
COMPSCI 716 S2 T - Assignment 4 1 of 7

This assignment is worth 10% of your final mark for COMPSCI 716 S2 T.

1. Data Transformation and Reconstruction (14 Marks)

Download the zip-file Ass4Q1.zip from the assignment webpage. The enclosed program
InterpolatedSurface.cpp draws the function

)2sin(1.02.05.0),(yexyyxf x π−+−=

within the interval [0,1] ×[0,1] using a Gouraud shaded surface. You can toggle the visibility of the
surface by pressing the ‘1’ key.

Assume the function f(x,y) is sampled such that)25.0,25.0(jiff ij = .

(a) [3 marks] Compute the bilinear interpolant of this surface within the interval [0,1] ×[0,1] and
draw it as a wire frame mesh. Please represent each bilinear surface patch with 3x3 polygons,
i.e. the bilinearly interpolated surface is represented by 12 x 12 polygons. Modify the program
such that the visibility of the bilinearly interpolated surface is toggled with the ‘2’ key.

 Solution hints: The bilinear interpolant at a point (x,y) for a patch (i,j) can be computed as
 follows:

// sample points
const int NUM_SAMPLES=5;
float p[NUM_SAMPLES][NUM_SAMPLES];

// computes p(x,y) for the bilinear patch
// with the vertices (i,j), (i+1,j), (i,j+1), (i+1,j+1)
inline float patch(int i, int j, float x, float y)
{
 x=(NUM_SAMPLES-1)*x-i; // scale x to [0,1] within patch
 y=(NUM_SAMPLES-1)*y-j; // scale y to [0,1] within patch
 return p[i][j]*(1-x)*(1-y)+p[i+1][j]*x*(1-y)
 +p[i][j+1]*(1-x)*y+p[i+1][j+1]*x*y;
}

(b) [3 marks] Compute the surface gradient of f(x,y) at each sample points analytically and

visualize it using thin blue cylinders. Modify the program such that the visibility of these
cylinders is toggled with the ‘3’ key. What is the value for the gradient at the point (0.5, 0.5)?
Write your answer into the document Ass4Answers.doc.

 Solution hints: The gradients are obtained by differentiating the function f(x,y).

inline float dfdx(float x, float y){ return -0.5*y+0.2*exp(x); }
inline float dfdy(float x, float y){ return -0.5*x-0.1*cos(2*Pi*y)*2*Pi;}

(c) [4 marks] Approximate the surface gradient of the bilinear interpolant of f(x,y) at each sample
points by computing the surface gradients of all bilinear patches sharing that point and
averaging these value. Visualize these gradients using thin green cylinders. Modify the
program such that the visibility of these cylinders is toggled with the ‘4’ key. What is the
value for the gradient computed with this method at the point (0.5, 0.5)? Write your answer
into the document Ass4Answers.doc.

COMPSCI 716 S2 T - Assignment 4
Solution Hints

Computer
Science

COMPSCI 716 S2 T - Assignment 4 2 of 7

 Solution hints: The gradients are obtained by differentiating the bilinear interpolant. Since we
 scale the parameters to the interval [0,1] we have the multiply the results with the inverse of
 the grid size.

 // computes derivative in x-direction for the bilinear patch with the vertices
 // (i,j),(i+1,j), (i,j+1), (i+1,j+1)
 inline float dpdx(int i, int j, float x, float y)
 {
 x=(NUM_SAMPLES-1)*x-i; // scale x to [0,1] within patch
 y=(NUM_SAMPLES-1)*y-j; // scale y to [0,1] within patch
 return (NUM_SAMPLES-1)*(p[i][j]*(-1)*(1-y)+p[i+1][j]*(1-y)+
 p[i][j+1]*(-1)*y+p[i+1][j+1]*y);
 }

 // computes derivative in y-direction for the bilinear patch with the vertices
 // (i,j),(i+1,j), (i,j+1), (i+1,j+1)
 inline float dpdy(int i, int j, float x, float y)
 {
 x=(NUM_SAMPLES-1)*x-i; // scale x to [0,1] within patch
 y=(NUM_SAMPLES-1)*y-j; // scale y to [0,1] within patch
 return (NUM_SAMPLES-1)*(p[i][j]*(1-x)*(-1)+p[i+1][j]*x*(-1)+
 p[i][j+1]*(1-x)+p[i+1][j+1]*x);
 }

(d) [4 marks] Approximate the surface gradient of the bilinear interpolant of f(x,y) at the sample

points using central differences and visualize it using thin green cylinders. Modify the
program such that the visibility of these cylinders is toggled with the ‘5’ key. What is the
value for the gradient computed with this method at the point (0.5, 0.5)? Write your answer
into the document Ass4Answers.doc.

 Solution hints: The value for the gradient at the point (0.5, 0.5) computed with the different
 methods is:

 // Part (b): compute analytic gradient
 cout << "\ngradient: (" << dfdx(0.5,0.5) << ", " << dfdy(0.5,0.5) << ")";
 // compute analytic gradient of bilinear interpolant
 cout << "\ngradient of bilinear interpolant patch1,1: ("
 << dpdx(1,1,0.5,0.5) << ", " << dpdy(1,1,0.5,0.5) << ")";
 cout << "\ngradient of bilinear interpolant patch1,2: ("
 << dpdx(1,2,0.5,0.5) << ", " << dpdy(1,2,0.5,0.5) << ")";
 cout << "\ngradient of bilinear interpolant patch2,1: ("
 << dpdx(2,1,0.5,0.5) << ", " << dpdy(2,1,0.5,0.5) << ")";
 cout << "\ngradient of bilinear interpolant patch2,2: ("
 << dpdx(2,2,0.5,0.5) << ", " << dpdy(2,2,0.5,0.5) << ")";
 // Part (c): compute average of analytic gradients of bilinear interpolant
 cout << "\ngradient obtained by averaging bilinear interpolants: (";
 cout << (dpdx(1,1,0.5,0.5)+dpdx(1,2,0.5,0.5)
 +dpdx(2,1,0.5,0.5)+dpdx(2,2,0.5,0.5))/4 << ", ";
 cout << (dpdy(1,1,0.5,0.5)+dpdy(1,2,0.5,0.5)
 +dpdy(2,1,0.5,0.5)+dpdy(2,2,0.5,0.5))/4 << ")";
 // Part (d): compute surface gradient using central differences
 cout << "\ncentral differences: ("
 << (p[3][2]-p[1][2])/0.5 << ", " << (p[2][3]-p[2][1])/0.5 << ")";

 Note: It’s easy to prove that when using a bilinear interpolant the methods in (c) and (d)
 always give the same results.

COMPSCI 716 S2 T - Assignment 4 3 of 7

2. The “Marching Cubes” Algorithm (9 Marks)

(a) [2 Marks] A Marching Cubes algorithm is being used to output the 0-isosurface of a scalar field.

The figure below shows on the left one cube configuration. The numbers written beside the
vertices are the field values at those vertices. The figure below on the right shows the coordinates
of the cube on the left.

 What are the vertices of the polygon(s) generated for the cube configuration on the left?
 Express the polygon vertices in terms of the cube vertices p1,…,p8.

 Solution: Only the vertex p5 is above the isosurface. We therefore have only one polygon with
 the vertices:

⎭
⎬
⎫

⎩
⎨
⎧ +++ 756515 3

1
3
2 ,

3
1

3
2 ,

4
1

4
3 pppppp

(b) [4 Marks] The marching cubes algorithm is used to output the 0-isosurface in a scalar field. The

figure below shows a face and the field values at the vertices of the face.

 As explained in the lectures there are two possible topologies for the 0-isocontour of within this
 face. Compute which topology is that of the bilinear interpolant.

 Solution: We have to compute the four intersection points and then sort them along one
 coordinate direction. Say the vertices are (0,0), (0,1), (1,0) and (1,1) then the four intersection
 points are: (0, 0.2), (0.2, 0), (0.1667, 1), (1, 0.1667).

 Hence the topology is the one shown in the
 image on the right:

COMPSCI 716 S2 T - Assignment 4 4 of 7

(c) [3 Marks] The lecture notes introduced an algorithm to build the look-up table for the Marching
Cubes algorithm.

 (i) Which polygon(s) would the algorithm produce for the configuration below if you use the
 cube table from slide 17 in handout 5? Please draw your answer (using a drawing program or
 by scanning a hand drawn image) into the document Ass4Answers.doc.

 Solution: The algorithm in lecture will start with an
 arbitrary edge intersection, and will find the next edge
 intersection in clockwise direction for the face on the right
 of the current edge (with respect to 0->1 direction). This
 means that the resulting polygons will always separate “1”
 (high) points for ambiguous faces. The solution for the
 given configuration is shown on the right.

 (ii) How many different ways are there to form topological polygons from the edge intersections
 in the above configuration?

 Solution: The above configuration has 2 ambiguous faces, so there are 22=4 different ways to
 form topological polygons.

3. Volume Rendering (7 Marks)

Download the zip-file Ass4Q3.zip from the assignment webpage. The enclosed program
Pelvis.cpp reads a Computed Tomography data set of a pelvis. All values within the volume are
between 0 and 255 and are of type unsigned char.

(a) [1Marks] Find a nice picture of a pelvis bone (use a drawing or an image) and add it together with

a reference to your answer sheet.

 Solution: URL: http://www.fotosearch.com/LIF122/3d205007/

COMPSCI 716 S2 T - Assignment 4 5 of 7

(b) [6 Marks] Complete the file Pelvis.cpp so that it renders the pelvis data set using direct
volume rendering. Define opacity and colour transfer functions so that the skin, muscle, and bone
layer are all visible using anatomically realistic colours.

 Solution: Below are two nice images generated by students from this course :-)

4. Vector Field Visualization (8 Marks)

Given is a vector field

A streamline ()ts is defined by

(a) [2 marks] Proof that

is the closed form of the streamline defined above.

 Solution:

OK!))((
1.0

)(2
)(2

1.0
2sin2

2cos2

OK!
0
1
0

0
0cos
0sin

)0(

tts
ts

t
t

dt
d

x

y

svs

s

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

1.0
2

2
)(x

y
xv

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

0
1
0

(0) ,))((ssvs t
dt
d

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

t
t
t

1.0
2 cos
2sin

(t) s

COMPSCI 716 S2 T - Assignment 4 6 of 7

(b) [6 marks] Download the zip-file Ass4Q4.zip from
the assignment webpage. The enclosed OpenGL
program Streamlines.cpp draws the closed
form of the streamline above in yellow. Complete the
program so that it draws additionally two
approximations of the above streamline computed by
numerically solving the ordinary differential
equations describing the streamline. The first
approximation should be computed using 100 Euler
steps of size 0.1t∆ = and be drawn in blue. The
second approximation should be computed using 100
steps of size 0.1t∆ = with the Mid-point method and
be drawn in red.

Solution:
 // compute vertices with the Euler method
 eulerVertices[0].setVector(0, 1, 0);
 for(int i=1;i<=numVertices;i++)
 {
 eulerVertices[i]=eulerVertices[i-1]+deltaT*vectorField(eulerVertices[i-1]);
 }

 // compute vertices with the Mid-point method
 midpointVertices[0].setVector(0, 1, 0);
 for(int i=1;i<=numVertices;i++)
 {
 CVec3df midpoint=midpointVertices[i1]
 +0.5*deltaT*vectorField(midpointVertices[i-1]);
 midpointVertices[i]=midpointVertices[i-1]+deltaT*vectorField(midpoint);
 }

COMPSCI 716 S2 T - Assignment 4 7 of 7

5. Tensor Field Visualization (7 Marks)

(a) [4 Marks] What are the eigenvalues and eigenvectors of the 3D symmetric second-order tensor

2 0 3
0 1 0
3 0 2

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

T

Solution:

()()()

()()()
 1 , 5 , 1

151

192
203

010
302

321

2

==−=⇒
−+−+=

−−−=
−

−
−

=−

λλλ
λλλ

λλ
λ

λ
λ

λIT

()

()

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⇒=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⇒=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=⇒=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=−

0
1
0

0
103
000
301

2
1
0

2
1

0
303

040
303

2
1
0

2
1

0
303
020
303

3333

2222

1111

vvvIT

vvvIT

vvvIT

&

&

&

λ

λ

λ

(b) [3 Marks] Assumed you are given a unit sphere and the eigenvalues 1 2 3, , and λ λ λ and the

corresponding eigenvectors 1 2 3, , and v v v of a 3D symmetric second-order tensor. Give the
transformation matrix which scales and rotates the unit sphere into a tensor ellipsoid representing
the given tensor.

Solution: The unit sphere can be converted into a tensor ellipsoid by first scaling it with the
eigenvalues and then aligning the principal axis of the ellipsoid with the eigenvectors by using a
coordinate transformation matrix as rotation matrix:

() ()
1

1 2 3 2 1 1 2 2 3 3

3

0 0
0 0
0 0

λ
λ λ λ λ

λ

⎛ ⎞
⎜ ⎟= ⋅ = =⎜ ⎟
⎜ ⎟
⎝ ⎠

T R S v v v v v v

