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Outline

* Big Data

* Bayes’ Theorem and associations

Data and Associations * Looking at associations

* Looking at data over time
Jim Warren
Professor of Health Informatics

‘Big Data’ Some domains
* Every day, we create 2.5 quintillion bytes of * Some domains swimming in Big Data
data — so much that 90% of the data in the — Astronomy
. « SKA will few Exab day and 300-1500
world today has been created in the last two Peta{,“y'teie;‘f;aai‘; f,ef‘;'ea);atoyéfsi’s:eday an
years alone. This data comes from — Weather and climate modelling
everywhere: sensors used to gather climate — Biomedicine
information, posts to social media sites, digital * Genomics, proteomics, metabolomics (-omics)

— Healthcare delivery
— Retail and marketing
— Finance and economic modelling

pictures and videos, purchase transaction
records, and cell phone GPS signals to name a
few. This data is big data.
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Bayes Theorem Using conditional probability
* Associations affect our expectations * Conditional probability is very context dependent
. e . . — Won'’t be the same in Poland as South Africa, or in winter as
* This can be quantified with conditional summer
probability  Can learn from data the number to apply Bayes Theorem
— Consider the probability, P ofa diagnosis, Dx, being - g;rﬁgfc:nlfl?ber of flu cases and number of patients with fever
Valld' given a patient eXthltmg a symptom, Sy: « Divide by total for P(Dx) and P(Sy), aka ‘prevalence’ of each
* P(Dx|Sy)= [P(Sy|Dx) x P(Dx)] / P(Sy) — Count number of cases with flu and fever
* Posterior probability can be quite differént than the a priori * Divide by number of cases with flu to get P(Sy | Dx)
P(Dx) Bayes’ Theorem * But your estimation is only as good as your data
— So we might have P(flu)=0.05, P(fever)=0.04 — Did fever a]ways get recorded? Was every flu recorded and
. K correctly diagnosed?
« With P(fever given flu)=0.5, And h h is simil h
P(flu given fever) = [(0.5)(0.05)]/(0.04) = 62.5% — And you have to assume the new context is similar to the one

where you ‘learned’ (estimated) the parameters

Mediface
Probability in user interaction

* Can use a priori prevalence and posterior
probability as basis for layout decisions
— E.g. intelligent split menu: offer most likely item
selections at top
— MS Word does a heuristic split menu with a few
common and/or recently used fonts at top
— Can estimate contextually-likely actions for right-click
options, or to offer help topics
* | developed Mediface a few years ago

— Used General Practice electronic medical records to
estimate prevalence and conditional probabilities on
diagnoses, symptoms and treatments

[ Ovzervstions |




GE / MIT unlocking big data
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Working with Bayesian Networks

* You can visualise a series of Bayes Theorem based
associations
— Tools like Nettica will learn these from data and give you a GUI
to explore the data
* You can provide some initial network structure (hypothesized
associations) or let it guess (but it might get causality the wrong way
around)

* E.g. we looked at Victorian (i.e. Melbourne area) hospital
discharges for patients admitted to emergency
departments (ED) with stroke

— [next 2 slides]: note comparison of ‘death’ discharge/separation
outcome for cases with priority of ‘resus’ (needing to be
resuscitated) versus merely ‘semi-urgent’ at hospital ‘X’

* 62.1% versus 8.3% death rather than other separation code

* Also note different input distribution of stroke type — about 4 times as
many Intracerebral hemorrhage (ICH) in the Resus cases; and very
different ED LOS (length of stay) distribution

Triaged as ‘Semi-urgent’
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ChronoMedlt: Assessing suboptimal
long-term condition management

Criterion E.g. in management of
hypertension (high
blood pressure)

Sustained Contra-
Failure to indicated
Meet Target Treatment

Unsustained Failure to
Treatment Measure

Lapse, low medication Didn’t measure Measured BP, but  Treated, but
possession ratio (MPR) blood pressure it stayed too high  maybe have drug-
often enough drug interaction

* Model of criteria for long-term treatment

— Use an ontology (in Protégé/OWL) to hold parameters
of treatments, problems and measurements

LifeLines (2" half of 1990’s): visualising patient
records over time
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Example visual presentation of a case with
low Medication Possession Ratio (MPR)
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EventFlow

* Exploring Point and Interval Event Temporal Patterns
over multiple patients

[ Data Manager | Control [~ Measurement Tool | [ Timeline | Search |
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Temporal abstraction
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Process individual data points to infer semantics on time
intervals
— E.g. levels of bone marrow toxicity (B(x)) following a Bone
Marrow Transplant (BMT) as computed on a time series of
platelet count and granulocyte count measures over the
duration of a treatment protocol (PAZ) for graft rejection
(chronic graft versus host disease, CGVHD)

Prediction over time with option for ‘what if’
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KNAVE-II: interface to distributed knowledge-
based interpretation and summarisation
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Power of animating data: GapMinder
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3D/VR renderings Conclusion
« Visible Human project involved CT, MR and * The world is increasingly ‘drowning’ in data
cryosection images of representative recently — Well, not ‘drowning’ — but at least there’s a lot of
deceased individuals missed opportunity from data not being reviewed

* Interactive visualisation lets us filter, do ‘what-if?’
scenarios and review slices of time
— Animations and 3D reconstructions give us
dimensional (time-space) experience of data
* Statistical models can add inference to the raw
data

— Putting semantic labels on time intervals and adding
predictions

— Can be rendered as 3D models

— Can be navigated for medical
education as alternative (or in
addition to) using real cadavers




