
Artificial Neural Networks
(ANN)

Patricia J Riddle
Computer Science 760

Artificial Neural Networks

• Robust approach to approximating real-valued,
discrete-valued, and vector-valued target functions

• For certain types of problems (complex real-world
sensor data), ANN are the most effective learning
methods currently known

• Learning to recognise handwritten characters,
spoken words, or faces

Inspiration

• Biological learning systems are built of very
complex webs of interconnected neurons

• ANNs are built of a densely interconnected
set of simple units, where each unit takes a
number of real-valued inputs (possibly the
outputs of other units) and produces a single
real-valued output (which may become the
input to many other units)

Human Brain

• 1011 densely interconnected neurons
• Each neuron connected to 104 others
• Switching time:

– Human 10-3 seconds
– Computer 10-4 seconds

• 10-1 seconds to visually recognise your mother, so
only a few hundred steps

• Must be highly parallel computation based on
distributed representations

Researchers

• Two Groups of Researchers:

– Use ANN to study and model biological
learning processes

– Obtaining highly effective machine learning
algorithms

Neural Network Representations

• ALVINN - ANN to steer an autonomous vehicle
driving at normal speeds on public highways

• Input - 30 x 32 grid of pixel intensities from a
forward-pointed camera

• Output - direction vehicle is steered
• Trained to mimic the observed steering commands

of a human driving the vehicle for 5 minutes

ALVINN’s ANN

Backpropagation Network
Representations

• Individual units interconnected in layers
that form a directed graph

• Learning corresponds to choosing a weight
value for each edge in the graph

• Certain types of cycles are allowed
• Vast majority of practical applications are

acyclic feed-forward networks like
ALVINN

Appropriate Problems for ANN

• Training data is noisy, complex sensor data

• Also problems where symbolic algorithms
are used (decision tree learning (DTL)) -
ANN and DTL produce results of
comparable accuracy

Specifically

• Instances are attribute-value pairs, attributes may
be highly correlated or independent, values can be
any real value

• Target function may be discrete-valued, real-
valued or vector-valued

• Training examples may contain errors
• Long training times are acceptable
• Can Require fast evaluation of the learned target

function
• Humans do NOT need to understand the learned

target function

Perceptrons

• Inputs a vector of real-valued inputs calculates a
linear combination and outputs a 1 if the result is
greater than some threshold and -1 otherwise

• Hyperplane decision surface in the n-dimensional
space of instances

• Not all datasets can be separated by a hyperplane,
but if they can they are linearly separable datasets

Linearly Separable

Specifically

• Each wi is a real-valued weight that
determines the contribution of the input xi to
the perceptron output

• The quantity (-w0) is the threshold
!

o(x1,..,xn) =1 if w
0

+w
1
x
1
+w

2
x
2
+ ...+wnxn >0

= "1 otherwise

A Perceptron

Representational Power of
Perceptrons

• A single perceptron can represent many boolean
functions

• If 1 (true) and -1 (false), then to implement an
AND function make w0 = -0.8 and w1 = w2 = 0.5

• A perceptron can represent AND, OR, NAND,
and NOR but not XOR!!

• Every boolean function can be represented by
some network of perceptrons only two levels deep

Perceptron Learning Algorithms
• Determine a weight vector that causes the

perceptron to produce the correct ±1 output for
each of the given training examples

• Several algorithms are known to solve this
problem:
– the perceptron rule
– The delta rule

• Guaranteed to converge to somewhat different
acceptable hypothesis under somewhat different
conditions

• These are the basis for learning networks of many
units - ANNs

Perceptron Training Rule

• Begin with random weights, modify them, repeat
until the perceptron classifies all training examples
correctly

• Perceptron rule:

• t is the target output, o is the output generated by
the perceptron, and η is the learning rate which
moderates the degree to which weights are
changed at each step, usually set to a small value
(0.1)

!

w
i
"w

i
+#w

i
, where #w

i
=$ t % o()xi

Intuition for Perceptron Training
Rule

• If the training example is correctly classified
 (t-o)=0, making ∆wi = 0, so no weights are

updated
• If the perceptron outputs -1 when the target output

is +1 and assuming η = 0.1 and xi = 0.8, then ∆wi
= 0.1(1-(-1))0.8 = 0.16

• If the perceptron outputs +1 when the target
output is -1, then the weight would be decreased

Convergence of Perceptron
Training Rule

• This learning procedure will converge
within finite number of applications of the
perceptron training rule to a weight vector
that correctly classifies all training
examples, provided the training examples
are linearly separable and a sufficiently
small η is used.

Gradient Descent Algorithm

• If training examples are not linearly
separable, the delta rule converges toward
best-fit approximation

• Use gradient descent to find the weights
that best fit the training examples - basis of
the Backpropagation Algorithm

Error Definition

• Assume an unthresholded perceptron, then the
training error is

• Where D is the set of training examples td is the
target output for the training example d and od is
the output of the linear unit for training example d.

• Given the above error definition, the error surface
must be parabolic with a single global minimum.

!

E(w
"

) #
1

2
(t
d
$ o

d
)

d %D
&

2

Error Surface

Gradient-Descent Algorithm

Weight Update Rule

• Gradient descent determines the weight vector that
minimizes E. It starts with an arbitrary weight
vector, modifies it in small steps in the direction
that produces the steepest descent, and continues
until the global minimum error is reached,

• Weight update rule:
• Where xid denotes input component xi for training

example d

!

"w
i
=# (t

d
$ o

d
)

d %D
& x

id

Convergence

• Because the error surface contains only a single
global minimum, the algorithm will converge to a
weight vector with minimum error, regardless of
whether the training examples are linearly
separable, given a sufficiently small learning rate
η is used.

• Hence a common modification is to gradually
reduce the value of η as the number of steps
grows.

Problems with Gradient descent

• Important general paradigm when
1. Continuously parameterized hypothesis
2. The error can be differentiated with respect to the

hypothesis parameters
• The key practical problems are

1. Converging to a local minimum can be quite slow
2. If there are multiple local minima, then there is no

guarantee that the procedure will find the global
minimum (The error surface before will not be
parabolic with a single global minima when training
multiple nodes.)

Stochastic Gradient Descent

• Approximate gradient descent search by updating
weights incrementally, following the calculation
of the error for each individual example

• Delta rule:
• (same as LMS algorithm, but only similar to

perceptron training rule)
• Error function:
• If η is sufficiently small, stochastic gradient

descent (SGD) can be made to approximate true
gradient descent (GD) arbitrarily closely

!

"w
i
=#(t $ o)x

i

!

E
d
(w
"

) =
1

2
(t
d
o

d
)
2

Difference between GD and SGD

• In GD the error is summed over all examples
before updating weights, in SGD weights are
updated upon examining each training example

• Summing over multiple examples in GD requires
more computation per weight update step. But
since it uses the True gradient, it is often used with
a larger step size (larger η).

• If there are multiple local minima with respect to
E(w), SGD can sometimes avoid falling into these
local minima. w is a vector variable

Delta Rule vs. Perceptron
Training Rule

• Appear identical, but PTR is for thresholded
perceptron and DR is for a linear unit (or
unthresholded perceptron)

• DR can be used to train a thresholded
perceptron, by using ±1 as target values to a
linear unit, o = w ·x, and having the
thresholded unit, o´ = sgn(w·x), where w
and x are vector variables

Perceptron vs Linear Unit

Delta Rule with Unthresholded
perceptron

• If the unthresholded perceptron can be
trained to fit these values perfectly then so
can the thresholded perceptron.

• If the target values cannot be perfectly fit,
then the thresholded perceptron will be
correct whenever the linear unit has the
right sign, but this is not guaranteed to
happen

Multilayer Networks &
Nonlinear Surfaces

Multi layer Networks

• Multiple layers of linear units still produce only
linear functions

• Perceptrons have a discontinuous threshold which
is undifferentiable and therefore unsuitable for
gradient descent

• We want a unit whose output is a nonlinear
differentiable function of the inputs

• One solution is a sigmoid unit

What is a Sigmoid Unit?

• Like perceptrons it computes a linear
combination of its inputs and then applies a
threshold to the result. But the threshold
output is a continuous function of its input
which ranges from 0 to 1.

• If is often referred to as a squashing
function.

Sigmoid Threshold Unit

Properties of the
Backpropagation Algorithm

• Learns weights for a multilayer network,
given a fixed set of units and
interconnections

• It uses gradient descent to minimize the
squashed error between the network outputs
and the target values for these outputs

Error surface

• Error formula:
• Outputs is the set of output units in the network,

tkd and okd are the target value and output value
associated with the kth output unit and the training
example d

• In multilayer networks the error surface can have
multiple minima, but in practice Backpropagation
has produced excellent results in many real-world
applications

• The algorithm is for two layers of sigmoid units
and does stochastic gradient descent

!

E(w
"

) #
1

2
(tkd $ okd)

2

k%outputs
&

d %D
&

Backpropagation Algorithm

Backpropogation Weight Training Rule
• The error (t-o) in the delta rule is replaced by δj
• For output unit k it is the familiar (tk -ok) from the

delta rule multiplied by ok(1-ok) which is the
derivative of the sigmoid squashing function

• For hidden unit h the derivative component is the
same but there is no target value directly available
so you sum the error terms δk for each output unit
influenced by h weighing each of the δk by the
weight, wkh, from the hidden unit h to the output
unit k.

• This weight characterizes the degree to which
each hidden unit h is responsible for the error in
output unit k.

Termination Conditions for
Backpropagation

• Halt after a fixed number of iterations
• Once the error on the training examples falls

below some threshold
• Once the error on a separate validation set of

examples meets some criterion
• Important:

– Too few iterations - fail to reduce error sufficiently
– Too many iterations - overfit the data

Momentum

• Making the weight in the nth iteration
depend partially on the update during the
(n-1)th iteration

• The momentum is represented by 0≤α<1

!

"w ji(n) =#$ j x ji +%"w ji(n &1)

Intuition behind Momentum

• The gradient search trajectory is analogous to a
momentumless ball rolling down the error surface,
the effect of α is to keep the ball rolling in the
same direction from one iteration to the next

• The ball can roll through small local minima or
along flat regions in the surface where the ball
would stop without momentum

• It also causes a gradual increase in the step size in
regions where the gradient is unchanging thereby
speeding convergence

Arbitrary Acyclic Networks

• Only equation (T4.4) has to change
• Feedforward networks of arbitrary depth

• Directed acyclic graph, not arranged in uniform
layers

!

"r = or (1# or) wsr"s
s$layer m+1

%

!

"
r

= o
r
(1# o

r
) w

sr
"
s

s$Downstream(r)

%

Convergence and Local Minima

• The error surface in multilayer neural
networks may contain many different local
minima where gradient descent can become
trapped

• But backpropagation is a highly effective
function approximation in practice

• Why??

Why it works

• Networks with large numbers of weights
correspond to error surfaces in very high
dimensional spaces

• When gradient descent falls into a local minima
with respect to one weight it won’t necessarily be
with respect to the other weights

• The more weights, the more dimensions that
might provide an escape route
– do I believe this??? - more nodes, more outputs, more

inputs

Heuristics to Overcome Local
Minima

• Add momentum

• Use stochastic gradient search

• New seed (e.g., initial random weights), and
choose the one with the best performance
on the validation set or treat as a committee
or ensemble

Representational Power of
Feedforward Networks

• Boolean functions: 2 layers of units, but number
of hidden nodes grows exponentially in the
number of inputs

• Continuous Functions: every bounded continuous
function to arbitrary accuracy in two layers of
units

• Arbitrary functions: arbitrary accuracy by a
network with 3 layers of units - based on linear
combination of many localized functions

Caveats

• Arbitrary error???

• Network weight variables reachable from
the initial weight values may not include all
possible weight vectors

Hypothesis Space

• Every possible assignment of network
weights represents a syntactically different
hypothesis

• N-dimensional Euclidean space of the n
network weights

• This hypothesis space is continuous
• Since E is differentiable with respect to the

continuous parameters, we have a well-
defined error gradient

Inductive Bias

• Inductive Bias depends on interplay between
gradient descent search and the way the weight
space spans the space of representable functions

• Roughly - smooth interpolation between data
points

• Given two positive training instances with no
negatives between them. Backpropagation will
tend to label the points between as positive.

Hidden Layer Representations

• Backpropagation can discover useful intermediate
representations at the hidden unit layers

• It is a way to make implicit concepts explicit (not
across rows!)

• Discovering binary encoding
• Important degree of flexibility
• More layers of units - more complex features can

be invented

Backprop in action

Hidden Unit Encoding

Weights from inputs

Sum of squares Error

Overfitting and Stopping Criteria
1. Train until the E on the training examples falls

below some level
– Why does overfitting tend to occur in later iterations?
– Initially weights are set to small random numbers, as

training proceeds weights change to reduce error over
the training data & complexity of the decision surface
increases, given enough iterations can overfit. Again
error space vs function space???

– Weight decay - decreases each weight by a small
factor on each iteration - intuition keep weight values
small to bias against complex decision surfaces - do
complex decision surfaces need to have high
weights???

Continued

2. Stop when you reach the lowest error on the
validation set

• Keep current ANN weights and the best-performing
weights thus far measured by error over the
validation set

• Training is terminated once the current weights reach
a significantly higher error over the validation set

• Care must be taken to avoid stopping too soon!!
• If data is too small can do k-fold cross validation

(remember to use just to determine the number of
iterations!) then train over whole dataset (same in
decision trees)

Error Plots

Face Recognition Task
• 20 people
• 32 images per person
• Varying expression, direction looking, wearing

sunglasses, background, clothing worn, position of
face in image

• 624 greyscale images, resolution 120x128, each
pixel intensity ranges from 0 to 255

• Could be many targets: identity, direction, gender,
whether wearing sunglasses - All can be learned to
high accuracy

• We consider direction looking

Input Encoding

• How encode the image?

• Use 102x128 inputs?
• Extract local features: edges, regions of

uniform intensity - how handle a varying
number of features per image?

Actual Input Encoding Used

• Encode image in 30x32 pixel intensity values,
with one network input per pixel - pixel intensities
were linearly scaled from 0 to 255 down to 0 to 1.
Why?

• The 30x32 grid is a coarse resolution summary.
Coarse pixel intensity is a mean of the
corresponding high pixel intensities - reduces
computational demands while maintaining
sufficient resolution to correctly classify images -
same as ALVINN except there a represented pixel
was chosen randomly for efficiency

Output Encoding

• A single output unit, assigning 0.2, 0.4, 0.6,
0.8 as being left, right, up and straight

 OR
• Have 4 output nodes and choose the

highest-valued output as the prediction (1-
of-n output encoding)

Output Encoding Issues

• Is “left” really closer to “right” then it is to “up”?
• 4 outputs gives more degrees of freedom to the

network for representing the target function (4x
#hidden units instead of 1x)

• The difference between the highest valued output
and the second highest valued output gives a
measure of the confidence in the network
prediction

Target Values

• What should the target values be?

• Could use <1,0,0,0> but we use
<0.9,0.1,0.1,0.1> - sigmoid units can’t
produce 0 and 1 exactly with finite weights
so gradient descent will force the weights to
grow without bound

Network Graph Structure

• How many units and how to interconnect?
• Most common - layer units with

feedforward connections from every unit in
one layer to every unit in the next

• The more layers the longer the training time
- we choose 1 hidden layer and 1 output
layer

Hidden Units
• How many hidden units?

– 3 units = 90% accuracy, 5 minutes learning time
– 30 units = 92% accuracy, 1 hr learning time

• In general there is a minimum number of hidden
units needed and above that the extra hidden units
do not dramatically effect the accuracy, provided
cross-validation is used to determine how many
gradient descent iterations should be performed,
otherwise increasing the number of hidden units
often increases the tendency to overfit the training
data

Other Algorithm Parameters

• Learning rate, η, was set to 0.3
• Momentum, α, was set to 0.3
• Lower values produced equivalent

generalization but longer training times, if
set too high training fails to converge to a
network with acceptable error

• Full gradient descent was used (not the
stochastic approximation)

More Parameters

• Network weights in the output units were
initialized to small random values, but the
input unit weights were initialized to zero
because it yields a more intelligible
visualization of the learned weights without
noticeable impact on generalization
accuracy

Still More Parameters

• The number of training iterations was selected by
partitioning the available data into a training set
and a separate validation set, GD was used to
minimize the error over the training set and after
every 50 gradient descent steps the network
performance was evaluated over the validation set.
The final reported accuracy was measured over yet
a third set of test examples that were not use to
influence the training.

Learned Hidden Representations

Advanced Topics

• Alternative Error Functions

• Alternative Error Minimization Procedures

• Recurrent Networks

• Dynamically Modifying Network Structure

Recurrent Neural Networks

Summary

• Practical method for learning real-valued and
vector-valued functions over continuous and
discrete-valued attributes

• Robust to noise in the training data
• Backpropagation algorithm is the most common
• Hypothesis space: all functions that can be

represented by assigning weights to the fixed
network of interconnected units

• Feedforward networks containing 3 layers can
approximate any function to arbitrary accuracy
given sufficient number of units in each layer

Summary II

• Networks of practical size are capable of
representing a rich space of highly nonlinear
functions

• Backpropagation searches the space of possible
hypotheses using gradient descent (GD) to
iteratively reduce the error in the network to fit the
training data.

• GD converges to a local minimum in the training
error with respect to the network weights

• Backpropagation has the ability to invent new
features that are not explicit in the input

Summary III

• Hidden units of multilayer networks learn to
represent intermediate features (e.g., face
recognition)

• Overfitting is an important issue (caused by
overuse of accuracy IMHO)

• Cross-validation can be used to estimate an
appropriate stopping point for gradient descent

• Many other algorithms and extensions.

