values and separate unrelated values.
Colours should be continuous for a continuous range.
Accentuates important features.

NOTE:
If colour mapping an illuminated surface choose colour scale with hue
variations only if.
If we want to maximising the range of differentiable values then we choose
a colour scale with hue and intensity/brightness variations.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 9

Colour Mapping (cont’d)
Common colour scales

E.g. H. Levkowitz and G. T. Herman. Colour scales for image data. IEEE
Computer Graphics & Applicatios, 12(1):72-80, January 1992.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 10

Colour Mapping (cont’d)

Implemented using Gouraud shaded polygons (a) or
1D texture maps (b).

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 11

5.3 Height Fields

Used to visualize a field over a
(planar) surface

Visualize field’s values over
the surface by constructing
an offset surface.
Height of offset surface at
each point proportional
to the field value at that point.
Can colour map the height
field to encode additional
information.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 12

Height Fields (cont’d)
Advantages

Accurate display of quantitative information
Can be colour mapped to display several scalar
fields simultaneously
– good for displaying correlation

Disadvantages
Works best for planar surfaces.
For curved surfaces height values difficult to perceive and offset surface
might self-intersect
Requires a large amount of screen space - might interfere with other
visualization icons
Often not obvious for which surface the scalar field is visualized
No information about scalar field values outside the mapped surface

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 13

5.4 Quick-look Techniques
Slicing

May just display as images
slices along coordinate axes
Better to allow arbitrary slicing plane
Perhaps animate motion of slicing
plane to improve visualization

Wire-frame contours
Take the sampled data in slices
Compute iso-value contours in the slice planes
Display those contours as lines in 3 space
Possibly do on more than one axis
Is a simple example of "surface fitting"

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

Surface Fitting
Is just contouring in 3D

Contours are now surfaces
Easiest method – "Opaque Cubes"

For each cell in the volume

If cell's voxel values encompass the
isolevel then Display the cell as a solid
cube

Is really another "quick look" method
Builds "Lego" approximation
to object

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15

5.5 “Marching Cubes” Algorithm

Approximates isosurface through each cell with a set of
polygons

Low resolution mesh Low resolution mesh
rendered as Gouraud

shaded surface

High resolution mesh
rendered as Gouraud

shaded surface

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 16

“Marching Cubes” Algorithm (cont’d)

Easy in principle
For each cubical cell
For each edge of cell

If endpoint voxel values encompass the
isosurface
value determine the intersection point

Connect all intersection points in cell to give
one or more polygons representing surface
through cell

Can make it fast by building look-up table of all possible cell
configurations
Easier to understand by doing 2D case first

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 17

Contour Computation in 2D
Picture shows contour for isosurface level = 5

Compute where contour crosses each square cell. Connect
intersection points
Ambiguous if 4 intersection points – see assignment!

5.4 4.1 2.9 1.8 0.9 0.0 -1.0 -2.1

6.2 4.8 3.7 2.7 1.8 1.0 0.0 -1.1

6.8 5.5 4.5 3.7 2.9 2.1 1.1 0.0

7.4 6.3 5.5 4.8 4.1 3.2 2.2 1.1

8.1 7.4 6.8 6.2 5.4 4.4 3.2 2.1

9.2 8.7 8.2 7.6 6.6 5.4 4.1 2.9

10.7 10.3 9.7 8.8 7.6 6.2 4.8 3.7

5.5 4.5

6.3 5.5

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 18

3D Case
Categorise each voxel of cell as above (1) or below (0)
the iso-value.

Forget equality. Floating point numbers are never equal!

Encode each voxel into one bit. 8 voxels ⇒ 8-bit code
⇒ 256 configurations
Excluding rotations, reflections and complements, only
15 topologically distinct cases

See next slide
As in 2D, have some ambiguous cases. UDOO: which
ones?

See assignment for method of resolving these

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 19

The 15 Cases
In figure below, a circled vertex = 1, uncircled = 0
… or vice-versa!!

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 20

Marching Cubes Algorithm
// Build look-up table [Table is constructed only once during initialisation]
For config = 0 to 255

intersectingEdges = set of all intersecting edges computed from bit pattern of config
LUTable[config].polygons = [];
While unused intersectingEdges remain

currentIntersectingEdge = any unused edge from intersectingEdges
Initialise new outputPolygon
firstIntersectingEdge = currentIntersectingEdge
repeat

outputPolygon.add(currentIntersectingEdge)
Choose face to right of currentIntersectingEdge (if going 0→1)
currentIntersectingEdge = first intersecting edge clockwise around face

from currentIntersectingEdge
until currentIntersectingEdge = firstIntersectingEdge
LUTable[config].polygons += outputPolygon

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 21

Marching Cubes Algorithm (cont’d)

// "March" through volume, outputing all polygons
For each cell in volume

Classify voxels at the 8 vertices as 0 or 1 to get 8-bit config value
For each entry in LUTable[config].polygons

For each “edge” stored in polygon
Compute actual isosurface intersection point given the sample
values at the edge endpoints – this is a vertex of the new polygon
Compute isosurface normal at that vertex from the gradient (or its
inverse)

Output the polygon

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 22

Notes on Marching Cubes
The normal to the isosurface at polygon vertices is given by the
direction of the field gradient or its negation (careful!)

Either trilinearly interpolate the central difference estimates at sample points
or directly evaluate the original (unsampled) field function at the vertex, if
that’s possible.

Although only 15 distinct topologies, it's not worth compressing the
256-element table
Often subdivide all polygons into triangles (since generally non-
planar)

But renderer (e.g. OpenGL) usually does that, so why bother?
Can get huge number of polygons. Sometimes follow MC with a
mesh-optimization algorithm that combines near-planar adjacent
faces (see Wünsche & Lobb paper).

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 23

MC Notes (cont’d)
Can have multiple isosurfaces

make outermost one partially transparent
use different colours for different surfaces

Handling ambiguities complicates the algorithm
Probably not important for performance, since these cases are
relatively rare (mainly confined to regions of rapid change)

Term Marching Cubes comes from paper by Lorensen and Cline
Patent for the algorithm has expired – now free to use
Wyvill and McPheeters came up with a similar (and in some
ways better) algorithm the previous year.
Because of the patent some authors avoided the term
Marching Cubes, and didn't reference Lorensen and Cline.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

MC Notes (cont’d)
Above algorithm is O(n3) where n is number of samples in each direction.

Alternative is to track surface starting from given “seed” points.
Is then O(n2).
But more complicated, and need that seed point!

Tetrahedral subdivision of space is also possible ("Marching Tetrahedra")
Simple table with no ambiguities
Cubical cell can be subdivided
into 5, 6 or 24 tetrahedra

5-tetrahedron case requires flipping adjacent cells for continuity across faces
Tends to give excessive fragmentation and "ripply" surfaces

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25

Dividing Cubes
Marching cubes can give huge number of polygons.
Can be very slow to render without special-purpose hardware –
poor interactivity
A faster method in such cases is Dividing Cubes. Not widely
known/used.
Simple idea – like opaque cubes but

recursively subdivide each cube that contains isosurface until its projection
area is pixel-sized.
then colour the pixel(s) it projects onto with a shade computed using a
standard illumination model. Use the gradient at the centre of the cube as the
surface normal.

Can get real-time frame rates on modern PCs if you're sufficiently
cunning.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 26

5.6 Direct Volume Rendering

Regard scalar field values as densities of a gas-like material
Gas emits light, and also attenuates light coming from behind.
Let ελ be the emission per unit length along a ray for some
wavelength λ
Let βλ be the attenuation coefficient along
the ray, defined by

where Iλ is intensity.

dI I
dt

λ
λ λβ= −

© 2003 Kitware Inc., Schroeder,
Martin, Lorensen. The
Visualization Toolkit

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 27

The Emission-Absorption Model

Then can easily derive the emission-absorption model:

where ελdt is the light emitted by an element of the ray path,
and e-thingo is the attenuation factor of the medium between the
eye and the element. Iλ is just the integral over the whole ray
path.
Good reference: Nelson Max "Optical Models for Direct Volume
Rendering", IEEE Trans. Vis. and Computer Graphics", 1(2)
June 1995.

max

0

()

0

()

t

s

t s ds

t

I t e dt
λβ

λ λε =

−

=

∫
= ∫

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 28

Opacity, Transparency and Colour

Papers often talk about opacity or transparency of the medium.
Confusing. Defined only for a fixed distance through the medium

Usually a "slab" of the medium, i.e. the spacing between
voxel slices

Transparency of a slab = Intensity Out / Intensity In
So transparency of two consecutive slabs with transparencies
T1 and T2 is just T1 T2

Opacity α = 1 – Transparency

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 29

Opacity, Transparency and Colour (cont’d)

UDOO: If the opacity of a 2 mm thick section of tissue in 0.8,
what is the opacity of a 1mm thick section?

No, it is not 0.4.
Should get 1 – Sqrt(1– 0.8) ≈ 0.55

The simple optical model assumes medium is populated with
small opaque particles with emissive colour C
For a thin slab, α represents the probability that a photon will
not pass through the slab.
α C then represents the colour emitted by the slab (since α is
a measure of "coverage")

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 30

Solving the Emission-Absorption Equation

Contribution of shaded slab = α CTtot = α C(1– αtot)

Opacity αtot

= 1 – Ttot

Effective colour αC

Ray from eye into volume

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 31

Solving the E-A Equation (cont’d)

Accumulate colour and opacity working through
slabs from front to back
At each step,

Ttot' = Ttot TthisLayer

C'tot = Ctot + Ttot (αthisLayer CthisLayer)

= Ctot + Ttot (1 – TthisLayer) CthisLayer

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 32

Notes

In a simple minded model, α is proportional to "density" f(x,y,z),
and CthisLayer is constant
When viewing from arbitrary angles, "slabs" aren't really slabs at
all – just steps along ray path
For efficiency, should ideally vary step size according to
magnitude of contribution to Ctot

Can cut off calculation along ray when Ttot falls below some
small minimum
Slow in software but fast in hardware (use fragment program –
best on NVIDIA GeForce 6800 or higher)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 33

Notes (cont’d)

Method as described so far just tends to produce a foggy
mess. So:

Compute CthisLayer using a pseudo-surface reflection model,
e.g. Lambert or Phong illumination
Assume some lighting configuration
Take –grad f as the surface normal
Also possibly weight colour by | grad f | to emphasise high
gradient regions, representing e.g. transitions between
tissue types

Even with above, may still be a foggy mess unless pre-process
dataset as in next slide

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 34

Classification
If different density ranges represent different physical
properties (e.g. different tissues, with CT scan), want different
colours for those different ranges
So now α and C are more complex functions of density
f(x,y,z)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 35

Results

© 2003 Kitware Inc., Schroeder, Martin, Lorensen. The Visualization Toolkit

Maximum Intensity projection Composite (unshaded) Composite (shaded)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 36

Direct Projection Methods

Ray tracing technique described above is an exact solution to
Emission-Absorption equation.
Called an “image order” method, since traverse volume one ray
at a time, i.e. in an order determined by image
Also have a range of “object order” methods, where we attempt
to determine the contribution to the final image of each cell or
voxel in turn.
Can do exactly ("Vbuffer algorithm" or similar) or approximately
("Splatting" algorithms).
Nowadays hardware implemented methods are most common

Use 2D or 3D texture mapping

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 37

GPU Based Volume Rendering

© 2004, Markus Hadwiger,
Christof Rezk-Salama, Klaus
Engel, Joe M. Kniss, Aaron E.
Lefohn, Daniel Weiskopf, “Real-
Time Volume Graphics”, ACM
SIGGRAPH ’04, Course no. 28.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 38

Volume Visualization in VTK

Three steps:
1. Classification

- Opacity transfer function (use vtkPiecewiseFunction)
- Colour transfer function (use vtkColorTransferFunction)
- Add to volume properties

2. Define a mapper (rendering technique)
- Ray casting (vtkVolumeRayCastMapper and

vtkVolumeRayCastCompositeFunction)
- Texture mapping (vtkVolumeTextureMapper2D)

3. Render
- Add properties and mapper to the volume and add it to the render

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 39

Example – Microscopy images of a sea sponge

Slice 0 Slice 1

(slices 2-37 not shown)

Slice 38 Slice 39

The resulting volume
visualization with VTK

Data obtained with kind permission from the Biomedical Imaging
Research Unit (BIRU), University of Auckland, New Zealand

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 40

5.7 References

Marching Cubes references

Wyvill, G. and C. McPheeters, "Data structures for soft objects", The Visual
Computer, 2(4), August 1986.
Lorensen, W.E. & H.E. Cline, "A high-resolution 3D surface construction
algorithm", Computer Graphics, 21(4):163-169, July 1987.12(10):515-526,
1996.
Bloomenthal, J. "An Implicit Surface Polygonizer", in Graphics Gems IV,
P324, Ed. P.S. Heckbert, Academic Press, 1994. Gives C code.
Wuensche, B. "A Survey and Analysis of Common Polygonization Methods &
Optimization Techniques. Machine Graphics & Vision, 6(4), 1997, pages
451-486.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 41

References (cont’d)
Colour mapping references

Colin Ware. Color sequences for univariate maps: Theory, experiments, and
principles. IEEE Computer Graphics & Applicatios, 8(5):41-49, September 1988.
Haim Levkowitz and Gabor T. Herman. Colour scales for image data. IEEE
Computer Graphics & Applicatios, 12(1):72-80, January 1992.
Penny Rheingans and Chris Landreth. Perceptual principles of visualization. In
Perceptual Issues in Visualization, pages 59-73, Springer Verlag, 1995.
Christopher Healey, Victoria Interrante, and Penny Rheingans. Fundamental
issues of visual perception for effective image generation, 1999. Course notes
#6, SIGGRAPH 1999.
Lawrence D. Bergman, Bernice E. Rogowitz, Lloyd A. Treinish. A rule-based tool
for assisting color map selection. Proceedings of Visualization ’95, pp.118-125,
1995.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 42

References (cont’d)
Volume Visualization references

Cline, H.E., Ludke, S., Lorensen, W.E., and Teeter, B.C., "A 3D Medical Imaging
Research Workstation, "Volume Visualization Algorithms and Architectures, ACM
SIGGRAPH ’90 Course Notes, Course no 11, ACM Press, August 1990, pp. 243-
255. [This is the "Dividing Cubes" paper].
Elvins, T. T., "A Survey of Algorithms for Volume Visualization," Computer
Graphics, August, 1992. Volume 26, Number 3.
Elvins, T.T., "Introduction to Volume Visualization: Imaging Multi-dimensional
Scientific Data", ACM SIGGRAPH '94 Course # 10.
M. Hadwiger, C. Rezk-Salama, K. Engel, J.M. Kniss, A.E. Lefohn, D.Weiskopf,
“Real-Time Volume Graphics”, ACM SIGGRAPH ’04, Course #28, August 2004.
Westover, L., "Footprint Evaluation for Volume Rendering," Computer Graphics,
Vol. 24, No. 4, August 1990, pp. 367-376. [The original "splatting" paper]
Kulka, P., “High-Resolution Splatting”, PhD Thesis, Univ. of Auckland, 2001

