

Chapter 4 – Data Transformation and Reconstruction

- 4.1 Motivation
- 4.2 Sources of Volume Data
- 4.3 Transformation of the Independent Variable
- 4.4 Reconstruction Filters
- 4.5 Transformation of the Dependent Variable4.6 References

4.1 Motivation

A multidimensional data set L_m^n consist of

m independent variables representing the data domain (usually space, time).

n dependent variables defined over the domain (e.g. scalar, vector and/or tensor data).

Motivation (cont'd)

Two Problems:

- Data can exist in various forms (analytic functions, sampled, implicitly) but many visualization methods require a particular representation
 - ⇒Transform independent variables (e.g. interpolation, sampling)
- Data attributes contain not enough information or information is to complex

⇒Transform the dependent variable (data reduction, data enrichment, data modification)

4.2 Sources of Volume Data

We are predominantly interested in (time varying) volume data (*m*=3 or 4). Widespread in Science and Engineering, but here are just a few common examples:

- CT ("Computed Tomography") Scans
- □ MRI ("Magnetic Resonance Imaging") Scans
- PET ("Positron Emission Tomography") Scans
- Ultrasonography (ultrasonic echo-sounding)
- Confocal microscopy

Sources of Volume Data (cont'd)

Physics/Engineering

- Measurements of density, pressure, elasticity, etc. over some volume
- Computer simulations
 - Computational fluid dynamics (CFD)
 - Stress analysis (FEM Finite Element Modelling)
 - Numerical models (e.g. of Earth's magnetic field)
- Graphics
 - Implicit surfaces as a modelling tool
 - Convolutional smoothing of polyhedra
 - Model by sculpting volume data

			Java App	lication Window	N		
Ő	Implicit Surfaces						
F(x,y,z)=	x^4+y^4+z^4 - (Y	2 z^2 + z^2 x	^2 + x^2 y^2) -	(x^2 + y^2 + z	^2) + 1	
min:	-2	*	-2 *			-2	
max	2	1	2 2				
discr:	41			41 + 41 +			
level:	0	* *	4		•		

Some Volume Visualization Examples

Microscience:

Molecular structure of an iron protein

Data source: Kitware Inc.

Biology:

Cellular structure of a sea sponge

Data source: BIRU – University of Auckland

Medicine:

MRI Data of the human brain

Data source: University of Erlangen-Nürnberg

Terminology

- Start with some function f(x, y, z) or f(x, y, z,t)
 - □ Called a *field* over R³ (or R⁴)
 - We deal only in 3-D and 4-D fields, but can have arbitrary n-D fields
- Have various types of fields
 - **Scalar**, i.e. *f* of type *real*
 - e.g. CT scan, density measurements, ...
 - \Box **Vector**, i.e. *f* is an *n*-vector (commonly n = 3)
 - e.g. fluid velocity in a CFD simulation
 - force fields (magnetic, electric, gravitational)
 - \Box **Tensor**, i.e. *f* is a matrix
 - e.g. stress and strain in FEM modelling

4.3 Transformation of the Independent Variable

Sampling

 \square Continuous data \rightarrow discrete (sampled) data

Usually use regular sampling:

$$f_{ijk} = f(x_i, y_j, z_k)$$
 where

$$\begin{cases} x_{i} = x_{0} + i\Delta x \\ y_{j} = y_{0} + j\Delta y \\ z_{k} = z_{0} + k\Delta z \end{cases}$$

• •

(

- Interpolation
 - \Box Discrete (sampled) data \rightarrow continuous data
 - Explained in the following slides
- Resampling
 - \Box Discrete (sampled) data \rightarrow discrete (sampled) data
 - Interpolation followed by sampling

Sampled Volume Data

- Sampled volume data is defined only at a particular set of (x,y,z)
 - Most commonly on a cartesian grid
 - □ Sample values are called *voxels*
 - A cuboidal region with voxels at all 8 vertices is called a *cell*
 - DON'T CONFUSE THESE TWO TERMS!!

Volumes as Fields

- Important to remember that samples represent a field, i.e. a continuum
- Process of defining the underlying field from a set of samples is called *interpolation* or *reconstruction*
 - Formally defined by convolution with a reconstruction filter (see next section)
 - □ *Trilinear interpolation* is the most common reconstruction method
 - Tricubic interpolation (e.g. B-spline) used for high-quality work

Trilinear interpolation

Linear interpolation

e

$$f(x) = f(x_0) + \frac{x - x_0}{x_1 - x_0} (f(x_1) - f(x_0))$$

= (1-t) f_0 + t f_1

where
$$t = \frac{x - x_0}{x_1 - x_0}$$
, $f_0 = f(x_0)$, $f_1 = f(x_1)$

© 2006 Burkhard Wuensche

 Trilinear interpolation can be regarded as 7 linear interpolations

© 2003 T. Todd Elvins, Introduction to Volume Visualization, SIGGRAPH '94, Course Notes #10.

Trilinear interpolation (cont'd)

$$f(x, y, z) = (1 - r)(1 - s)(1 - t)f_0 + r(1 - s)(1 - t)f_1 + (1 - r)s(1 - t)f_2 + r s(1 - t)f_3 + (1 - r)(1 - s)t f_4 + r(1 - s)t f_5 + (1 - r)s t f_6 + r s t f_7 where $r = \frac{x - x_0}{x_1 - x_0}, s = \frac{y - y_0}{y_1 - y_0}, t = \frac{z - z_0}{z_1 - z_0}$$$

Х

Gradients

- Many algorithms require the gradient of f
- The gradient is a vector perpendicular to the isocontours of the field
 - $\hfill\square$ i.e. is in the direction of steepest ascent
 - magnitude is rate of change of value in that direction

Defined as
gradient(f) = grad
$$f = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

Gradients (cont'd)

A trilinearly reconstructed field has discontinuous gradients at cell boundaries, so rather than computing true gradients we normally compute a smooth approximation:

Use central differences to compute gradients at voxels

$$\nabla f(x, y, z) = \begin{pmatrix} \frac{f(x + \Delta x, y, z) - f(x - \Delta x, y, z)}{2\Delta x} \\ \frac{f(x, y + \Delta y, z) - f(x, y - \Delta y, z)}{2\Delta y} \\ \frac{f(x, y, z + \Delta z) - f(x, y, z - \Delta z)}{2\Delta z} \end{pmatrix}$$

 \Box Trilinearly interpolate those to get grad f(x, y, z)

4.4 Reconstruction Filters

Consider a sequence of uniformly-spaced samples, y_0 , y_1 , How do we interpolate to get a smooth function?

Piecewise Constant Interpolation ("Nearest Neighbour" interpolation/ box filtering)

Convolutional Smoothing

- Piecewise constant is not smooth enough
- Common smoothing technique is "convolutional smoothing"
 - Smoothed value at any point is the average of the input function in the vicinity of the point
 - Unweighted average over a fixed interval is called "running mean"
 - \Box Generally have a weight function or *filter* function, h(x)
 - \Box Box filtering is convolutional smoothing with square pulse, h = U

$$f_{smooth}(x) = f * h = \int_{-\infty}^{\infty} f(u)h(x-u)du$$

Piecewise Linear Interpolation

Obtained by "box filtering" nearest-neighbour plot.

Piecewise Quadratic Interpolation

where
$$Q(x) = L(x) * U(x) = \begin{cases} \frac{(2x+3)^2}{8} & -\frac{3}{2} \le x < -\frac{1}{2} \\ \frac{3}{4} - x^2 & -\frac{1}{2} \le x < \frac{1}{2} \\ \frac{(2x-3)^2}{8} & \frac{1}{2} \le x < \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}$$

0.4

0.3 0.2 0.1

© 2006 Burkhard Wuensche

V

http://www.cs.auckland.ac.nz/~burkhard

Х

Volume Reconstruction

 Reconstruction filters can be extended to 3D and be used to interpolate (reconstruct) sample volumes.

$$f_{smooth}(\mathbf{x}) = f * h = \int_{-\infty}^{\infty} f(\mathbf{u})h(\mathbf{x} - \mathbf{u})d\mathbf{u}$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{u})h(\mathbf{x} - \mathbf{u})du_{x}du_{y}du_{z}$$
where $\mathbf{x} = (x, y, z)$ $\mathbf{u} = (u_{x}, u_{y}, u_{z})$

 $\mathbf{u} = (u_x, u_y, u_z)$ $f(\mathbf{u}) = f_{ijk}$ iff (i, j, k) is the sample point closest to \mathbf{u}

Volume Reconstruction (cont'd)

Separable filters can be written h(x, y, z) = h_s(x)h_s(y)h_s(z)
 Examples are:

Trilinear filter:
$$h_s(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$$

Tricubic filters: Tricubic B-Spline (B=1,C=0) Catmull-Rom Spline (B=0, C=0.5) $\begin{aligned} & (12-9B-6C)|x|^{3} + (-18+12B+6C)|x|^{2} + (6-2B) & \text{if } |x| < 1 \\ & (-B-6C)|x|^{3} + (6B+30C)|x|^{2} + (-12B-48C)|x| + (8B+24C) & \text{if } 1 \le |x| < 2 \\ & 0 & \text{otherwise} \end{aligned}$

Volume Reconstruction (cont'd)

(Truncated) Gaussian filters:

$$h_{s}(x) = \begin{cases} e^{-x^{2}/2\sigma^{2}} & \text{if } |x| < x_{m} \\ 0 & \text{otherwise} \end{cases}$$

Windowed sinc filters:

$$h_{s}(x) = \begin{cases} (1 + \cos(\pi x / x_{m})) \operatorname{sinc}(4x / x_{m}) & \text{if } |x| < x_{m} \\ 0 & \text{otherwise} \end{cases}$$

Volume Reconstruction (cont'd)

© 1994, Stephen R. Marschner, Richard J. Lobb, *An Evaluation of Reconstruction Filters for Volume Rendering*, Proceedings of IEEE Visualization '94, pp. 100-107.

(c) Cubic (B = 0.5, C = 0.85)

(a) B-spline

(b) Catmull-Rom

4.5 Transformations of the Dependent Variable

- We are predominantly interested in
 - Scalars
 - Vectors
 - □ Symmetric (2nd order) tensors
- Possible Transformations of data are
 - Data reduction
 - Data modification
 - Data expansion

Transformations for Scalar Data

Compute gradient

Image Processing Algorithms

- smoothing, sharpening, edge detection, ...
- Statistical techniques for multivariate data

Transformations for Vector Data

• Vector magnitude
$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Vector direction

$$\phi = \tan^{-1} \frac{u_y}{\sqrt{u_x^2 + u_z^2}}$$

$$\theta = a \tan^2 \quad (u_x, u_z) \text{ {i.e. a 4 - quadrant}} \quad \tan^{-1} \frac{u_x}{u_z} \text{ {}}$$

$$J_x = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} & \frac{\partial v_x}{\partial z} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} & \frac{\partial v_y}{\partial z} \\ \frac{\partial v_z}{\partial x} & \frac{\partial v_z}{\partial y} & \frac{\partial v_z}{\partial z} \end{pmatrix}$$

© 2006 Burkhard Wuensche

Transformations for Tensor Data

- We only deal with n-D symmetric 2nd-order tensors which are represented by an n×n matrix.
- Example: Diffusion Tensor
 - Water molecules move randomly due to Brownian motion (diffusion)
 - In inhomogeneous materials diffusion speed is different in each direction
 - Water molecules originating at fixed location form ellipsoidal shape
 - □ Shape described by a tensor

Eigenvalues and Eigenvectors

Any *n*-dimensional symmetric tensor T always has *n* eigenvalues λ_i and *n* mutually perpendicular eigenvectors \mathbf{v}_i such that

$$\mathbf{T}\mathbf{v}_i = \lambda_i \mathbf{v}_i \qquad i = 1, \dots, n$$

The eigenvectors and eigenvalues of the diffusion tensor give the direction and length of the principal axes of the diffusion ellipsoid

Coordinate transformations

- In many cases it's convenient to define a new coordinate systems (material coordinate systems) q(x,y,z) which better represents the shape of the modelled object.
- Example: Cylindrical coordinates for modelling a tube

Transform world coordinates to material coordinates

$$\begin{pmatrix} r \\ \theta \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \cos^{-1} \frac{x}{\sqrt{x^2 + y^2}} \\ \frac{1}{z} \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \sin^{-1} \frac{y}{\sqrt{x^2 + y^2}} \\ \frac{1}{z} \end{pmatrix}$$

Transform material coordinates to world coordinates

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r\cos\theta \\ r\sin\theta \\ z \end{pmatrix}$$

Ζ

Coordinate transformations (cont'd)

Let
$$\mathbf{J} = \begin{pmatrix} \frac{\partial q_1}{\partial x} & \frac{\partial q_1}{\partial y} & \frac{\partial q_1}{\partial z} \\ \frac{\partial q_2}{\partial x} & \frac{\partial q_2}{\partial y} & \frac{\partial q_2}{\partial z} \\ \frac{\partial q_3}{\partial x} & \frac{\partial q_3}{\partial y} & \frac{\partial q_3}{\partial z} \end{pmatrix}$$

be the Jacobian of the coordinate transformation.

Then the representations of a vector \mathbf{v} in world coordinates and a vector $\hat{\mathbf{v}}$ in material coordinates are converted into each other by

$$\mathbf{v} = \mathbf{J}\widehat{\mathbf{v}}$$
 and $\widehat{\mathbf{v}} = \mathbf{J}^{-1}\mathbf{v}$

Similarly the representations of a tensor are converted into each other by

$$\mathbf{T} = \mathbf{J}\widehat{\mathbf{T}}\mathbf{J}^T$$
 and $\widehat{\mathbf{T}} = \mathbf{J}^{-1}\mathbf{T}(\mathbf{J}^{-1})^T$

4.6 References

- T. Todd Elvins, *Introduction to Volume Visualization*, SIGGRAPH 94, Course Notes #10.
- Stephen R. Marschner, Richard J. Lobb, An Evaluation of Reconstruction Filters for Volume Rendering, Proceedings of IEEE Visualization '94, pp. 100-107.
- Burkhard Wünsche, Scientific Visualization, chapter 4, In "A Toolkit for the Visualization of Tensor Fields in Biomedical Finite Element Models", PhD Thesis, University of Auckland, 2004.
- Rosenblum et al. (editors), Scientific Visualization Advances and Challenges, Academic Press, 1994.