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Chapter 4 — Data Transformation
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4.1 Motivation

4.2 Sources of Volume Data

4.3 Transformation of the Independent Variable
4.4 Reconstruction Filters

4.5 Transformation of the Dependent Variable
4.6 References
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4.1 Motivation

A multidimensional data set L consist of

m M independent variables representing the data
domain (usually space, time).

m N dependent variables defined over the domain
(e.g. scalar, vector and/or tensor data).
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Motivation (cont’d)

Two Problems:

m Data can exist in various forms (analytic functions, sampled,
implicitly) but many visualization methods require a particular
representation

—=Transform independent variables (e.g. interpolation,
sampling)

m Data attributes contain not enough information or information is
to complex

—=Transform the dependent variable (data reduction, data
enrichment, data modification)
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We are predominantly interested in
(time varying) volume data (m=3 or 4).
Widespread in Science and

Engineering, but here are just a few
common examples:

m Medicine and Biology ("biomedical imaging")
CT (“Computed Tomography”) Scans
MRI (“Magnetic Resonance Imaging”’) Scans
PET (“Positron Emission Tomography”) Scans

Ultrasonography (ultrasonic echo-sounding)

Confocal microscopy
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Sources of Volume Data (c

m Physics/Engineering
Measurements of density, pressure, elasticity,
etc. over some volume
Computer simulations

s Computational fluid dynamics (CFD)

m Stress analysis (FEM — Finite Element

Modelling) :
= Numerical models (e.g. of Earth's magnetic =
field)
m Graphics

Implicit surfaces as a modelling tool
s Convolutional smoothing of polyhedra
= Model by sculpting volume data
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Some Volume Visualization Examples

Microscience: Biology: Medicine:
Molecular structure of an Cellular structure of a sea MRI Data of the human brain
iron protein sponge

Data source: Kitware Inc. Data source: BIRU — University Data source: University of
of Auckland Erlangen-Nirnberg
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Terminology

m Start with some function f(x, y, z) or f(x, y, z,t)
Called a field over R3(or R%)

We deal only in 3-D and 4-D fields, but can have arbitrary n-D
fields

m Have various types of fields

Scalar, I.e. f of type real

m e.g. CT scan, density measurements, ...
Vector, IL.e. fis an n-vector (commonly n = 3)

m e.g. fluid velocity in a CFD simulation

m force fields (magnetic, electric, gravitational)
Tensor, I.e. fis a matrix

m €.g. stress and strain in FEM modelling
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4.3 Transformation of the

Independent Variable

m Sampling
Continuous data — discrete (sampled) data
Usually use regular sampling: (X = X, +iAX
fie = T(X,Y;,2) where Jy, =Y,+ JAy
= Interpolation | Z = 7, +KAZ

Discrete (sampled) data — continuous data
Explained in the following slides

m Resampling
Discrete (sampled) data — discrete (sampled) data
Interpolation followed by sampling
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Sampled Volume Data

Voxel

m Sampled volume data is defined only at a
particular set of (x,y,z) \
Most commonly on a cartesian grid
Sample values are called voxels C/F c/.
A cuboidal region with voxels at all 8
vertices is called a cell . ')K’
s DON'T CONFUSE THESE TWO o
TERMS!! Cell
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Volumes as Fields

m Important to remember that samples represent a field, i.e. a
continuum
m Process of defining the underlying field from a set of samples is
called interpolation or reconstruction
Formally defined by convolution with a reconstruction filter (see next
section)
Trilinear interpolation is the most common reconstruction method

Tricubic interpolation (e.g. B-spline) used for high-quality work
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Trilinear interpolation
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m Linear interpolation

F(x) = (%) + X‘Xxi(fm)— f (%))

=(1-t) f,+tf,

X_
wheret:m, fo=T(%), f,="1(x)

m Trilinear interpolation can be
regarded as 7 linear interpolations

© 2003 T. Todd Elvins, Introduction to
Volume Visualization, SIGGRAPH ‘94,
Course Notes #10.
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Trilinear interpolation (cont’d)

f(x,y,2)=1-r)QA-s)A-t)f,+r Q1-s)1-1)f,
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=
Gradients

m Many algorithms require the gradient of f
m The gradient is a vector perpendicular to the
Isocontours of the field

l.e. IS In the direction of steepest ascent

magnitude is rate of change of value in that direction
m Defined as (of )
X
of
oy
of
L9z
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Gradients (cont’d)

m A trilinearly reconstructed field has discontinuous gradients at
cell boundaries, so rather than computing true gradients we
normally compute a smooth approximation:

Use central differences to compute gradients at voxels

Vi(x,Yy,2) =

f(X+AX,y,2)— f(X—AX,Y, 2)
2AX
f(X,y+Ay,z)— f(X,y—Ay, 2z)
2Ay
f(X,y,z+Az)- f(X,y,2—Az)
2AZ

Trilinearly interpolate those to get grad f (X, y, z)
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4.4 Reconstruction Filters

Consider a sequence of uniformly-spaced
samples, y,, y,, ... . How do we interpolate to get

a smooth function?
y

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15



" GG.

GGGGGGGGGGGG

Piecewise Constant Interpolation
(“Nearest Neighbour” interpolation/ box filtering)

y(x)=>"y; U(x-i)
1 -0.5<x<0.5

where U (X) =« |
0  otherwise

[The unit “square pulse” function]
A

X - X
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Convolutional Smoothing

m Pilecewise constant is not smooth enough
s Common smoothing technique is “convolutional smoothing”

Smoothed value at any point is the average of the input function
In the vicinity of the point

Unweighted average over a fixed interval is called “running
mean”

Generally have a weight function or filter function, h(x)
Box filtering is convolutional smoothing with square pulse, h = U

Fonnan () = %0 = [ (W)h(x—u)du
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Piecewise Linear Interpolation

Obtained by “box filtering” nearest-neighbour plot.

y(x)=2 y; L(x~i)

1+ x -1<x<0
where L(x)=U(x)*U(x)=41-x 0<x<l1
. 0  otherwise

[The “tent” function = linear b-spline]

VAN
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Piecewise Quadratic Interpolation

2
(2x+3) —§3x<——
8 2 2
3_x? eyl
where Q(x)=L(x)*U (x)=1 4 2 2
. 2
eyt 1, 3
8 2 2
0 otherwise
y

X
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Volume Reconstruction

m Reconstruction filters can be extended to 3D and be used to
Interpolate (reconstruct) sample volumes.

oo () = %= [ £ (U)h(x—u)du

oo o0 o0

= j j j f (u)h(x —u)du,du, du,

where x=(X,Y,2)
u= (ux,uy,uz)
f(u)=f, Iff (i, J,k) Isthe sample point closest to u
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Volume Reconstruction (cont’d)

m Separable filters can be written h(X, Yy, z) = h,(x)h,(y)h,(2)
m Examples are:

Trilinear filter: h.(X) = {

1-|x| if [x]<1
0 otherwise

Tricubic filters: Tricubic B-Spline (B=1,C=0)

1
h.(X)=—
(=%

Catmull-Rom Spline (B=0, C=0.5)

(12-9B—6C)|x° + (~18+12B+6C)|x + (6 — 2B) if [x<1
(-B-6C)|x’ + (6B +30C)|x|" + (~12B - 48C)|x|+ (8B +24C) if 1<|x|<2
0 otherwise
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Volume Reconstruction (cont’d)

(Truncated) Gaussian filters:

Windowed sinc filters:

h,(X) =+

-

0

\

e

—x% /207

if x| <X,
0 otherwise

otherwise

hs(x):{(u cos(zx/ X,,))sinc(4x/ x,,) if [x|< x,
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Volume Reconstruction (cont’d)

© 1994, Stephen R. Marschner, Richard J. Lobb, An Evaluation of Reconstruction Filters for Volume Rendering, Proceedings of IEEE
Visualization 94, pp. 100-107.

(d} Trilinear (el Cubic (B =0,26, C=0.11 (1 Windowed sinc (r= 4,8)
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4.5 Transformations of the
Dependent Variable

m We are predominantly interested in
Scalars
Vectors
Symmetric (2"d order) tensors

m Possible Transformations of data are
Data reduction
Data modification
Data expansion
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Transformations for Scalar Data

m Compute gradient

m I[mage Processing Algorithms
smoothing, sharpening, edge detection, ...

m Statistical techniques for multivariate data
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Transformations for Vector Data

. _ 2 2 2
m Vector magnitude V| = \/Vx TV, TV,
m Vector direction

1 u, y
¢ = tan - > A v:(vx,vy,vz)
, \/u £ u
X y4
¢ = atan2 (u,,u,) {ie.ad -quadrant tan _1%} v
V4
(I) —
v, 9v, 9V, @) X
- oX 0 0z
m Jacobian g 4
v, av, 9V, V4
J =
' oX dy 0z
av, dv, 9V,
oX dy 0z
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Transformations for Tensor Data

m We only deal with n-D symmetric 2"d-order tensors
which are represented by an nxn matrix.

m Example: Diffusion Tensor

Water molecules move randomly due to Brownian motion
(diffusion)

In Inhomogeneous materials diffusion speed is different in
each direction

Water molecules originating at fixed location form ellipsoidal
shape

Shape described by a tensor
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Eigenvalues and Eigenvectors

Any n-dimensional symmetric tensor T always has 77
eigenvalues A; and /7 mutually perpendicular
eigenvectors v, such that

Tv.=Av, i=1..,n

The eigenvectors and eigenvalues of the diffusion
tensor give the direction and length of the principal
axes of the diffusion ellipsoid
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Coordinate transformations

GRAPHICS GROUP .

m [n many cases it’'s convenient to define a new coordinate systems
(material coordinate systems) g(X,y,z) which better represents the
shape of the modelled object.

m Example: Cylindrical coordinates for modelling a tube

Transform world coordinates to material coordinates 7
/XZ + y2 X2 + y2
1 1 y

r
0
Z

Transform material coordinates to world coordinates

CcCos

Z

sin

z

X r cosé - -y
y|=|rsiné
VA VA
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Coordinate transformations (cont’d)

(9q, dq, 9q,

oX dy 0z
LetJ = 09, 99, 99, be the Jacobian of the coordinate transformation.
oX dy 0z
dq; dq; dq,
oX dy 0z

Then the representations of a vector v in world coordinates and a vector
v in material coordinates are converted into each other by
v=Jv and Vv=J"'v
Similarly the representations of atensor are converted into each other by
T=JTJ" and T=J'T@AY
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