
Graphical User Interfaces as Documents

Dirk Draheim
Department of

Computer Science
Universität Mannheim

A 5, 6
68161 Mannheim, Germany

draheim@acm.org

Christof Lutteroth
Department of

Computer Science
The University of Auckland

38 Princes Street
Auckland 1020, NZ

lutteroth@cs.auckland.ac.nz

Gerald Weber
Department of

Computer Science
The University of Auckland

38 Princes Street
Auckland 1020, NZ

g.weber@cs.auckland.ac.nz

ABSTRACT
The representation of GUIs as documents is a technological
trend that has been present for some years, but is only now
about to significantly change the way in which most user
interfaces are developed. This paper examines this change,
explains the reasons behind it and the concepts involved. It
compares the old fashioned way of programming user in-
terfaces as code units with the document-based paradigm,
explaining why the latter is preferable. Furthermore, it dis-
cusses how the document-based paradigm can be extended
to a very comprehensive and well defined customization ap-
proach for GUIs, the document-oriented approach, which
supports the paradigms of end-user development and robust
content.

Author Keywords
GUI, document orientation, end-user development, WYSI-
WYG.

ACM Classification Keywords
H5.2 Information interfaces and presentation (e.g., HCI):
User Interfaces [GUI].

INTRODUCTION
Within the last eight years, different markup languages for
the description of graphical user interfaces have emerged [2,
11,13]. These languages are usually based on the XML for-
mat and offer the ability to describe WIMP-style graphical
user interfaces as we know them from common desktop op-
erating systems. GUI definitions in these languages are tex-
tual XML documents, which are interpreted and visualized
by a GUI rendering system and linked to a program logic.
This approach is different to the traditional approach, which
represents GUIs in the program code of an application. It
is more similar to the approach used for the user interface
of web applications, but web applications usually do not of-
fer the richness and interaction of stand-alone GUI applica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHINZ 2006, July 6-7, 2006, Christchurch, New Zealand.
Copyright 2006 ACM.

tions. With the proliferation of document-based user inter-
faces, however, this is likely to change. They have the poten-
tial to bridge the gap between the flexible web applications
and their stand-alone counterparts.

Despite the fact that these markup languages, like XUL for
instance, have been around now for several years, the document-
based GUI approach is scarcely used. There exist several
technological implementations, but until now they have gen-
erally failed to attract the attention of software developers.
But this is going to change. For good reasons many compa-
nies and organizations have already committed themselves
to document-based GUIs in some way or other, and the re-
maining question is which of the many GUI markup lan-
guages will first gain general acceptance.

In order to understand the importance of that change, it is
necessary to look at the different user interface technolo-
gies. However, the objective of this paper is not so much to
discuss the technological side but to shed light on the con-
cepts that those technologies implement. These concepts are
of academic interest as they have a considerable impact on
usability, robustness of UIs and the feasibility of end-user
development.

In addition to providing an analysis of existing technologies
and concepts, this paper presents a conceptual contribution
which we call the document-oriented GUI paradigm. We
suggest a document approach with access control in which
the same WYSIWIG system is used for editing and render-
ing of GUIs in a framework. The ramifications of this ap-
proach include not only a simplified technological design,
but also advanced customizability and guarantees about the
robustness of a GUI.

In the following sections we will therefore present and com-
pare four paradigms: code-based GUIs, GUI-oriented docu-
ments, document-based GUIs and finally document-oriented
GUIs. In the end we sum up our conclusions.

CODE-BASED DESCRIPTION OF GUIS
Traditionally, GUIs are represented in code units not differ-
ent in principle from the rest of an application’s executable
code. The GUI is described in the form of program state-
ments that create GUI controls, set their properties, link them
together etc. which makes it a requirement for people deal-

1



ing with this representation to have programming skills. It
can be even worse: the code for the GUI can be arbitrarily
intermingled with the other program code, thus making both
much harder to understand, change and maintain.

Program code is generally Turing-complete, which means
that it is possible to describe GUIs in an arbitrarily sophis-
ticated manner. It is possible to describe a GUI by means
of a complicated algorithm, e.g. for optimization purposes,
even though clarity will suffer. In general, it is impossible to
analyze code-based descriptions of GUIs statically, e.g. just
by looking at the program code.

To mitigate the necessity of programming in the process of
GUI creation, there exist many visual tools for editing GUIs.
These tools usually let a user compose a GUI in a more or
less WYSIWIG-style and then generate program code for
that GUI which can be integrated into the application being
developed. In Fig. 1, for example, we see the Visual Studio
IDE showing a GUI design on the left and the corresponding
generated code on the right side.

Figure 1. Visual GUI design and corresponding generated C# program
code in the Visual Studio IDE.

GUI-ORIENTED DOCUMENTS
Some technologies deal with the relationship between doc-
uments and GUIs from a different direction: instead of try-
ing to improve traditional code-based GUIs, they start with
the traditional notion of documents. This notion understands
documents as compositions of static elements which repre-
sent information, but do not allow any input from the user.
The strategy of such technologies is to enrich documents
with GUI elements, thus giving them basic capabilities for
user interaction. However, such technologies usually do not
reach the richness and level of interaction of real GUIs, as
the concept is based on and restricted by the notion of a static
document. Documents are merely used as makeshift GUIs
and cannot satisfy the needs of professional GUI design as,
for example, outlined in [3]. In the following sections we
will examine typical technologies of this kind.

HTML
HTML started out as a document format; its original use was
the publication of a phone directory on the network of the
CERN research laboratory. It is in its structure very much

oriented at static textual documents. HTML already sup-
ported the concept of navigation through hyperlinks, but was
lacking other types of controls. Instead, HTML supported
since long the representation of different static content,like
images or mathematical formulas. Only as the WWW be-
came more and more popular, was HTML extended by ba-
sic GUI-like controls like buttons and forms. This makes
HTML a typical example of a language for documents in
which GUI elements can be embedded, although they do not
really integrate in a natural manner.

A good example illustrating the GUI-oriented characteris-
tics of HTML are Wikis [1]. A Wiki is essentially a storage
for static documents, but its functionality also supports man-
agement, retrieval, creation and modification of documents.
This functionality makes use of the GUI-like elements that
were introduced into HTML, but fails to achieve the degree
of interaction and graphics-orientation of a real GUI. The
editor for documents in a Wiki is usually text-oriented and
the graphical appearance of a document can only be mod-
ified by using a specialized document language. This is a
sharp contrast to the intuitiveness and clarity of WYSIWIG
editors, as they can be realized with real GUIs, and hampers
end-user development [12].

One of our priorities in this paper is the unification between
editor and viewer. The Wikis address this issue rather on
the access rights level, by advocating the right to change to
be granted to everybody with the right to read. In most im-
plementations, however, the edit view has to be explicitly
entered, and is totally different in presentation as well as
in logical structure: the edit view does not contain the ac-
tual screen objects that are changed, leading to robustness
issues [4]. In contrast, we will propose an approach that
not only supports different access rights, but makes them the
only difference between an editor and a viewer: the viewer
is identical to the editor started in read-only mode. There is
a connection to Web 2.0 approaches that try to overcome the
read/edit dichotomy in Wikis. Such Wiki-like collaborative
work approaches [7] provide solutions for global editabil-
ity of documents with access control, but do not address the
shortcomings that such documents have regarding their ca-
pability to describe full-blown GUIs.

The limitations of HTML as the main language of the web
lead in turn to limitations of today’s web-technology based
clients. With the new alternatives of real GUI languages
coming up, they are merely embarking on a lucky chance
in today’s technology landscape. The novelty of the WWW,
with its ability to display graphics and navigate through hy-
perlinks, has long worn out, and description languages for
real GUIs could very well lead to new alternatives. Having a
GUI instead of merely a static document is not a loss because
traditional documents are, in electronic form, displayed in
GUIs. Consequently, the concept of a GUI encompasses that
of a traditional document.

Office Applications
The primary domain of office applications like MS Word or
OpenOffice Writer is the creation of printable documents.

2



Hence, such applications are usually based on a traditional
static document model that is not entirely suitable for de-
scribing GUIs. Such a model is usually page based, position-
ing of elements is oriented at the text flow, and it is required
to set fixed dimensions for the document elements. Never-
theless, in particular the widespread use of paper forms has
inspired the addition of GUI elements for data input that can
be used within the documents. These features have led to a
new use case for text processors and their documents. In the
new use case, one person has the role of developing a form
and then sends it to persons who have the role of filling out
only the created form fields, but electronically. Then they
send it to the person whose role is to process the form. This
approach has very important differences to traditional GUIs.

• This technology can be used in organizations as a way for
end-users to produce a substitute for enterprise applica-
tions. Enterprise applications can offer this as an alterna-
tive pathway for data input: even if the enterprise appli-
cation has an online form, it also offers the possibility to
check out the form as an office document and fill it out
offline.

• Unlike in HTML, creation of new forms is naturally done
in a WYSIWIG fashion, which makes end-user develop-
ment much easier and more widespread.

• Unlike with systems that use web forms, the users can cre-
ate drafts and store them, and keep copies of their submit-
ted forms. This is a notorious drawback of web browsers;
they do not save filled out forms correctly.

• The limited capabilities of these applications are not suit-
able for the development of applications based on the ob-
server pattern, since they do not support push-behavior.

If we look at most of the current advanced document for-
mats, text documents as well as spreadsheets, and the accom-
panying tools, we see that many of them support browser-
like active behaviour. This shows that, in principle, user in-
terfaces can be built with them. But this is more like a quick
solution as it may compromise the look and feel of the re-
sulting applications.

THE DOCUMENT-BASED APPROACH
As we have mentioned, the concept of a GUI is more power-
ful than that of a traditional document. The traditional code-
based approach for representing GUIs has, however, certain
drawbacks. In this section we want to discuss the idea of us-
ing documents in languages that are tailored to the domain of
GUIs, and the existing technologies based on this idea. The
motivation is to combine the expressiveness of GUIs with
the advantages that are implied in the use of documents. The
result is an equivalence between GUIs and documents.

Talking about GUIs implies that there must also be program
logic eventually. A GUI without program logic does not
serve any real purpose. Consequently, documents that de-
scribe GUIs are only part of a system that uses such tech-
nology. This is illustrated in Fig. 2. The GUI on the left
side is described by a document, the program logic on the

Figure 2. Structure of an application with a document-based GUI.

right side is given as program code. Controls of the GUI
are connected to the program logic by events. Events are
usually actions performed by a user on the GUI, e.g. click-
ing a button. The GUI document does usually not contain
the program logic itself, but just information about which
part of the program logic should be invoked for each event.
The parts of the program logic that are invoked by the GUI
are called event handlers. The transition from code-based to
document-based GUIs has also been described, for example,
in [2].

In the following sections we will look at two of the most
promising document technologies for the description of GUIs.
We will discuss their potential to change the way in which
software is used and developed, and eventually explain the
advantages offered by document-based GUIs in general.

Mozilla XUL
XUL stands for XML User Interface Language and was de-
veloped by the Mozilla Foundation, which also developed
the Firefox browser and other web-related desktop applica-
tions. XUL is primarily used for the GUIs of the Mozilla ap-
plications, but since these applications consequently include
a rendering system for XUL GUIs, they are also suitable for
rendering other GUIs. This is most significant for the Fire-
fox browser, as a browser’s main job is to provide a user
interface to the resources of the web. As we have discussed,
the documents of the web are mainly GUI-oriented, but not
fully GUI-capable, and the ability to render XUL documents
with the same ease as HTML documents closes this gap. As
a result, Mozilla offers a browser-centric approach to GUIs
that allows for full-blown GUI applications over the web.

The most prominent example of a web-enabled XUL GUI is
the Mozilla Amazon Browser. In a suitable Browser, this ap-
plication can be started by simply opening a URL and offers
a GUI to the Amazon online shopping system. The usabil-
ity and look and feel is exactly that of a stand-alone GUI,
while access is analogous to opening a HTML page. Fig-
ure 3 shows a screenshot of the GUI on the left side, and a
screenshot of the normal web UI on the right. Both UIs run
in different tabs of the same browser window.

3



While it is impressive to see the Mozilla browser switch
with ease between these two UI paradigms, there are un-
fortunately comparatively few applications on the web that
use XUL. Although Mozilla’s browser holds a good market
share, most users use the MS Internet Explorer which does
not support XUL, of course. So it is not really astonishing
that there seems to be hardly any other real-world example of
a XUL application like the Mozilla Amazon browser. One
has to say that XUL, despite its nearly eight years of exis-
tence, has failed to gain significant popularity as yet.

Microsoft XAML
XAML stands for Extensible Application Markup Language
and is, like XUL, an XML-based language for the descrip-
tion of full-blown GUIs that was designed by Microsoft for
the new Vista version of its Windows operating system [14].
In contrast to XUL, which is mainly used in the context of
the Mozilla browser, XAML will be processed by a part of
the operating system, the Windows Presentation Foundation
(WPF). Therefore this can be called an operating-system-
centered UI approach.

XAML has a good chance to become the first widespread
document-based approach to GUIs. And what this could
mean with regard to other technologies, in particular thoseof
the Internet, can be just what we already see from the few ex-
amples like the Mozilla Amazon Browser in Fig. 3. XAML
plus the safe execution environment of the .NET platform is
likely to produce more and more web applications with real
GUIs. Right now, web developers need to use a mix of sev-
eral technologies in order to produce web sites that mimic
the look and feel of real GUIs. Usually this involves a lot
of technical details and programming skills. A widespread
document-based GUI technology like XAML with the possi-
bility to connect program logic in an easy and secure manner
could alleviate these requirements and give end-user devel-
opment of GUI web applications a boost. As a consequence,
the superior possibilities of real GUIs can leverage betterus-
ability. Potentially, the distinction between web sites and
GUI applications will blur, and there will just be GUI ap-
plications which can be loaded from the net and run either
online or offline.

Advantages of the Document-based Approach
The following sections discuss the advantages of document-
based GUIs over the traditional code-based ones, which have
already been described in a previous section. The paradigm
of GUI-oriented documents, as outlined in the section be-
fore, bears some similarity with the document-based one and
consequently shares some of its advantages. But, as already
mentioned, this approach does not support the creation of
professional full-blown GUIs.

Separation of Concerns
Separation of concerns [9] is a very important principle of
systems design. It means that solutions addressing different
requirements in a system should be separate during devel-
opment, thus keeping its structural clarity intact and facili-
tating development. One common instance of such a sepa-
ration is the separation of user interface and program logic,

as it is illustrated in Fig. 2. This kind of separation is very
common, and also present in other UI modeling approaches
like, for example, the form-oriented analysis approach [5].
Document-based GUIs encourage or even enforce such sep-
aration because the GUI is given in a document language and
this language is tailored to the description of GUIs. If there
is support for program logic in such a document language,
then it is a marginal feature, and program code cannot be ar-
bitrarily mingled with the GUI description but has to follow
its structure. Furthermore, there is a clear notion for con-
necting a GUI to program logic, i.e. the interface between
GUI and program logic is well-defined. All this helps to en-
sure that GUI designers and programmers can work on their
respective parts of the system without interfering with each
other.

Another aspect of separation of GUI and program logic is
the possibility to easily have multiple different GUIs for the
same application. This makes it possible to have different
GUIs for different kinds of users, e.g. special GUIs for
users with disabilities or GUIs in different languages. Con-
sequently, this approach inherently offers solutions for ac-
cessibility and internationalization.

Compatibility
Code-based descriptions of GUIs depend much more on the
technical specifics of their particular presentation environ-
ment than document-based ones. Different kinds of program
code, i.e. in different programming languages, for differ-
ent hardware, operating systems and other software com-
ponents, use different execution mechanisms, data formats,
linking methods and external code libraries. Code-based
GUI descriptions are essentially program code, so an exe-
cution platform has to be compatible with the GUI descrip-
tion in all these aspects in order to be able to render the
GUI. Cross-platform GUI libraries like GTK+ and abstract-
machine-based language platforms like Java or .NET can
mitigate this problem, but not completely eliminate it. This
is because it is founded in the generally higher complexity
of program code compared to a domain-specific document-
based GUI description language. GUI documents have to
be interpreted in some manner anyway, and the higher-level
representation allows an interpreter to deal with the docu-
ment in a more flexible and error tolerant manner. Also,
many document-based GUI description languages are suit-
able for single authoring [10]. A code-based GUI, on the
other side, is generally much more fragile and will not exe-
cute properly if even minor technical details do not fit.

Small Footprint and Isolation
With regard to system resources and footprint a document-
based GUI is similar to an HTML document on the web. An
application with a code-based GUI usually requires an in-
stallation on each machine the application is used on, and the
installation often requires more access rights than a regular
user has. Such an installation takes time and bears safety and
security risks, as it may potentially render a system dysfunc-
tional. In contrast to that, applications with document-based
GUIs do mostly work without installation and are very easy
to access, as the example of the Mozilla Amazon Browser

4



Figure 3. The Mozilla Amazon Browser GUI and the Amazon web UI.

shows. As documents, such GUIs are in general self-contained
and portable. The GUI document serves as a central access
point to the whole application and can also be accessed over
the Internet. Program logic can be loaded on demand. All
this facilitates the development of lightweight applications.

Because GUI documents do not run by themselves but have
to be processed by a separate rendering system, this render-
ing system can be designed in a way that guarantees that
multiple GUIs are isolated from each other. This is impor-
tant to prevent a misbehaving GUI from interfering with an-
other. The Mozilla Amazon Browser GUI, for example, is
restricted to a single tab of the browser window.

Editability
Because they are documents, GUI documents are editable.
This makes it possible for a user to change a GUI, which can
usually be done with a simple text editor. This can be, as
it was with HTML, a catalyst for end-user development. In
contrast to this, code-based GUIs are hard-coded, and, once
compiled, they cannot be changed without significant effort.

Non-Universality and Abstraction
GUI document languages are in a sense non-universal. Uni-
versality is not necessary for a language that is tailored to
GUI, specifically if we recall the concept of separation of
concerns. The GUI document language should only focus
on the GUI description — not being able to do anything
else in this language can avoid a lot of problems. Non-
universality can be seen to be one of the most important
benefits of GUI document languages. One might think at
first that non-universality is a shortcoming. But one has to
be aware that universality has its own disadvantages. Firstof
all, universal programming languages allow arbitrary com-
plexity, and shielding end-users from the complexity of pro-
gram code facilitates end-user development. And there is an
even stronger argument: while it is impossible in general to
analyse the code of a universal language statically, reducing
the capabilities of a language can make static analysis feasi-
ble and efficient. Such static analysis of a GUI, i.e. analysis
before the GUI is actually executed, can detect safety and

security flaws, so that faulty behaviour can be avoided be-
forehand. Moreover, a reduced complexity of the language
makes it much easier for a rendering system to modify a GUI
on the fly, e.g. for adapting it to particular layout or look-
and-feel settings.

Note that the fact that most GUI document languages are
textual is unrelated to the question of non-universality. Pro-
gram source-code is usually textual, but universal. On the
other hand, a non-universal GUI document could be stored
as a set of serialized binary objects. As long as an editor for
GUI documents is available, this does not affect the user.

The GUI document language is tailored to the domain of
GUIs, so it offers a higher level of abstraction for that do-
main than a universal programming language, which has no
such specialization. A GUI language can offer, for exam-
ple, higher level constructs or shorthands for typical GUI
constructions and offer a simplified interface to the devel-
oper. As a result, such abstractions facilitate end-user devel-
opment as well.

THE DOCUMENT-ORIENTED APPROACH
We propose a new approach for GUIs which is compatible
with the document-based one, but takes the idea of GUIs as
document a step further. In this new approach GUIs are also
documents. However, they are edited and displayed with the
same tool. The difference between the GUI when it is cre-
ated and the GUI when it is displayed for actual use lies in
the access rights the user has. This approach has several im-
plications and can be seen as a new design pattern for the
development of GUIs. We call it the document-oriented ap-
proach.

There is a certain analogy to the GUI functionality of some
office applications. As we have discussed in the section
about GUI-oriented documents, a user can create documents
with simple GUIs in such applications, e.g. for entering data
into forms. Then, such a document enhanced by GUI ele-
ments can be sent to other users, who usually open the doc-
ument and use the GUI in it with the office application it-

5



self. Like in the document-oriented approach, the same tool
is used for creation and use, thereby ensuring that GUIs are
WYSIWIG. But as we have said, the GUI functionality for
documents in office applications is incomplete. The user will
usually see the GUI in the window of the office application,
embedded into the office application’s GUI, and not by itself.
It is also not so easy or even impossible to connect one’s own
program logic to the GUI. And without making the whole
document read-only, there are few appropriate ways to con-
trol write access to the controls of the GUI.

Our paradigm shift is not so much concerned with the actual
implementation of the GUI and the editing view. The aim
is rather to establish a simpler model of the user interface
framework. The document-oriented paradigm offers a num-
ber of advantages over traditional code-based GUIs and also
the document-based ones. These advantages are described
in the following sections.

Unification of GUI Development Tool and GUI Framework
For current GUIs, visual editors have become standard. They
can be called WYSIWYG editors, as they present the emerg-
ing GUI very similar to the actual running GUI, as can be
seen in the screenshot example of Fig. 4. Yet the GUI con-
trols used in these editors to render the drafts might be dif-
ferent to the GUI framework that will be invoked at runtime.
Every element of the runtime GUI is mirrored in an element
of the editor that allows the editing and customization of this
object – functions that are not supported by the controls as
they are rendered in a running GUI. The editing process usu-
ally ends with a generation step that generates a representa-
tion of the edited GUI.

Figure 4. GUI in Visual Studio design tool and as running program.

In our approach we overcome this distinction: the running
GUI is presented by the same framework that is used in edit-
ing. As a consequence, controls are in principle always ed-
itable like in a visual GUI editing tool. However, the GUI
framework implements a mechanism for controlling access
to the different properties of a GUI, which means that partic-
ular modifications can be forbidden depending on the con-
text in which the GUI is shown. The GUI developer will

usually have all the access rights and can make arbitrary
modifications to the GUI, while the end-user would probably
have limited editing rights. An end-user might be allowed
to change the sizes or order of certain controls, but not the
bindings between the controls and the program logic.

Robustness
The document-oriented model implicitly supports the con-
cept of robust content creation [4] and facilitates configura-
tion of GUIs. Because a document-oriented GUI is rendered
with the same software that is used for its creation, the way it
is shown during usage is identical to the way it is shown dur-
ing creation. This means that the WYSIWIG property of the
GUI editor can be guaranteed. Even if in editing mode the
GUI will indicate the additional rights by additional controls,
the GUI will generally look the same, no matter if seen by
the developer or user. There cannot be a mismatch between
the rendering functionality of the editor and the viewer that
could lead to an unviewable GUI since the conceptual iden-
tity of viewer and editor makes it impossible to edit some-
thing that cannot be viewed, or view something that cannot
be edited.

Simplified GUI Editor Design
The equivalence of the developer and user views has impli-
cations for the way we construct a WYSIWYG document
editor as well. Usually, the GUIs as they appear when they
are edited are different to the GUIs when they are used: in
a WYSIWIG editor controls of the GUI usually have ad-
ditional and modified functionality for changing a control’s
properties. E.g. a bounding box is shown that can be dragged
in order to resize a control. It is, of course, a challenge foran
editor to show the controls that are edited – possibly by actu-
ally using them – but augmenting and modifying their usual
behaviour to suit the purpose of the editor. In the document-
oriented paradigm we would implement such editing func-
tionality for each control by default, i.e. every control comes
with the functionality that is needed to resize or position it
etc. This makes the internal design of the editor much eas-
ier. Putting functionality for editing into each control makes
implementation of controls more difficult, but since they are
heavily reused this is well worth the effort.

Simplified Controls
The relation of labels and text input fields illustrates most
clearly the principle of using rights. In a standard GUI,
labels and text input fields are distinct. In our approach,
they differ only in the rights the user has. While a label
is read-only, and maybe has a slightly different visual style,
the text input field can be edited. Analogously, a list box
where textual entries can be inserted and deleted is essen-
tially the same as a list box with static content, only that
the former permits write access to its entries. Even the full-
blown WYSIWYG editor itself can be used as a sort of input
field in a program, allowing a user to input a whole docu-
ment, which is possible due to the recursive character of the
document paradigm. As a result, the editing capabilities of
the controls generalize and simplify the way in which they
can be used in programs, leading to a whole range of new
possibilities.

6



Comprehensive Customization
Many of the discussed technologies, like XUL and XAML,
define GUI parts like windows for auxiliary dialogues in sin-
gle XML files. Since these technologies use a declarative ap-
proach, we want to call such units of codeGUI declaration
units.

Our approach offers a comprehensive customization approach.
Currently, even in the new document-based implementations
of user interfaces, the GUI declaration units describing the
application interface are seen as a part of the application.
In contrast, the document-oriented approach sees the GUI
declaration units as part of the individual user documents.
In the first approximation, each user document contains its
own copy of the GUI declaration units for each auxiliary di-
alogue like a print dialogue. In current technologies for GUI
declaration units like XUL and XAML, this works with by
setting the prefill-values declared in these GUI declaration
units.

Another example is a feature to resize different panels in a
window. If the GUI developer wants to grant this customiza-
tion option to the user, he then grants the appropriate editing
right to the end-user. Vice versa, the resizing can be blocked
by withdrawing this access right.

Decomposition Mechanism
If one wants to have more elaborate options to configure the
auxiliary dialogues, then one can employ reuse of the GUI
declaration units across different user documents. Note that
the difference to the document-based approach is now, that
the scope of reuse is not necessary restricted to the appli-
cation. The document-oriented approach works well with
decomposition mechanisms like style sheets. The aim of
this decomposition is multiple reuse of parts of GUI dec-
laration units with the aim of centralized maintenance: A
single change in the style sheet changes the property under
question in all the documents that use this style sheet. A
conceptually simpler way than style sheets is however to use
of an inclusion concept. We prefer to view such an inclu-
sion as an instance of the transclusion principle [8]. Tran-
sclusion is the inclusion of a document into another docu-
ment by reference. The inclusion takes place every time the
user document is opened. This process is dynamic enough
to enable centralized maintenance, but it is not (necessarily)
supposed to deliver updates instantaneously to running ap-
plications. The recurring questions of how to deal with the
conflicting goals of having a timely update of the changed
information and on the other hand how to enable the user
to work consistently on one document, uninterrupted by up-
dates, is a different problem that rather belongs in the area
of form-oriented interfaces [5].

The Scope of Changes Becomes Obvious
The transclusion approach offers the chance to increase trans-
parency of the user interface. In current user interfaces, there
is no way for the user to tell the scope for a certain option, as
the following case study shows. 0 In the case of two classi-
cal auxiliary dialogues, the print dialogue and the page setup
in word processors, the print dialogue is often in the scope

of the current application invocation, valid for all open doc-
uments, but not persistent. The page setup dialogue on the
other hand is in the scope of the current document and it is
stored persistently in the document. But in two office suites
(MS Office and Open Office for XP) for example, there is
no way for the user to tell the difference. Quite contrary, in
one office suite, both auxiliary dialogues are accessible un-
der the file menu. A further difference between both office
suites is the subdialogue of the print dialogue that allows the
user to choose the number of pages per sheet. In the one
office suite, clicking “ok” in the subdialogue is only tem-
porary unless the actual printout is performed. In the other
office suite, “ok” in the subdialogue does make this change
stick for the application session.

With the transclusion principle of document-orientation we
can achieve transparency for the user here without making
actual changes in the look and feel. The following will hence
show that document-orientation does not necessarily enforce
a new dialogue structure; it only adds enlightening infor-
mation. In the discussed case, the sensible introduction of
document-orientation would be to associate a file location
with each auxiliary dialogue, and to show this file location
for example in the header of the auxiliary dialogue. For the
page setup, the shown location would be the current file,
while for the print dialogue the location would be stored in
the user profile. This way the user would have the chance to
identify the scope of his action. This proposal is not tested
in usability studies, but we argue that this additional infor-
mation could not be detrimental. We point out that this ser-
vice of document-orientation is in accordance with the de-
mand of ISO 9241-10 regarding the suitability of applica-
tions for learning: “The user is able to obtain information on
the model on which the application is based” [6].

The transclusion approach, if fully employed, would of course
allow more possibilities for reuse of customizations and set-
tings. Take again a print dialogue as an example. If a user
wants to have usually the same print settings for browser
and text editor, for example a printer next to the user’s of-
fice, then he chooses the same document as print dialogue
for both applications. However if the user needs often dif-
ferent print properties for the slide presenter, for example a
colour printer, then the user can use a different print dialogue
document for the slide editor.

CONCLUSION
We described the traditional code-based approach and the
newer document-based approach for the description of GUIs
and explained why the latter one will most likely change the
way we deal with GUIs. We also presented the document-
oriented approach, which goes beyond the document-based
one. This novel approach offers a range of new advantages,
like a comprehensive and exhaustive concept of GUI cus-
tomization, robustness and new possibilities in the way con-
trols can be used. The research opens the path for interesting
further framework development as well as empirical studies.

7



Figure 5. Traditional customization of GUIs.

REFERENCES
1. WikiSym ’05: Proceedings of the 2005 international

symposium on Wikis. ACM Press, New York, NY, USA,
2005.

2. J. Bishop and N. Horspool. Developing principles of
gui programming using views. InSIGCSE ’04:
Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 373–377, New
York, NY, USA, 2004. ACM Press.

3. S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort,
and C. Mertz. Revisiting visual interface programming:
creating gui tools for designers and programmers. In
UIST ’04: Proceedings of the 17th annual ACM
symposium on User interface software and technology,
pages 267–276, New York, NY, USA, 2004. ACM
Press.

4. D. Draheim, C. Lutteroth, and G. Weber. Robust
content creation with form-oriented user interfaces. In
CHINZ ’05: Proceedings of the 6th ACM SIGCHI New
Zealand chapter’s international conference on
Computer-human interaction, pages 45–52, New York,
NY, USA, 2005. ACM Press.

5. D. Draheim and G. Weber.Form-Oriented Analysis - A
New Methodology to Model Form-Based Applications.
Springer, October 2004.

6. International Organization for Standardization.
Ergonomic Requirements for Office Work with Visual
Display Terminals (VDT) – Part 10: Dialogue
Prinicples. ISO 9241-10, 1996.

7. A. D. Iorio and F. Vitali. From the writable web to
global editability. InHYPERTEXT ’05: Proceedings of
the sixteenth ACM conference on Hypertext and
hypermedia, pages 35–45, New York, NY, USA, 2005.
ACM Press.

8. T. H. Nelson. The heart of connection: hypermedia
unified by transclusion.Commun. ACM, 38(8):31–33,
1995.

9. D. L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules.Communications
of the ACM, 15(12):1053–1058, 1972.

10. R. Simon, F. Wegscheider, and K. Tolar. Tool-supported
single authoring for device independence and
multimodality. InMobileHCI ’05: Proceedings of the
7th international conference on Human computer
interaction with mobile devices & services, pages
91–98, New York, NY, USA, 2005. ACM Press.

11. N. Souchon and J. Vanderdonckt. A review of
xml-compliant user interface description languages. In
DSV-IS, pages 377–391, 2003.

12. A. Sutcliffe and N. Mehandjiev. End-User
Development.Communications of the ACM,
47(9):31–32, 2004.

13. S. Trewin, G. Zimmermann, and G. Vanderheiden.
Abstract user interface representations: how well do
they support universal access?SIGCAPH Comput.
Phys. Handicap., (73-74):77–84, 2002.

14. A. Wolfe. Toolkit: Longhorn ties platform apps to core
operating system.Queue, 2(6):16–19, 2004.

8


