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Physically-based Animation

z Introduction to animation
z Particle systems
z Mass spring systems
z Solving differential equations

Main reference: Witkin & Baraff’s SIGGRAPH course notes on 
Physically-Based Modelling:

http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
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Introduction to animation

z Technically, it’s fairly trivial to make an animation
– Have a 3D model
– Positions/orientations of some components and/or camera are a 

function of time
– “Just”  render frames at regular intervals
– Assemble frames into an AVI/MPEG/whatever

z Hard bit is all the non-technical stuff
– The story
– The modelling (“3D art”)
– The sound track
– etc

z Except for ... the physically-based modelling and animation ☺
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Methods of defining animations

z Hard code it! [e.g. ARL]
– Rare

z Scripts e.g. POVRay
– Cumbersome, obsolete (?)

z Interactive control (games, motion capture)
z “Manual” control, e.g. 3D Studio Max, Maya

– The vast majority of animation is prepared this way
z Physically-based animation (i.e. simulation)

– Used to control components of an animation, e.g. fluids, 
fire, trees in wind, collapsing structures, ....

– Typically supported by plug-ins for programs like Maya.
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Types of Physically-based Animation

z Particle systems, e.g.
– Mass-spring systems
– Fire
– Fluids

z Finite Element Methods
– For modelling deformable materials, and fracture.

z Fluid mechanics
z Rigid body animations (incl. jointed structures)

– Classical mechanics + robotics

All we do
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1. Particle Systems

• Examples
• Definitions
• Mass-spring systems
• Constraints and penalty forces
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Examples

• Lobby-blobby model (Nixon & Lobb, CG&A August 2002)
• Turning the page (work in progress)
• Lexus Ad (from Siggraph “Animation Tricks” course)
• http://runevision.com/3d/anims/anims.asp
• http://www.siggraph.org/education/materials/HyperGraph/animatio

n/movies/Eric.mov
• http://www.siggraph.org/education/materials/HyperGraph/animatio

n/movies/SecretSerpent320.mov
• http://www.id8mediagallery.com/RealFlow_gallery.htm
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A Particle

z Particle: “(Physics) A body whose spatial extent and 
internal motion and structure, if any, are irrelevant 
in a specific problem.”

– American Heritage Dictionary

z Has position plus other attributes (e.g. mass)
– Position varies with time

z It represents the behaviour of a bit of some (usually 
continuous) material.

– A “super-atom”
– Or a sample { , ( ), ( )}m t tx v
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A Particle System

z Particle System: A set of particles, plus a set of 
rules governing their motion, which models the 
spatio-temporal behaviour of a (usually continuous) 
physical entity or set of entities

– Rules usually relate the motion of a particle to those in its 
vicinity plus some global rules.

– May also have birth/death rules
z e.g. to maintain uniform density of samples

Fixed distance rules
Gravitational acceleration rule

Fixed
point
rule
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A Particle System (cont’d)

– In graphics, also have rendering rules which control how 
the system is displayed so it looks like the entity it 
represents.
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Mass-Spring System

z Is a simple particle system comprising:
1.

z A set of particles, each with fixed mass and time-varying 
position and velocity

2. {kij, lij}
z A set of springs connecting pairs of particles.
z kij = kji is the spring constant of the spring between 

particles i and j
– Zero implies no spring present

z lij = lji is the spring’s rest length

{ , ( ), ( )} { , ( ), ( )}i i i i i im t t m t t=x v x x

m6
m7

l67

Stiffness k67
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Mass-Spring System  (cont’d)

3. {Fg(x,t)}
– A set of (possibly time-varying) global forces 

applying to all particles, e.g. gravity, wind forces
4. Other behaviour rules (e.g. particles can’t penetrate 

ground)
Important note – I define:

to be the configuration of the system
– How it looks at an instant in time 

to be the state of the system
– How it looks and how it is moving (necessary to predict its behaviour)

{ , }i ix x

{ }ix
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Spring Force

z Restoring force is proportional to the stretch of the 
spring beyond its rest length. kij is the constant of 
proportionality.

z Fij is the force on particle i due to particle j
– Fij = –Fji

( )
where 

ij
ij ij ij ij

ij

ij j i

k l= −

= −

r
F r

r

r x x

lij

rij pj

pi Fij

Fji
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A Simple Particle System Algorithm

T = 0
for each step in time, ∆t {

T += ∆t
for each particle {

compute total force Fi on particle
ai = Fi/mi

vi += ai ∆t
xi += vi ∆t

}
display  [or write frame to file]

}
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Mass Spring Demo
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Damping

z Need to dissipate energy – “damping”
z Physically, energy loss depends on system being 

modelled
– Fire particles – damped by motion through air
– Elastic materials – heating of molecular lattice (imperfect 

elasticity)
z Plus maybe air damping if motion large

– Fluids – internal viscous damping
– Physical mass-spring systems

z Damping by air plus elastic losses in springs
z Plus maybe extra dampers (e.g. car suspension)
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Damping (cont’d)

z Common engineering and physics model is viscous 
damping

– Damping force proportional to velocity

z This is very poor approximation
– See http://www.csiberkeley.com/Tech_Info/19.pdf

z Precise form of energy loss not normally important in 
graphics

z Typically stability is the key issue

m
x

mx kx dx= = − −F
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Damping (cont’d)

z Usual hack is to include two forms of viscous damping
– particle-air damping – force opposes particle motion, 

proportional to particle velocity: 
– spring damping – force opposes spring compression/extension 

proportional to rate of change of length

z Ad Hoc!
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Damped Spring Force

z Spring force equation is now

( )

( )
where 

ij
ij ij ij ij d ij

ij

ij ij ij
ij ij ij d

ij ij

ij j i j i

dk l k
dt

k l k

 = − +  

 ⋅
= − + 
  

= − = −

r
F r r

r

r r r
r

r r

r v v x x
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Particle/Plane Collisions

z Trivial to test if particle is inside a half-space (e.g. below ground)
z Should back-off simulation until it’s just on the plane

– But usually don’t bother!
z Particle impacting plane generally bounces.

– Decompose velocity into normal and tangential components
– Multiply normal component by –r, where r is coefficient of restitution

( )n t t

n n

t t

r
= + = ⋅ +

′ = −
′ =

v v v N v N v
v v
v v

Biped animation

nv

tv

v

N ′v
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Particle/Plane Contact

z Inter-bounce time gets smaller and smaller
z At some point have to define particle as being in contact with 

plane (vn < threshold)
z Then must apply a contact force to the particle to prevent 

penetration and to incorporate (sliding) friction

v
Fcontact = ?
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Particle/Plane Contact

z First compute total force F on particle. Then add:

z kf is friction coefficient
– Very simplistic model
– Should at least switch to a static friction model if vt < some threshold

( )
0

( )contact
f tk otherwise

⋅ >=
= − ⋅ +

0 N F
F

N F N v

tv

N

F

contactF
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2. Differential Equation Solving

z Refces:
– Witkin/Baraff Siggraph Tutorial
– mathworld.wolfram.com/OrdinaryDifferentialEquation.html

z But we are concerned only with numerical solution methods
z Assume no analytic solution

– Press et al “Numerical Recipes in <x>”, Chapter 16 
(http://www.library.cornell.edu/nr/bookcpdf.html)
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Initial Value Problems (IVPs)

z Particle system problem is to track the state of the system S(t) 
=({xi(t),vi(t)}) over time, given S(0) and a way to compute S’(t).

z This is an initial value problem, characterised by a linear first-order 
ordinary differential equation (ODE) of form

– x is the system state (a vector in Rn)
– f is a known function

z In mass-spring systems, often no t dependence but might have e.g. 
time-varying wind field 

( , )f t=x x

COMPSCI 715 Notes. ©Richard Lobb, 2003.24

An Aside: Order of an ODE

z Our particle system is actually a second-order ODE of 
form

z However, by defining “state” as            we reduce this 
to a first-order ODE (or two coupled first-order ODEs)

– Order reduction
– Standard technique in numerical soln of ODEs.
– When using e.g. Mathematica, we can just provide the original 

ODE and let it do the order reduction.

( , , )f t
m

= =
Fx x x

( , )x x
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Example IVP

z Equation of motion (undamped) is:

z If map s onto (x,y) plane, with y for velocity, the d.e. is

( , )
( , ) (Snd( ), Fst( ))

k x cx
m m
x x
x cx c

= = − = −

=
= − = −

Fx

s
s s s

( , ) ( , )x y y cx= = −s

m
x

Fst and Snd are first and 
second element operators. 
[This is just to emphasise
that    is a function of s.]s
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Example IVP (cont’d) m
x

-2 -1 0 1 2

-2

-1

0

1

2

x

v

Vectors show the vector field                   over the state space {(x,y)}( , )y cx= −s

Soln for any given 
I.V. is an ellipse in 
state space
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Example IVP (cont’d) m
x

x

v

-2 -1 0 1 2

-2

-1

0

1

2

s(0)

Job of ODE solver 
is to track the path 
of a particle in this 
vector field.

If    depends 
explicitly on t, 
vector field is 
changing with t , 
i.e. is              .

s

( ( ), )t ts s
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The Euler Method

Simple linear steps in state space: ( ) ( ) ( ( ))t t t t t+ ∆ = + ∆s s s s

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 1, numSteps 4

BOOM!
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The Euler Method (cont’d)

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 0.1 , numSteps 200

After only 3 
oscillations 
have 3 times 
the velocity, 
9 times the 
energy!!
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The Euler Method  (cont’d)

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 0.02 , numSteps 4000

CONCLUSION: 
need very small 
time steps and/or 
large damping to 
avoid energy 
“blow up”
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Runge-Kutta Methods

z To get a more-accurate step, need a higher-order estimate of local 
derivative field

z Runge-Kutta methods are based on truncated Taylor series 
extrapolation.

2 ( )( ) ( ) ( ) ( ) ... ...
2! !

n n

n
t t tt t t t t t

n t
∆ ∆ ∂

+ ∆ = + ∆ + + + +
∂
ss s s s

Euler method is first-order Runge-Kutta
Error is O(∆t2) per step.
Error decreases linearly with ∆t over a given time interval.

[ ]( ),  ( ) are short for ( ( )),  ( ( ))t t t ts s s s s s
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Mid-point Method

z Try second-order Runge-Kutta.
z Take next term in Taylor expansion. Write as:

z Term in parentheses is the first order estimate of the 
state derivative half way through the next step.

z Hence (with zero rigour) ....

( ) ( ) ( ) ( )
2
tt t t t t t∆ + ∆ = + ∆ + 

 
s s s s
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-2 -1 0 1 2

-2

-1

0

1

2

Mid-point method: Algorithm

( )ts

( ( ))t t∆ = ∆s s s

z Compute Euler step 
∆s using derivative at 
start

z Evaluate derivative 
gmid at mid-point of 
step, i.e. at s(t)+ ∆s/2

z Go back to start and 
take a step using 
derivative gmid
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-2 -1 0 1 2

-2

-1

0

1

2

Mid-point method: Algorithm (cont’d)

( )ts

z Compute Euler step 
∆s using derivative at 
start

z Evaluate derivative 
gmid at mid-point of 
step, i.e. at s(t)+ ∆s/2

z Go back to start and 
take a step using 
derivative gmid

gmid
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-2 -1 0 1 2
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1
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Mid-point method: Algorithm (cont’d)

( )ts

( ) ( ) midt t t t+ ∆ = + ∆s s g

z Compute Euler step 
∆s using derivative at 
start

z Evaluate derivative 
gmid at mid-point of 
step, i.e. at s(t)+ ∆s/2

z Go back to start and 
take a step using 
derivative gmid

gmid
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-2 -1 0 1 2
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Mid-point method: Algorithm (cont’d)

( )ts

Allowing for time-varying 
derivative field, algorithm is:

( ( ), )  (* Euler step *)

( ) ,
2 2

( ) ( )

mid

mid

t t t
tt t

t t t t

∆ = ∆

∆ ∆ = + + 
 

+ ∆ = + ∆

s s s
sg s s

s s g
( ) ( ) midt t t t+ ∆ = + ∆s s g

gmid
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Mid-point Method, dt = 1 sec, 11 steps

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 1, numSteps 11
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Mid-point Method, dt = 0.5 sec, 100 steps

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 0.5 , numSteps 100
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Mid-point Method, dt = 0.1 secs, 5000 steps

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 0.1, numSteps 5000
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4th-Order Runge-Kutta

“For many scientific users, fourth-order Runge-Kutta is not just the first 
word on ODE integrators, but the last word as well. In fact, you can get 
pretty far on this old workhorse, especially if you combine it with an 
adaptive stepsize algorithm. ... Bulirsch-Stoer or predictor-corrector 
methods can be very much more efficient for problems where very high 
accuracy is a requirement. Those methods are the high-strung racehorses. 
Runge-Kutta is for ploughing the fields.”

– Press et al, “Numerical Recipes”
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4th-Order Runge-Kutta Algorithm

z Quote without derivation

( )

1

1
2

2
3

4 3

( ( ), )  (* Euler step  *)

( ) ,    (* Midpoint step *)
2 2

( ) ,    (* Refined midpoint step *)
2 2

( ) ,       (* Refined refined step *)

( )

t t t
tt t t

tt t t

t t t t

t t

= ∆ ∆

∆ = ∆ + + 
 

∆ = ∆ + + 
 

= ∆ + + ∆

+ ∆

k s s s
kk s s

kk s s

k s s k

s 1 2 3 4
1 1 1 1( )   (* 4th order R-K result *)
6 3 3 6

t= + + + +s k k k k
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RK4 Results, dt = 1 sec, 8 steps

-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 1, numSteps 8
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-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 1, numSteps 100

RK4 Results, dt = 1 sec, 100 steps

LOSES energy (much better than gaining).
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-2 -1 0 1 2

-2

-1

0

1

2

DeltaT 0.4 , numSteps 1250

RK4 Results, dt = 0.4 secs, 1250 steps

z UDOO: Estimate cost of RK4 versus midpoint for similar accuracy
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Adaptive Stepsizes

z Simple idea:
– “Many small steps should tiptoe through treacherous terrain, while a 

few great strides should speed through smooth uninteresting 
countryside.” – Numerical Recipes.

z Simple implementation:
– Take two steps of ∆t, one step of 2 ∆t, compare results
– Adjust step size to keep error within pre-specified bounds

z See notes + Numerical Recipes
z I haven’t found this very useful in PBM – “terrain” usually same 

roughness everywhere.
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Idle Thoughts of an Idle Fellow

z An Euler solver is too horrible. NEVER use it.
– Yeah I know – you will anyway.

z Accuracy is rarely the issue in CG – stability is everything.
z Benefit of RK4 over midpoint is moot.
z Often have discontinuities (e.g. collisions) – have to stop d.e. 

solver and back-up to time of collision.
– Further reduces benefit of RK4

z Stiff springs Æ high frequencies Æ small steps reqd
z If overall behaviour is low frequency (non-stiff springs) but have 

some stiff springs, small steps are still necessary for stability
– Such “stiff d.e.s” best handled by implicit methods – next section.
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Restructuring the Particle System

z Should isolate the d.e. solver from the physical 
simulation code

z State of n-particle system is a vector in R6n :

z State derivative is
( )1 1 2 2, , , ,..., ,n n=s x x x x x x

1 2
1 2

1 2

, , , ,..., , n
n

nm m m
 

=  
 

FF Fs x x x
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Interface to DE Solver

// DESolver.java -- the abstract class from which are subclassed all
// the real DESolvers.

package deSolvers;

public abstract class DESolver {
public abstract void stepState(DEStateSource source, double deltaT);
// Called to advance the state of the given state source by
// a time step of deltaT.

}
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DEStateSource – the interface a client provides 
to the DESolver

package deSolvers;

// All the methods in this interface are called by the DESolver while processing
// the stepState call.

public interface DEStateSource {
public int stateLength(); // Number of doubles in the state vector
public void getState(double[] state); // Get the current state
public void getStateDerivative(double[] state);

//  Get the current state derivative
public void setState(double[] state); // Set a new state
public void incTime(double deltaT); // Set a time increment of deltaT

}
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Euler Solver Code

package deSolvers;
import java.util.*;

public class EulerDESolver extends DESolver {
double[] state = null;      // Buffer for copy of state
double[] dSdt = null;       // Buffer for copy of state derivative

public void stepState(DEStateSource source, double deltaT) {
int n = source.stateLength();
if (state == null || state.length != n) {    // On first call, allocate buffer space.

state = new double[n];   // [This is ugly compared to having getState etc ...
dSdt = new double[n];   // ... return an array, but much more efficient.]

}
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Euler Solver Code (cont’d)

// Now the real gutz of stepState ...

source.getState(state);
source.getStateDerivative(dSdt);
for (int i = 0; i < n; i++)

state[i] += dSdt[i] * deltaT;
source.setState(state);
source.incTime(deltaT);

}
}
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The Particle System

public abstract class ParticleSystem implements DEStateSource {
public Particle[] particles = null;         // The particles in the system
public Force[] forces = null;               // The forces acting on them
public double t = 0;                            //  current time

public int stateLength() { return 6 * particles.length; }

public void getState(double[] state) { .. copy state from particles into caller’s buffer ..}

public void getStateDerivative(double[] sd) { ... clear forces on each particle, apply ...
... all forces, compute all particle accelerations, return all v’s and a’s ... }

public void incTime(double dt) {  this.t += dt;    }
}


