
© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 1

Chapter 2
VTK – The Visualization Toolkit

An introduction based on

Visualizing with VTK: A Tutorial, Schroeder, Avila and
Hoffman, IEEE Computer Graphics and Applications, Vol. 20,
No. 5, pp. 20-27.

The Design and Implementation of an Object-Oriented Toolkit
for 3D Graphics and Visualization, Schroeder, Martin and
Lorensen, Proceedings of IEEE Visualization '96, pp. 93-100.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 2

Overview

2.1 Design Goals
2.2 Object Models
2.3 Implementation Issues
2.4 Example

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 3

2.1 Design Goals

Toolkit Philosophy
Interpreted Language Interface
Standards Based
Portable
Freely Available
Simple

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 4

Toolkit Philosophy

Sharply focused object
library
Easily embedded in
applications
Enables the building of
complex systems

Pieces well defined
Simple interfaces

Application Level

Toolkits

Driver Level

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 5

Interpreted Language Interface

Compiled languages
Faster
Low level manipulations

Interpreted
Simpler more compact code
Faster application development
Higher level
Easier to debug

Tcl/Tk / Python / Java
Interpreted Interface

C++ Class
Library

(compiled)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 6

Standards Based

Use standard components and languages
Encourages use of the toolkit
Eases support and maintenance

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 7

Portable

Authors skeptical that any graphics library will
ever become a “standard.”

Toolkit uses high-level abstraction for 3D graphics
System can be easily ported as new standards
become available

Toolkit independent of system
Operating system
Windowing system

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

Freely Available

For software to succeed it must be
Widely used (cheap/useful)
Well supported (expandable/source code
available)

Benefits
Better dissemination of algorithms
Collaboration with other researchers
Credibility in the Visualization field
Used for education and research

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 9

Simple

“Everything should be as simple as possible, but no
simpler” – Albert Einstein

Benefits
Encourages wider use of 3D graphics and visualization
Easier to maintain
Easier to interface
Easier to extend?

Avoid cool but complex toolkit features
Interesting to programmers … but overwhelming to users

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 10

2.2 Object Models

Graphics Model
Abstract model of 3-D graphics

Visualization Model
Data flow model of the visualization process

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 11

Graphics Model

Render Window – manages window
Renderer – coordinates rendering
Light – illuminates the scene
Camera – view of scene
Actor – object in scene
Property – appearance of actor
Mapper – geometry of actor
Transform – position and orientation of
actor, camera, lights

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 12

Device Dependent Subclasses

Portability of the design achieved by using device objects, which
extend the functionality of graphics classes in a device
dependent way.

The VTK toolkit returns a subclass specific to the system
Example:
vtkRenderMaster rm;

renderWindow = rm.MakeRenderWindow();

aRen = renderWindow->MakeRenderer();

Application running on Sun UNIX creates an X-Windows window
and a SUN XGL renderer whereas on a PC it creates a
Windows rendering window and an OpenGL renderer.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 13

Visualization Model

Data flow paradigm
Modules connected to form a network.
Data flows through network, modules perform
operations on the data.
Execution demand driven (pulls data from source)
or event driven (responds to user input).

Visualization model consists of
Process objects – visualization algorithms
Data objects – datasets to be visualized

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

Process Objects
Sources

Generate output datasets
Filters

Transform datasets into new datasets
Mappers

Map datasets into Actors (graphics objects)

© 2003 VTK User’s
Guide, Kitware Inc.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15

Dataset Objects

Data objects have a …
Structure consisting of

Points: specify geometry (position in space)
Cells: specify topology (type of shape, allows
interpolation between points)

Associated Data Attributes
information associated with topology and/or
geometry, e.g. scalars, vectors, normals, tensors,
texture coordinates.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 16

Cell Types

© 2003 The Visualization Toolkit, Schroeder, Martin, Lorensen

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 17

Attribute Data
© 2003 VTK User’s
Guide, Kitware Inc.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 18

Types of Data

© 2003 VTK User’s Guide, Kitware Inc.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 19

Types of Data (cont’d)

Image Data (vtkImageData)
Topology and geometry completely regular.
Represented implicitly by data dimension (nx, ny, nz), origin, spacing.

Rectilinear Grid (vtkRectilinearGrid)
Collection of points and cells on a regular lattice.

Structured Grid (vtkStructuredGrid)
Regular topology and irregular geometry.
Geometry represented by array of point coordinates.

Unstructured Grid (vtkUnstructuredGrid)
The most general form of a dataset.
Topology and geometry completely unstructured.

Polygonal data (vtkPolyData)
Bridge between data, algorithms and high-speed computer graphics.

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 20

Object Oriented Design

Generic Filter
Operates on any type of data (e.g. contour filter)

Specific Filter
Operates only on one particular type of data (e.g. the
decimation filter has been specifically constructed for
polygonal data)

Allows the implementer to trade of generality with
efficiency

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 21

2.3 Implementation Issues

Why C++?
Efficient and object-oriented
Strongly typed

Get/Set macros
Uniform access to all object variables
Debugging, auditing (tracks modifications)
Enforce uniform object behaviour (e.g. maintain
internal modification time → network execution)

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 22

Memory Management

Garbage Collection
Datasets often shared by multiple processes
Dataset objects maintain reference counters
When reference count is zero, object commits
suicide (deletes itself).

Resource Management
Memory scarce – delete result after use
CPU scarce – save result after use

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 23

Making OO Fast

Avoid creating/destroying large numbers of
objects

Datasets are large but contained in single object
Minimize data copying

Datasets encapsulated in objects
Dataset objects passed by reference

Reduce object function overhead
Use inline functions when possible

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

2.4 Example

// Create a cone represented by polygons

vtkConeSource *cone = vtkConeSource::New();

cone->SetHeight(3.0);

cone->SetRadius(1.0);

cone->SetResolution(10);

// map the polygonal data into graphics primitives.

// Connect the output of the cone source to the

// input of this mapper.

vtkPolyDataMapper *coneMapper = vtkPolyDataMapper::New();

coneMapper->SetInput(cone->GetOutput());

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25

Example (cont’d)

// Create an actor to represent the cone. The actor

// orchestrates rendering of the mapper's graphics

// primitives using given properties and an

// internal transformation matrix.

vtkActor *coneActor = vtkActor::New();

coneActor->SetMapper(coneMapper);

// Create the Renderer and assign actors to it.

vtkRenderer *ren1= vtkRenderer::New();

ren1->AddActor(coneActor);

ren1->SetBackground(0.1, 0.2, 0.4);

© 2006 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 26

Example (cont’d)

// Create the render window put renderer into it

vtkRenderWindow *renWin = vtkRenderWindow::New();

renWin->AddRenderer(ren1);

renWin->SetSize(300, 300);

// Loop over 360 degrees and

// render the cone each time.

int i;

for (i = 0; i < 360; ++i){

renWin->Render();

ren1->GetActiveCamera()->Azimuth(1);

}

