Visibility Computation

aka “The Hidden Surface Problem”
aka “The Visible Surface Problem”!

COMPSCI 372 Notes, ©Richard Lobb Slide 1

Assumptions

+ Scene is a set of polygons

+ Polygons have been perspective transformed

- z-value has become “pseudo-depth”
- Increases with distance from viewer

- See 372 notes

COMPSCI 372 Notes, ©Richard Lobb Slide 2

==
Three classes of algorithm

+ Image space methods

- These answer the question: “What is visible at each pixel in the
final image?”

- e.g. depth buffer
- Resolution dependent
+ Object space methods

- These answer the question: “What is the exact geometric
description of what is visible?”

- e.g. Weiler-Atherton clipper
- Resolution independent
+ Hybrids
- Don’t fit either of the above descriptions!
- e.g. polygon depth-sorting algorithms

COMPSCI 372 Notes, ©Richard Lobb Slide 3

The Depth Buffer Algorithm

float[][] d = new floatfMAX_COLS][MAX_ROWS];
Colour[][] frameBuffer = new Colour[MAX_COLS][MAX_ROWS];
set all values of frameBuffer to background colour
set all values of d to infinity
for each face F in scene {
for each pixel (x,y) covered by F {
compute depth = depth of F at (x,y)
if (depth < d[x][y]) { // F is closest so far
frameBuffer[x][y] = colour of F at (x,y)
dix]ly] = depth

COMPSCI 372 Notes, ©Richard Lobb Slide 4

o7
Notes on Depth Buffering

+ Allows rendering of polygonal faces in any order
- Fits the “pipeline” graphics rendering model well

Is implemented in hardware on all modern graphics
cards
- Fill rates of up to 4 gigapixels per second (2003)

+ Few disadvantages, except:

- Gives wrong answers if depth resolution insufficient
- As will ANY method!

- Doesn’t deal with transparency properly
- Correct answers require depth ordering of faces at each pixel

COMPSCI 372 Notes, ©Richard Lobb Slide 5

Notes on Depth Buffering (cont’d)

¢ BUT depth buffering still requires that each polygon
be transformed, lit, scan-converted.
- Waste of time if polygon is occluded
For high complexity scenes need to cull polygons
before they enter the graphics pipeline.
- Want to cull whole groups of polygons

COMPSCI 372 Notes, ©Richard Lobb Slide 6

List-Priority Methods

¢ Methods in which we draw the faces “back to
front”

Classic name: “painters algorithm”
- Front polygons “painted over” back polygons

¢ But

What do we mean by "back to front"?

COMPSCI 372 Notes, ©Richard Lobb Slide 7

==
Heedless Painters Algorithm

+ Three really bad answers:
“Polygon A is in front of polygon B if its {minimum |
maximum | average} depth is less”.

¢ UDOO: sketch situations in which each of these fails.

+ Algorithms based on this are called “Heedless Painters
Algorithms” [by Hill]:

- Calculate depth measure of each face

- Sort faces in back-to-front order according to
that depth measure

- Draw faces in back-to-front order

COMPSCI 372 Notes, ©Richard Lobb Slide 8

07
What “Back to Front” really means

o We want a partial ordering with the property that
Face A precedes Face B => loccludes(A,B)

- where occludes(A4,B) is a predicate that is true if any
part of A occludes (i.e. “covers up”) any part of B.

- Heedless painters algorithm is based on false logic like:
boolean occludes(Face A, Face B) {
return centroid(A).depth() < centroid(B).depth(); // “nearer”
}

o This is at best a rough heuristic

COMPSCI 372 Notes, ©Richard Lobb Slide 9

But such an order may not exist!

e.g.

concave polygon
cyclic overlap

interpenetration
COMPSCI 372 Notes, ©Richard Lobb Slide 10

Improved (?) algorithm:
Newell, Newell & Sancha Depth Sort

+ Use simple depth sort as before.

Then refine the order using such rules as:
- if (x,y) bounding boxes of A and B are disjoint then
occludes(B,A) = occludes(A,B) = false
- ifall vertices of A are in front of plane of B then
occludes(B,A) = false

- if the projections of A and B onto the viewplane are disjoint
occludes(A,B) = occludes(B,A) = false

+ But:
- logic is difficult

- still have failing cases when we have to clip polygons in two.

COMPSCI 372 Notes, ©Richard Lobb Slide 11

p=
BSP Tree Method (depth sort done properly!)

Firstly: what is a BSP tree?
- A BSP tree is a recursive subdivision of space with planes
(3D)/lines (2D) at internal nodes
- Leaf nodes represent convex regions of space
- Can store various extra info at nodes (depending on application)
- 2D example (unrelated to depth sorting):

BSP Tree (where Left child
is Inside, Right is Outside)

. s
4/ \3
AN /N

In Out Out

Can represent arbitrary polygonal regions
as a union of leaf nodes. Can classify any
point by pushing it down the tree to a leaf.

COMPSCI 372 Notes, ©Richard Lobb Slide 12

In Out

0
Depth sorting with BSP trees

¢ Idea:

- Goal is to find an ordering such that no polygon occludes
any part of any polygon that comes later in the ordering.

- Suppose the set of polygons can be divided into two
distinct sets by a partitioning plane.

- Then none of the polygons on the far side of the
partitioning plane from the eye can possibly obscure any
of the polygons on the near side.

- Hence can “paint” far side first, then near side
- BSP-tree allows us to do this recursively

- Tree is valid for any viewpoint

COMPSCI 372 Notes, ©Richard Lobb Slide 13

o7
Depth sorting with BSP trees (cont’d)

¢ How do we construct the BSP tree?

- Use the planes of polygons within the scene as the
partitioning planes

- Each node in the tree contains (usually) a single polygon
and two subtrees.

- One sub-tree contains polygons that lie entirely behind the
plane of the root polygon

- The other sub-tree contains polygons that lie entirely in
front of the plane of the root polygon.

- In this application, leaves are empty (null) — all the scene
polygons are stored in internal nodes.

COMPSCI 372 Notes, ©Richard Lobb Slide 14

Algorithm to build a 3D BSP tree

class BSPTree {

Plane plane; /I The plane that subdivides space

List inPlanePolys = new List(); /I All scene polygons lying on that plane
BSPTree frontTree; /I A tree describing the world in front of that plane
BSPTree backTree; /I A tree describing the world behind that plane

BSPTree (PolygonList polyList) {
/I Constructor, given a non-empty list of scene polygons
List frontList = new List(), backList = new List(); // Lists of polygons in front and back
Polygon rootPoly = polyList.head(); // Use the first polygon to subdivide the world
plane = rootPoly.plane(); /I Get its plane as the plane of this node
inPlanePolys.append(rootPoly); /I Store the polygon itself in this node
for each polygon in polyList.tail() { // Sort all the rest of the scene w.r.t. the plane
if (polygon lies in rootPoly.plane) inPlanePolys.append (polygon);
else { polygonPair = clipinTwo(polygon, plane);
if (polygonPair.front != null) frontList.append(polygonPair.front);
if (polygonPair.backt != null) backList.append(polygonPair.back);
}

}
frontTree = frontList.isEmpty() ? : null : new BSPTree(frontList);

backTree = backList.isEmpty() ? : null : new BSPTree(backList);

COMPSCI 372 Notes, ©Richard Lobb Slide 15

pEd
Clipping a polygon in two with a plane

PolygonPair ClipInTwo(plane, polygon) {

/I Uses the given plane to clip a polygon in 3-space in two.
Polygon insidePoly = new VertexList();
Polygon outsidePoly = new VertexList();
for (each edge of polygon) {
classify edge endpoints as inside, on, or outside the plane
if (edge startpoint is on or inside plane) insidePoly.append(startPoint);
if (startpoint is on or outside plane) outsidePoly.append(startPoint);
if (edge crosses plane) { // one vertex is inside and the other outside
calculate crossing point P,;
tag P, as an on vertex;
append P, to both insidePoly and outsidePoly; /V
}

if (insidePoly contains only on vertices) insidePoly = nil; —»
if (outsidePoly contains only on vertices) outsidePoly = nil;
return new PolygonPair(insidePoly, outsidePoly);

COMPSCI 372 Notes, ©Richard Lobb Slide 16

— A Difficulty

Clipping algorithm yields a
single polygon ABCDEF

B

3 ways of dealing with this, in increasing order of complexity are:

- Ignore it, and hope that the scan conversion algorithm does not display
the line connecting the two component polygons.

- This would be the case if, of example, the scan conversion were antialiased
- Split any concave polygons into convex polygons beforehand

- Detect the situation afterwards, and split the components into separate
polygons.

COMPSCI 372 Notes, ©Richard Lobb Slide 17

0
Choosing the Root Node

+ The above algorithm took the head of the list of
polygons as the root.

+ Much better to choose the polygon whose plane
intersects the fewest other polygons.

- Less clipping
- Simpler, shallower tree

- Some algorithms much faster — O(log n) instead of O(n)

- UDOO: which ones?!
- BUT determining such a polygon is very expensive

+ Choosing the best of a random sampling of five
polygons is almost as good.

COMPSCI 372 Notes, ©Richard Lobb Slide 18

==
Traversing the BSP Tree

PolygonList traverse(BSPTree root, Point3f viewpoint) {
/I Traverses the BSP tree w.r.t. given viewpoint, using "otherside first" order.
/I Returns a list of all polygons encountered, with the property that no
/I polygon in the list can obscure any part of any other polygon that comes
/I later in the list (when viewed from the viewpoint).
if (tree == null) return null;
else if (viewpoint outside root.plane)
return traverse(root.backTree, viewpoint) ++ root.inPlanePolys ++
traverse(root.frontTree, viewpoint);
else
return traverse(root.frontTree, viewpoint) ++ root.inPlanePolys ++
traverse(root.backTree, viewpoint);

| List concatenation operator

COMPSCI 372 Notes, ©Richard Lobb Slide 19

==
Other uses of BSP Trees
¢ In 3D games like Quake

- BSP tree is used to decompose the scene into a set of
disjoint convex regions.

- Set of all polygons potentially visible from each region is
determined (PVS)
- e.g. polygons inside the convex region plus any regions connected
to it by a single open “portal”
~ Only the PVS of the region in which the viewer lies is
rendered at each frame

+ For set operations on polyhedra

- e.g. do intersection by pushing one polyhedron into the
BSP tree of the other, retaining only bits that land in /n
nodes

COMPSCI 372 Notes, ©Richard Lobb Slide 20

0
Other uses of BSP Trees (cont’d)

For calculating shadows in polyhedral scenes

- Calculate shadow volume as union of shadow volumes of
each polygon in scene

To provide a space-subdivision scheme for use in
ray-tracing.

COMPSCI 372 Notes, ©Richard Lobb Slide 21

Scan-line Methods

¢ Obsolescent

¢ Were used when cost of depth-buffer was
excessive

Only advantage nowadays: can do transparency
properly
- Still used in some modellers for a “quality rendering”
pass
- Much faster than ray tracing
- But ray tracing is much better quality

COMPSCI 372 Notes, ©Richard Lobb Slide 22

Scan-line algorithm (idea only)

Pre-sort all polygon edges into an edge table with one
entry per scan line
- Associate each edge with its lowest scan line

+ Initialize ActiveEdgeList to empty

+ for each scan line
- Delete “expired” edges
- Add new edges from EdgeTable
- Compute where each edge crosses scan line
- Sort edges by crossing point (x value)

- Fill spans of pixels between edge-crossing points, using the colour
of whichever polygon is in front over that span

COMPSCI 372 Notes, ©Richard Lobb Slide 23

Area Subdivision Methods

Warnock’s algorithm

+ Divide and conquer method
« Of historical significance only.

¢ Warnock’s algorithm idea:
display(PolygonList polys, Window win) {

clip all polys to the window win

do simple depth sort

if (polys.length() <= 1) draw 0 or 1 polys;

else if (polys.head surrounds window and is in front of all others)
draw polys.head;

else {
subdivide win (into 2 or 4)
recurse with each subdivided window

}

COMPSCI 372 Notes, ©Richard Lobb Slide 24

Weiler and Atherton algorithm

+ An area subdivision algorithm in object space
+ Similar to Warnock, but subdivide along polygon edges
+ Have to clip polygons to arbitrary polygonal window

- “Weiler and Atherton clipper”
- Hard!

Output is a list of fully-visible polygon fragments
- Object space

+ Next to impossible to get this working properly!
+ Modern approach (?) —use 3D BSP trees to generate “front to

back” sequence of output polygons then 2D BSP trees to
handle 2D clipping

- I’'m not sure if anyone has actually done this!

COMPSCI 372 Notes, ©Richard Lobb Slide 25

07

¢ See

“Hidden Line Removal”

+ Another classic but rarely-useful algorithm domain
+ Nowadays if we want line drawings we usually use

hidden surface removal techniques, e.g. (OpenGL):
- Turn on depth buffering
- Set polygon mode to area fill
- Draw object’s polygons
- Set polygon mode to line drawing
- Call glPolygonOffset to “pull” output

primitives forward at least 1 depth unit

- Redraw object’s polygons

http://www.opengl.org/developers/fags/technical/polygonoffset.htm -

COMPSCI 372 Notes, ©Richard Lobb Slide 26

