Physically-based Animation
c ]

e Introduction to animation

e Particle systems

e Mass spring systems

e Solving differential equations

Main reference: Witkin & Baraff’s SIGGRAPH course notes on
Physically-Based Modelling:
http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Introduction to animation
. ]

e Technically, it's fairly trivial to make an animation
- Have a 3D model

- Positions/orientations of some components and/or camera are a
function of time

- “Just” render frames at regular intervals
- Assemble frames into an AVI/MPEG/whatever
e Hard bit is all the non-technical stuff
- The story
- The modelling (“3D art”)
- The sound track
- etc
e Except for ... the physically-based modelling and animation ©
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Methods of defining animations
.|

e Hard code it! [e.g. ARL]

- Rare

Scripts e.g. POVRay

- Cumbersome, obsolete (?)

Interactive control (games, motion capture)
“Manual” control, e.g. 3D Studio Max, Maya

- The vast majority of animation is prepared this way
Physically-based animation (i.e. simulation)

- Used to control components of an animation, e.g. fluids,
fire, trees in wind, collapsing structures, ....

- Typically supported by plug-ins for programs like Maya.

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Types of Physically-based Animation
|

e Particle systems, e.g.
- Mass-spring systems +—— All we do
- Fire
- Fluids

e Finite Element Methods
- For modelling deformable materials, and fracture.

e Fluid mechanics

e Rigid body animations (incl. jointed structures)
- Classical mechanics + robotics
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1. Particle Systems
c ]

- Examples

- Definitions

- Mass-spring systems

- Constraints and penalty forces
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Examples
|

Lobby-blobby model (Nixon & Lobb, CG&A August 2002)
Turning the page (work in progress)

Lexus Ad (from Siggraph “Animation Tricks” course)
http://runevision.com/3d/anims/anims.asp

http://www.siggraph.org/education/materials/HyperGraph/animatio
n/movies/Eric.mov

http://www.siggraph.org/education/materials/HyperGraph/animatio
n/movies/SecretSerpent320.mov

http://www.id8mediagallery.com/RealFlow gallery.htm
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A Particle
G

e Particle: “(Physics) A body whose spatial extent and
internal motion and structure, if any, are irrelevant
in a specific problem.”

- American Heritage Dictionary

e Has position plus other attributes (e.g. mass)
- Position varies with time

e It represents the behaviour of a bit of some (usually
continuous) material.

- A “super-atom” e
- Ora sample {m,x(t),v(t)}
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A Particle System
-]

e Particle System: A set of particles, plus a set of
rules governing their motion, which models the
spatio-temporal behaviour of a (usually continuous)
physical entity or set of entities

- Rules usually relate the motion of a particle to those in its
vicinity plus some global rules.

- May also have birth/death rules
e e.g. to maintain uniform density of samples

Fixed
point
rule

Fixed distance rules

Gravitational acceleration rule
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A Particle System (cont’d)
c ]

- In graphics, also have rendering rules which control how
the system is displayed so it looks like the entity it
represents.
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Mass-Spring System So% m,
6
167
Stiffness kg7

e |s a simple particle system comprising:

1. {mi’Xi(t)’Vi(t)}Z{mnxi(t)axj(t)}
e A set of particles, each with fixed mass and time-varying
position and velocity

2. Lk, Ly}
e A set of springs connecting pairs of particles.

° kij = kji is the spring constant of the spring between
particles i and j

— Zero implies no spring present
° /ij = Iji is the spring’s rest length
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Mass-Spring System (cont’d)
o]

3. {Fy(%,0)}
- A set of (possibly time-varying) global forces
applying to all particles, e.g. gravity, wind forces
4. Other behaviour rules (e.g. particles can’t penetrate
ground)
Important note — I define:

{x,} to be the configuration of the system
- How it looks at an instant in time
{x,,X;} to be the state of the system

— How it looks and how it is moving (necessary to predict its behaviour)
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Spring Force
|

e Restoring force is proportional to the stretch of the
spring beyond its rest length. k,-jis the constant of
proportionality. :

K, =k; (|r]|—lj)|:—’|
Yy

where r, =X, X,

e F; is the force on particle i due to particle j
— FIJ = _Fji
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A Simple Particle System Algorithm
c ]

T=0
for each step in time, At {
T += At
for each particle {
compute total force F, on particle
a, =F/m,
v, += a, At
X; +=v; At
}

display [or write frame to file]

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Mass Spring Demo
]
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Damping
o]

e Need to dissipate energy — “damping”

e Physically, energy loss depends on system being
modelled
- Fire particles — damped by motion through air
- Elastic materials — heating of molecular lattice (imperfect
elasticity)
e Plus maybe air damping if motion large
- Fluids — internal viscous damping
- Physical mass-spring systems
e Damping by air plus elastic losses in springs
e Plus maybe extra dampers (e.g. car suspension)
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Damping (cont’d) QWF/ZV;—:C—CJJ’:

e Common engineering and physics model is viscous
damping
- Damping force proportional to velocity

e This is very poor approximation
- See http://www.csiberkeley.com/Tech_Info/19.pdf

e Precise form of energy loss not normally important in
graphics

e Typically stability is the key issue
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Damping (cont’d)
c ]

e Usual hack is to include two forms of viscous damping

- particle-air damping — force opposes particle motion,
proportional to particle velocity:

- spring damping — force opposes spring compression/extension
proportional to rate of change of length

e Ad Hoc!
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Damped Spring Force
.|

e Spring force equation is now
E :[kif (|rv|_lv)+kd%|rzf|}|%|

= [ki/ (|ri/| =1 ) +k, rTrTJ ]i

i |rff|

where I, =V, -V, =X, X,

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Particle/Plane Collisions Biped animation
]

e Trivial to test if particle is inside a half-space (e.g. below ground)
e Should back-off simulation until it's just on the plane

- But usually don’t bother!
e Particle impacting plane generally bounces.

- Decompose velocity into normal and tangential components

- Multiply normal component by —r, where r is coefficient of restitution

v:v"+vt:(N'v)N+vt N
’
v
v:1:_rv)1 v
r
V, =YV, v,
[ E—
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Particle/Plane Contact
G

e Inter-bounce time gets smaller and smaller

e At some point have to define particle as being in contact with
plane (v, < threshold)

e Then must apply a contact force to the particle to prevent
penetration and to incorporate (sliding) friction

N -
~_ -
~ -

Fcontact = 7
v
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Particle/Plane Contact
|
e First compute total force F on particle. Then add:

0 N-F>=0
contact ~ _(N . F)(N + kfvt) otherwise

e k; is friction coefficient
- Very simplistic model
- Should at least switch to a static friction model if v, < some threshold

N F contact
\4
———————— >
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2. Differential Equation Solving

e Refces:
- Witkin/Baraff Siggraph Tutorial
- mathworld.wolfram.com/OrdinaryDifferentialEquation.html
e But we are concerned only with numerical solution methods
e Assume no analytic solution
- Press et al “Numerical Recipes in <x>", Chapter 16
(http://www.library.cornell.edu/nr/bookcpdf.html)
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Initial Value Problems (IVPs)
o]

e Particle system problem is to track the state of the system S(t)
=({x(f),v{(t)}) over time, given S(0) and a way to compute S’(f).

e This is an initial value problem, characterised by a linear first-order
ordinary differential equation (ODE) of form

x= f(x,1)

- Xxis the system state (a vector in R")
- fis a known function

e |In mass-spring systems, often no t dependence but might have e.g.

time-varying wind field
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An Aside: Order of an ODE
G

e Our particle system is actually a second-order ODE of
form
s-E_ f(x,x,1)
m
e However, by defining “state” as (x,x) we reduce this
to a first-order ODE (or two coupled first-order ODESs)
- Order reduction
- Standard technique in numerical soln of ODEs.

- When using e.g. Mathematica, we can just provide the original
ODE and let it do the order reduction.
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Example IVP — VW m
|

e Equation of motion (undamped) is:

. F k

X=—=——Xx=-—CX Fst and Snd are first and
m ] m second element operators.

s =(x,X) [This is just to emphasise

§ = (x,—cx) = (Snd(s), —c Fst(s)) that § is a function of s.]
e If map s onto (x,y) plane, with y for velocity, the d.e. is

s:(xa)'}):(y’_cx)
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Example IVP (cont’d) VW —|m
|

Vectors show the vector field s = (y,—cx) over the state space {(x,y)}
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Example IVP (cont’d) VW —|m

Job of ODE solver V| Pl et S S
is to track the path 7’%’; f:j:;ii;g‘:_\ k:Qrs\\j\\
of a particle in this ) 1 T~ 0) i\\%\*
vector field. / {/ 7 f//f//f f?\r\:\\\ §\§\\

VARV P N \\
If § depends 0 {\AQ( \1\'\‘;/'/'/*\ \)\")"\
explicitly on ¢, \QQ\\\Q\\::;;; j J //
vector field is - “\\“%‘s\t\\ﬁ\ __// z 77
changing with ¢, AN ‘¥~§ ‘\’“ﬁ:;:;:;?/ 7
ie.is $(s(£),0). S S :22/;/;/,;,/
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The Euler Method

Simple linear steps in state space:  s(t+At) =s(t) + At$(s(?))

DeltaT 1, numSteps 4
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The Euler Method (cont’d)
c ]

DeltaT 0.1, numSteps 200
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The Euler Method (cont’d)
]

DeltaT 0.02 , numSteps 4000

i irrrrreses
O S
1 i Z;/j ﬁ?:%\% CONCLUSION:
need very sma
{ f /ﬂ e “\ \\si‘ time steps and/or
’ \Q Q NI h AN large damping to
VA ‘&\ . /j } f avoid energy
N w\\i‘\s'g“g‘\‘ /’/,;?/ ,’Z 7 “blow up”
I =
, \\Q\:&\:ﬁ;éé/////
— ‘/:/
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Runge-Kutta Methods
o]

e To get a more-accurate step, need a higher-order estimate of local
derivative field

e Runge-Kutta methods are based on truncated Taylor series
extrapolation.

B AP At" 8"s(?)
s(t+Ar) = s(t)+Ats(t)+2—!s(t)+...+7 P +...
- ~ < [8(t), §(r) are short for $(s(1)), §(s(t))]

Euler method is first-order Runge-Kutta
Error is O(At?) per step.
Error decreases linearly with At over a given time interval.

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Mid-point Method
e

e Try second-order Runge-Kutta.
e Take next term in Taylor expansion. Write as:
s(t+At) =s(t)+ At (S(t) + % 's'(t)j

e Term in parentheses is the first order estimate of the
state derivative half way through the next step.

e Hence (with zero rigour) ....
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Mid-point method: Algorithm
<

e Compute Euler step
As using derivative at
start
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Mid-point method: Algorithm (cont’d)
|

e Compute Euler step

. - LT
As using derivative at e e
eI
- A S NN
e Evaluate derivative A e T NN
O pmig at mid-point of ( { (4‘ /;/;A\\\\MQ*Q \\Q‘«
step, i.e. at s(t)+ As/2 e SO o) ; \'f Y
\ N A
¢ \QQ\&\&//%M //
R e
N R s

COMPSCI 715 Notes. ©Richard Lobb, 2003.

Mid-point method: Algorithm (cont’d)

e Compute Euler step
As using derivative at
start

e Evaluate derivative
Omiqg at mid-point of
step, i.e. at s(t)+ As/2

e Go back to start and
take a step using
derivative g,q
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Mid-point method: Algorithm (cont’d)
|

Allowing for time-varying 1.

derivative field, algorithm is: === ~—== S
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Mid-point Method, dt = 1 sec, 11 steps Mid-point Method, dt = 0.5 sec, 100 steps
|

DeltaT 0.5, numSteps 100
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Mid-point Method, dt = 0.1 secs, 5000 steps 4t.Order Runge-Kutta

DeltaT 0.1, numSteps 5000

“For many scientific users, fourth-order Runge-Kutta is not just the first

) Pt | word on ODE integrators, but the last word as well. In fact, you can get
7’ %%j; = :\\?\‘S\\\ pretty far on this old workhorse, especially if you combine it with an
) . /?«' ot 4 /'”*a\\\\s:s\ x\\\ adaptive stepsize algorithm. ... Bulirsch-Stoer or predictor-corrector
/ 7’ /1 L e RN Qi« \\‘: \‘ methods can be very much more efficient for problems where very high
| ( {‘ (‘ y - ¢ N \\ \‘\ NN accuracy is a requirement. Those methods are the high-strung racehorses.
’ y ;; \\ \'\ ) j ) ')‘ Runge-Kutta is for ploughing the fields.”
SN~ 4
:\:QQQ NN / ; f / f — Press et al, “Numerical Recipes”
N \\\\\\\g R VA
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4™-Order Runge-Kutta Algorithm
L |

e Quote without derivation

k, = Ats(s(?),t) (* Euler step As *)
k, = Até(s(r) +%,t + %) (* Midpoint step *)

k, = Até[s(t) + %,t + %J (* Refined midpoint step *)

k, =Ars(s()+k,,t+Ar)  (* Refined refined step *)

s(t+At) = s(t)+%kl 4—%k2 +§k3 +%k4 (* 4th order R-K result *)
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RK4 Results, dt = 1 sec, 8 steps
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RK4 Results, dt =1 sec, 100 steps
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RK4 Results, dt = 0.4 secs, 1250 steps

A e
S S S S NN
I o7 FeEm P SN

X

;

"\b\“
L\\
SN
-

AN
ifr -
| NI ‘W\ |
\/
\L/ /
AN ot
N
\\\ﬁ////
<,
T

S

M
‘RRRR
RERVNNNNA

N
N

I
\
B

A/‘/l/"/’

s
o

2

e UDOO: Estimate cost of RK4 versus midpoint for similar accuracy
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Adaptive Stepsizes
.|

e Simple idea:

- “Many small steps should tiptoe through treacherous terrain, while a
few great strides should speed through smooth uninteresting
countryside.” — Numerical Recipes.

e Simple implementation:
- Take two steps of At, one step of 2 At, compare results
- Adjust step size to keep error within pre-specified bounds
See notes + Numerical Recipes

I haven’t found this very useful in PBM — “terrain” usually same
roughness everywhere.
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Idle Thoughts of an Idle Fellow
]

e An Euler solver is too horrible. NEVER use it.
- Yeah | know — you will anyway.
Accuracy is rarely the issue in CG — stability is everything.
Benefit of RK4 over midpoint is moot.
Often have discontinuities (e.g. collisions) — have to stop d.e.
solver and back-up to time of collision.
— Further reduces benefit of RK4
Stiff springs = high frequencies > small steps reqd
If overall behaviour is low frequency (non-stiff springs) but have
some stiff springs, small steps are still necessary for stability
- Such “stiff d.e.s” best handled by implicit methods — next section.
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Restructuring the Particle System
.|

e Should isolate the d.e. solver from the physical
simulation code

e State of n-particle system is a vector in Ro":
s=(x],xl,x2,xz,...,xn,xn)

e State derivative is

. (. F . F . F,
$=|x,—4.%,,—&,...X,,—=*
ml m2 mn
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Interface to DE Solver
G

/I DESolver.java -- the abstract class from which are subclassed all
/I the real DESolvers.

package deSolvers;
public abstract class DESolver {
public abstract void stepState(DEStateSource source, double deltaT);

/I Called to advance the state of the given state source by
/] a time step of deltaT.
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DEStateSource - the interface a client provides
to the DESolver

package deSolvers;

/I All the methods in this interface are called by the DESolver while processing
/I the stepState call.

public interface DEStateSource {
public int stateLength(); /I Number of doubles in the state vector
public void getState(double[] state);  // Get the current state
public void getStateDerivative(double[] state);
/I Get the current state derivative
public void setState(double]] state); /I Set a new state
public void incTime(double deltaT); /I Set a time increment of deltaT
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Euler Solver Code
.

package deSolvers;
import java.util.”;

public class EulerDESolver extends DESolver {
double[] state = null;  // Buffer for copy of state
double[] dSdt = null; /I Buffer for copy of state derivative

public void stepState(DEStateSource source, double deltaT) {
int n = source.stateLength();
if (state == null || state.length !=n) { // On first call, allocate buffer space.
state = new double[n]; //[This is ugly compared to having getState etc ...
dSdt = new double[n]; // ... return an array, but much more efficient.]
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Euler Solver Code (cont’d)
.|

/I Now the real gutz of stepState ...

source.getState(state);
source.getStateDerivative(dSdt);
for (inti=0;i<n;i++)

state[i] += dSdlt[i] * deltaT;
source.setState(state);
source.incTime(deltaT);
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The Particle System
o]

public abstract class ParticleSystem implements DEStateSource {

public Particle[] particles = null; /I The particles in the system
public Force[] forces = null; /I The forces acting on them
public double t = 0; /I current time

public int stateLength() { return 6 * particles.length; }
public void getState(double[] state) { .. copy state from particles into caller’s buffer ..}

public void getStateDerivative(double[] sd) { ... clear forces on each particle, apply ...
... all forces, compute all particle accelerations, return all v’'s and a’s ... }

public void incTime(double dt) { this.t +=dt; }
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