Lecture slides for

Automated Planning: Theory and Practice

Chapter 1 Introduction

Dana S. Nau

CMSC 722, AI Planning University of Maryland, Fall 2004

Textbook

 M. Ghallab, D. Nau, and P. Traverso *Automated Planning: Theory and Practice* Morgan Kaufmann Publishers May 2004 ISBN 1-55860-856-7

• Web site: http://www.laas.fr/planning

Class Background

- Things I hope you know
 - Asymptotic complexity, e.g., $O(n^3)$, $\Theta(n^5)$, $\Omega(n^2)$
 - » Differences in meaning: worst case, best case, average case
 - » Nondeterministic algorithms
 - » P, NP, NP-completeness, NP-hardness
 - Search algorithms
 - » Depth-first, breadth-first, best-first search
 - » A*, admissible versus admissible heuristics
 - » State-space versus problem reduction (AND/OR graphs)
 - Logic
 - » Propositional logic
 - » First-order logic (predicates and quantifiers)
 - » Horn clauses, Horn-clause theorem proving

Dana Nau: Lecture slides for Automated Planning

Plans and Planning

• Plan:

 A collection of actions for performing some task or achieving some objective

• Planning:

- There are many programs to aid human planners
 - » Project management, plan storage/retrieval, automatic schedule generation
- Automatic plan generation is much more difficult
 Many research prototypes, fewer practical systems
 - » Research is starting to pay off
 - Several successes on difficult practical problems

NASA Unmanned Spacecraft

- Remote Agent eXperiment (RAX)
 - autonomous AI software for planning/control
 - ran on the DS1 spacecraft in May 1998
 - For several days it was allowed to control the spacecraft

• Mars rover

guided by autonomous AI planning/control software

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Other Examples

- Computer bridge: *Bridge Baron*
 - Used AI planning to win the 1997 world computer bridge championship
 - Commercial software, thousands of copies sold

- Manufacturing process planning
 - Software included with Amada's sheet-metal bending machines
 - Used to plan bending operations

Dana Nau: Lecture slides for *Automated Planning* Licensed under the Creative Commons Attribution-NonCommercial-ShareAli

Outline

- Conceptual model
- Restrictive assumptions
- Classical planning
- Relaxing the assumptions
- A running example: Dock Worker Robots

- Model of the environment: *possible states*
- Model of how the environment can change: *effects of actions*
- Specification of *initial conditions* and *objectives*
- Plans of actions that are generated by a planner
- A model of execution of a plan in the environment
- A model of observation of the environment

Dana Nau: Lecture slides for Automated Planning

Conceptual Model

- State-transition system $\Sigma = (S, A, E, \gamma)$
 - $S = \{\text{states}\}$
 - $A = \{actions\}$ (controllable)
 - $E = \{\text{events}\}$ (uncontrollable)
 - state-transition function $\gamma: S \times (A \cup E) \rightarrow 2^S$
- Observation function $h: S \rightarrow O$
 - produces observation *o* about current state *s*
- Controller: given observation *o* in *O*, produces action *a* in *A*
- Planner:
 - input: description of Σ , initial state s_0 in S, some objective
 - output: produces a plan to drive the controller

Dana Nau: Lecture slides for Automated Planning

Conceptual Model

- Possible objectives:
 - A set of goal states S_g
 Find sequence of state transitions ending at a goal
 - Some condition over the set of states followed by the system
 e.g., reach S_g and stay there
 - Utility function attached to states
 Optimize some function of the utilities
 - Tasks to perform, specified recursively as sets of sub-tasks and actions

Conceptual Model: Example

- State transition system $\Sigma = (S, A, E, \gamma)$
 - $\diamond S = \{\mathbf{s}_0, \dots, \mathbf{s}_5\}$
 - A = {move1, move2, put, take, load, unload}
 - $\bullet E = \{\}$
 - γ: as shown
- h(s) = s for every s
- Input to planner:
 - system Σ
 - initial state s_0
 - goal state s_5

Dana Nau: Lecture slides for Automated Planning

Planning Versus Scheduling

- Scheduling
 - Decide how to perform a given set of actions using a limited number of resources in a limited amount of time

- Typically NP-complete
- Planning
 - Decide what actions to use to achieve some set of objectives
 - Can be much worse than NP-complete
 - » In the most general case, it is undecidable
 - » Most research assumes various collections of restrictions to guarantee decidability
 - We'll now look at some of the restrictions

Restrictive Assumptions

A0 (finite Σ):
the state space S is finite
S = {s₀, s₁, s₂, ... s_k} for some k
A1 (fully observable Σ):
the observation function h: S → O is the identity function
i.e., the controller always knows what state Σ is in

Dana Nau: Lecture slides for Automated Planning

Restrictive Assumptions

- A2 (deterministic Σ):
 - for all u in $A \cup E$, $|\gamma(s, u)| = 1$
 - each action or event has only one possible outcome
- A3 (static Σ):
 - *E* is empty: no changes except those performed by the controller
- A4 (attainment goals):
 a goal state s_g or a set of goal states S_g

Restrictive Assumptions

A5 (sequential plans):
 solution is a linearly ordered sequence of actions (a1, a2, ... an)

• A6 (implicit time):

- no durations,
 instantaneous state-transitions
- A7 (off-line planning):
 planner doesn't know the execution status

Classical Planning

• Classical planning requires all eight restrictive assumptions

- complete knowledge about a deterministic, static, finite-state system with attainment goals and implicit time
- Reduces to the following problem:
 - Given (Σ, s₀, S_g), find a sequence of actions (a₁, a₂, ... a_n) that produces a sequence of state transitions

$$s_{1} = \gamma(s_{0}, a_{1}),$$

$$s_{2} = \gamma(s_{1}, a_{2}),$$

$$\dots,$$

$$s_{n} = \gamma(s_{n-1}, a_{n})$$

such that s_{n} is in S_{g} .

Classical Planning: Example

- Same example as before:
 - System is finite, deterministic, static
 - Complete knowledge
 - Attainment goals
 - Implicit time
 - Offline planning
- Classical planning is just path-searching in a graph
 - states are nodes
 - actions are edges
- Is this trivial?

Dana Nau: Lecture slides for Automated Planning

Classical Planning

- Very difficult computationally
 - Generalize the earlier example:
 - » five locations, three piles, three robots, 100 containers
 - Then there are 10^{277} states

- » More than 10¹⁹⁰ times as many states as the number of particles in the universe!
- The vast majority of AI research has been on classical planning
 Parts I and II of the book
- Too restricted to fit most problems of practical interest
 But the ideas can sometimes be useful in those problems

• Relax A0 (finite Σ):

- ◆ Discrete, *e.g.* 1st-order logic:
- Continuous, *e.g.* numeric variables
- Sections:
 - » 2.4 (extensions to classical)
 - » 10.5 (control-rule planners)
 - » 11.7 (HTN planning)
- Case study: Chapter 21 (manufacturability analysis)
- Relax A1 (fully observable Σ):
 - If we don't relax any other restrictions, then the only uncertainty is about s₀

- Relax A2 (deterministic Σ):
 - Actions have more than one possible outcome
 - Seek policy or contingency plan
 - With probabilities:
 - »Discrete Markov Decision Processes (MDPs)
 - »Chapter 11
 - Without probabilities:
 - »Nondeterministic transition systems
 - »Chapters 12, 18

• Relax A1 and A2: Finite POMDPs »Plan over *belief states* »Exponential time & space »Section 16.3 • Relax A0 and A2: Continuous or hybrid MDPs »Control theory (see engineering courses) • Relax A0, A1, and A2 Continuous or hybrid POMDPs »Case study: Chapter 20 (robotics)

- Relax A3 (static Σ):
 - Other agents or dynamic environment
 - » Finite perfect-info zero-sum games (introductory AI courses)
 - Randomly behaving environment
 - » Decision analysis (business, operations research)
 - » Can sometimes map this into MDPs or POMDPs
 - Case studies: Chapters 19 (space),
 22 (emergency evacuation)
- Relax A1 and A3
 - Imperfect-information games
 - Case study: Chapter 23 (bridge)

Dana Nau: Lecture slides for Automated Planning

- Relax A5 (sequential plans) and A6 (implicit time):
 - Temporal planning
 - Chapters 13, 14
- Relax A0, A5, A5
 - Planning and resource scheduling
 - Chapter 15
- 247 other combinations
 - I won't discuss them!

Dana Nau: Lecture slides for Automated Planning

A running example: Dock Worker Robots

• Generalization of the earlier example

- A harbor with several locations
 - » e.g., docks, docked ships, storage areas, parking areas
- Containers
 - » going to/from ships
- Robot carts
 - » can move containers
- Cranes
 - » can load and unload containers

Dana Nau: Lecture slides for Automated Planning

A running example: Dock Worker Robots

- Locations: **|1, |2,** ...
- Containers: c1, c2, ...
 - can be stacked in piles, loaded onto robots, or held by cranes

- each belongs to a single location
- move containers between piles and robots
- if there is a pile at a location, there must also be a crane there

Dana Nau: Lecture slides for Automated Planning

A running example: Dock Worker Robots

- Fixed relations: same in all states
 adjacent(l,l') attached(p,l) belong(k,l)
- Dynamic relations: differ from one state to another

Dana Nau: Lecture slides for Automated Planning