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ABSTRACT
Being part of everyone’s life, mundane routines are a fa-
miliar, time consuming part people have to deal with. In a
computer environment such tasks could be checking emails,
maintaining schedules or simply finding a good movie to
watch.
A possibility to reduce the time involved is the use of soft-
ware agents, programs acting in behalf of the users to sup-
port them. Applied to the problems mentioned before, agents
could check emails, extract important information and present
it. Other tasks are to update the user’s schedules or to search
for movies which are likely to be enjoyed by the user.
This report introduces and discusses the problems an agent
has to overcome in order to establish and maintain an effec-
tive cooperation with its human operator. In order to guaran-
tee the efficient teamwork the agent has to know the users,
their goals and their working environment. To explain cur-
rent approaches six existing interface agents are introduced
including their methodologies to solve the challenges of hu-
man agent cooperation. These interface agents are VIO,
LookOut, MailCat, Re:Agent, Magi and Meeting Schedule
agent. While all agents work within the same field, each
looks at it from a slightly different angle, such as efficiency
(VIO), agent user interaction fundamentals (Meeting Sched-
ule Agent, LookOut), interface design (MailCat) and algo-
rithms (Re:Agent, Magi).
Furthermore, an outlook is given describing possible future
interface agents.

INTRODUCTION
The rise of software agents started in the 1990’s and is nowa-
days a vibrant combination of Artificial Intelligence (AI) and
Human Computer Interaction (HCI).
Its roots however, go back to the 1950’s when AI as a field
of computer science was born. It was the work of scien-
tists such as Negroponte (Negroponte, 1973) and Lay (Kay,
1990) in the mid 1990’s on which the new computer science
field of agent-based computing was built. The first person
who described the interaction between a human operator and
a software based agent was Maes (Maes, 1994). According
to their pioneering work the software agent is supposed to
work as an assistant, like a co-worker, which acts in a partly
autonomous and independent manner. It is delegated via
commands and supports the user with accomplishing mun-
dane and time consuming tasks by directly manipulating the
working environment.
Being inspired by Maes’ work many cooperative human com-
puter agent systems have been developed in several different

domains including maintaining schedules(Kozierok & Maes,
1993; Mitchell, Caruana, Freitag, McDermott, & Zabowski,
1994), checking emails (Boone, 1998; Payne & Edwards,
1997) and recommender systems (Dabbish, Kraut, Fussell,
& Kiesler, 2005; Terveen, Hill, Amento, McDonald, & Creter,
1997). To employ a successful human computer interaction
every agent has to address three fundamental questions:

1. Who is my user?

2. What should the interaction look like?

3. How can I competently help my user?

To answer the first question the agent has to learn the user’s
goals and habits. This can be done by observing the user or
by directly asking for feedback. Once the agent knows the
user’s goals it has to understand the environment in which
the human operator tries to accomplish the goals. Due to the
fact that goals and/or environments could change over time,
the agent has to keep itself updated. The learning process
of the initial goals and environments as well as the updating
process have to be accomplished by disturbing the user as
few times as possible. Another issue is the time these proce-
dures need which ideally should be zero.
The second question can only be answered after the user
trusts the digital helper’s ability to effectively predict results.
Without trust the user would most likely never delegate any
tasks to the software based companion. This makes winning
the users trust and maintaining it one of the most important
objectives of such a system. Having earned the user’s trust
the human operator should be able to easily understand how
the agent could autonomously work and how the interaction
could work. Therefore simple models which define these
kinds of interactions have to be introduced whereby the fo-
cus always has to be on the model’s simplicity. Once the
user trusts and understands the agent’s capabilities, they will
transfer tasks to the agent and will accept it as an esteemed
assistant. Additionally, the willingness to invest time to train
the agent to increase the interaction efficiency will rise.
The answer to the third question is probably the most dif-
ficult and important one to find. Even if the agent knows
the users, their goals and how to accomplish these, it has to
present its results in an appropriate manner. Therefore the
digital assistant has to choose the way of interaction such as
directly interrupting the user to present the results or pro-
cess the results automatically as if the user would have done
it. After the style of cooperation is established, the agent’s
tasks can be automated so that the user has to invest as little
time as possible and takes advantage of the digital helpers
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work.
If any one of the three issues briefly discussed above is not
addressed correctly, the agent will rather increase the user’s
workload instead of reducing it and as a result soon be re-
jected.
This report will address the answers in a more detailed man-
ner. Thereby several existing agents are introduced includ-
ing their approaches to solve these problems. These user
interface agents work in different domains and offer solu-
tions from slightly different perspectives. To understand ev-
ery system they will be briefly described in the next chap-
ter before their problem solutions to the specific questions
is discussed in section 3. The final two sections will sum
up the presented issues and furthermore look into the future.
Thereby questions which still have to be answered as well as
questions which are only poorly answered yet will be briefly
discussed.

HUMAN AGENT INTERACTION (HAI)
In this section the fundamental questions an agent has to
address in order to enable an efficient cooperation with its
human operator are discussed. Additionally, different ap-
proaches of already existing agents are introduced to get a
better understanding about current problems and possible so-
lutions.

Interface agents
In the following six interface agents are briefly introduced.

VIO
The interface agent VIO (Zimmerman et al., 2007) is a do-
main independent system which supports the user in trans-
lating requests. VIO is not designed to be the perfect agent
which makes no errors but to enable an easy error detection
and correction by the user. It observes the user’s behaviour
and filters the necessary information it needs to make mean-
ingful suggestions to reduce the overall task completion time.
Being applied to the email domain, VIO analyses incoming
emails, modifies them, presents the changed version to the
user and waits for an approval. While the changes made in
the original email are reduced to highlightings of important
text snippets, the overall analyses of the matter is leading to
task proposals presented in form of a ranked list with entries
such as ”Add event”, ”Modify Person” or ”Delete File”.

LookOut
LookOut (Horvitz, 1999) is an agent system which supports
users with managing schedules and meetings. It analyses the
content of incoming mails and composes meetings or assist
the user with reviewing the calendar. Besides the obvious
patterns in emails such as ”meeting at Tuesday at 4 pm”,
LookOut also has knowledge about colloquial time expres-
sions such as ”sometime tomorrow” and ”afternoon”.

MailCat
MailCat (Segal & Kephart, 1999) supports the user by de-
ciding which folder to store an incoming email in. To do so,
the program uses a text classifier which analyses the email

content. Based on the classification results gained from the
already existing email-to-folder allocation analysis, MailCat
predicts the three most likely destination folders and dis-
plays 3 buttons representing these to let the user make the
final decision. To cope with things like the creation of a new
folder, renaming a folder and deleting folders MailCat uses
incremental learning strategies. This means that the program
monitors all changes to the folder structure and reruns the
email classification to stay up to date.

Re:Agent
Re:Agent (Boone, 1998) analyses incoming emails to either
sort, delete or store them in folder structure. Re:Agent fil-
ters features in the form of words from the email’s content
to generate feature vectors. Based on these features machine
learning algorithms (e.g. nearest neighbour algorithm, the
neural net) are used to compute action vectors. The result-
ing action vectors are used to determine the final action (e.g.
sort, store). During the learning period the user has to clas-
sify emails into priority groups such as high priority or so-
cial.

Magi
Magi (Payne & Edwards, 1997) is an email agent which
helps the user to sort incoming emails. Payne and Edwards
concentrated their resources on the comparison and evalua-
tion of different learning algorithms, prediction features and
feature extraction models. They especially concentrated on
evaluating the two learning algorithms CN2 and IBPL1. De-
pending on the time a user is willing to invest and the number
of training examples the right algorithm has to be chosen.

Maes’ Meeting Schedule Agent
Maes’ Meeting Schedule agent (Kozierok & Maes, 1993)
interacts with a user’s calendar to schedule meetings. To do
so, it observes the user to study their habits and preferences.
If the user wants to schedule an appointment the user can
either do it alone or ask the agent. Therefore the user has to
feed the agent with acceptable dates. The digital helper then
proposes possible meeting times by considering the user’s
free time slots and habits amongst other things.

Agent Issues
The efficiency of HAI is significantly determined by the agent’s
ability to decrease the time the user has to invest to accom-
plish mundane and time consuming tasks. Therefore the dig-
ital helper has to understand the user and the working envi-
ronment. It has to adopt an appropriate interaction style and
furthermore to solve the delegated tasks and process them
on behalf of its human operator. This section discusses these
agent issues including the problems and sub problems they
cause. Additionally, approaches to overcome these problems
from previous studies and their findings are used to explain
the agent issues. The single problems and their solutions are
grouped into the three categories/questions introduced be-
fore 1.
1”Who is my user?”,
”What should the interaction look like?”,
” How can I competently help my user?”

2



Who is my user?
Domains exits in the digital world as they do in the real one.
Therefore, the environment the agent should work in has to
be defined in the first place. Two basic design approaches
are common in today’s agent developments; generic and do-
main specific designs. While the specific agents are designed
to operate in one particular domain only, the generic digital
assistants could work in different areas. Nevertheless, ev-
ery domain has to be implemented upon the generic core
of a generic agent. The advantage of the generic approach
is the applicability to every domain with only minor time
expense 2. However, due to the generic core it is not pos-
sible to design the agent in such a way that it can directly
target special features of a certain domain. This is why spe-
cialized agents usually are more precise but still limited to
one domain. Two generic agents are VIO (Zimmerman et
al., 2007) and Re:Agent(Tomasic, Simmons, & Zimmerman,
2007) and two specific ones are LookOut (Horvitz, 1999)
and MailCat (Segal & Kephart, 1999). Possible domains are
email filtering (Boone, 1998; Payne & Edwards, 1997), rec-
ommender (Dabbish et al., 2005; Terveen et al., 1997) and
schedule maintainer (Kozierok & Maes, 1993; Mitchell et
al., 1994). Since within a particular domain only specific do-
main related tasks are possible, a human operator as well as
an agent only has to accomplish these possible ones . For ex-
ample, an email agent’s scope of services could be to delete
unimportant emails (Zimmerman et al., 2007), store them
in specific folders (Payne & Edwards, 1997) or extract data
to update contact information (Zimmerman et al., 2007) but
not to recommend a movie because that is not possible in an
email domain.
After the possible goals are predetermined due to the domain
choice the particular goal has to be determined by the agent
as well as the user habits. The latter can be done by obser-
vation (VIO, MailCat) or direct feedback (Re:Agent). An
agent can also employ both methods (Magi, Meeting Sched-
ule agent (Kozierok & Maes, 1993)). The first published in-
terface agent was Maes’ Meeting Schedule agent (Kozierok
& Maes, 1993). It observes all user actions and stores them
in so called ”situation action pairs”. Based on this ”memory”
it runs memory based learning algorithms (Stanfill & Waltz,
1986) to determine the user action which is most likely. This
is done by comparing the current situation with all stored
ones and looking for the closest match by calculating a dis-
tance vector. Additionally, it uses reinforcement learning al-
gorithms to calculate weightings for meeting topic keywords
which act as priorities. The weightings are calculated upon
positive and negative predictions the agent did in the past
and direct feedback from the user to clarify the agent’s false
assumptions. Another interface agent is Magi. As well as
Maes’ Meeting Schedule agent, it observes the user and asks
for direct feedback. Being implemented as a testbed for dif-
ferent algorithms, Magi uses different algorithms to learn the
user’s habit to achieve the most effective cooperation. Payne
and Edwards concentrated on the evaluation of two learn-
ing algorithms; CN2 (Clark & Niblett, 1989) and ILBP1.
The latter is producing exemplars of training examples to
generate weights and distance metrics. CN2’s advantage
over ILBP1 is the comprehensibility of the produced rules
2The domain still has to be implemented upon the generic core

for people. Furthermore, it needs less training examples to
achieve good prediction results.
This raises another critical issue. What are ”good” results
and how do I get results in the first place? To calculate any
result the source has to be analysed. In case of an email it
is the email’s content. This can be done in several ways.
Magi (Payne & Edwards, 1997) calculates features from the
email’s ”From”, ”Subject” and the ”Message” fields. De-
pending on the algorithm applied, it extracts one feature per
field (CN2 algorithm) or sets of features (ILBP1). For exam-
ple, ILBP1 compares pre-calculated feature sets which have
been derived from training examples with the feature sets
calculated for the new email based on a k-nearest neighbour
algorithm (Dasarathy, 1991). The resulting k-closest feature
sets are used to determine the feature distance to the stored
exemplars. Thereby biases in the form of neural net weights
are used to find the closest feature set.
VIO (Tomasic et al., 2007) uses a similar approach to find
rules. It predefines the possible tasks which can be done
according to the email’s content. For the prediction the in-
terface agent extracts text snippets and computes labels for
them. Thereby every label represents a hypothesis describ-
ing the likeliness to be a certain list entry. These weak labels
or hypothesises are basically simple rules which have differ-
ing ranges of accuracy. The accuracy is determined by com-
paring the label from the new unknown email with the labels
calculated from the training set. Afterwards these weak la-
bels are fed into a boosted decision tree model to rank the
hypothesises according their likeliness (Schapire & Singer,
1999).
Both approaches, VIO and Magi’s, need initial training on
existing examples to train their algorithms whereby the train-
ing time depends on the quantity of training examples. This
poses another important issue for interface agents; how long
do they need to be trained and how much training examples
do they need to achieve a satisfying accuracy. This mainly
depends on the machine learning algorithm used. For ex-
ample, the CN2 algorithm used in Magi needs significantly
less training time and data than the ILBP1 to compute ac-
curate results. However, if ILBP1 is trained with sufficient
training examples, it achieves a higher accuracy than CN2
(Payne & Edwards, 1997). In contrast to the Magi’s rules
based learners, Re:Agent employs a neural net. Rule based
learners as well as neural nets need sufficient training ex-
amples to generate accurate rules and to determine efficient
weights respectively. The LookOut agent is another induc-
tive learner which means that it extracts rules out of given
training examples.
VIO and MailCat, in contrast, only need very little training
examples. The reason is that both employ a more deductive
way of reasoning. This means that they use the provided ex-
amples and try to use them as premises to conclude a predic-
tion. Such an approach makes a confidence rating necessary
because otherwise both agents would make proposals based
on little evidence. To ensure highly accurate predictions both
agents have to additionally train themselves by observing the
human operator.
To determine the quality of the results the agent has to rank
them in form of a confidence rating. The more sure it is
of the result, the more confidently it presents the results to
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the user. For example, VIO which presents a list of possible
actions based on its email analysis designs a list based on
its confidence. If the agent is absolutely sure, the list only
consists of one entry representing an action. The more un-
certain the digital assistant is the more items it adds to the
list. If it has no confidence in its results it makes no sugges-
tions (Zimmerman et al., 2007).
There are several ways to calculate the degree of confidence.
One is to compute a predictive and confidence threshold (Payne
& Edwards, 1997). Thereby a predefined threshold (predic-
tive and confidence) is compared with the currently calcu-
lated one and if the current one is higher the agent will pro-
ceed with the task. Additionally, the agent presents its con-
fidence ratings to the user to receive feedback. The human
operator can then either confirm or reject the proposal. The
agent uses the feedback to adjust its threshold for the cur-
rent task. Another approach of the confidence calculation is
implemented in LookOut (Horvitz, 1999). It uses a Support
Vector Machine (SVM) to classify the extracted text via ap-
proximation (Platt, 1999). Additionally, the LookOut agent
uses custom features for task-specific sets to run the confi-
dence calculation not only on particular pieces of text but
rather to also include the context (task-specific sets). An im-
portant task for the confidence calculation is the SVM text
classifier. It is trained on runtime as well as at initialisation
time.
In conclusion, to get to know the user including the goals
and the environment all agents draw on different kinds of
machine learning algorithms. Due to this approach a vary-
ing range of training times is necessary as well as sufficient
training examples. Furthermore, to autonomously evaluate
the gained predictions the agent has to employ a confidence
rating to ensure an effective cooperation.

What should the interaction look like?
To earn the users trust the agent has to deliver accurate pre-
dictions. Therefore it has to successfully employ the features
described in the previous section. After it has earned the
user’s trust the digital assistant has to maintain and extend
it. From the beginning both partners have to communicate
with each other. Besides the classical ways of interaction
via mouse and keyboard which are employed by all agents,
LookOut (Horvitz, 1999) also uses verbal communication.
Thereby the agent can talk to its human operator by using
a text-to-speech system. Additionally, the user can talk to
LookOut which has established an audio channel to do so.
For an effective interaction the user has to understand how
the agent works so that the user can delegate tasks and re-
ceive results efficiently. To achieve this understanding, sim-
ple interaction models are used. Agents which use these
models are Maes’ Meeting Schedule agent (Kozierok & Maes,
1993) and VIO (Zimmerman et al., 2007). The latter em-
ploys an interaction model set by Letizia (Lieberman, 1997).
According to this model the assistance is not forced on the
user but rather offered in an appropriate way. If the user’s
attention is attracted by the digital assistant the human oper-
ator can interact with it otherwise the human operator simply
ignores the agent.
LookOut has a similar approach where the user is informed
based on an attention model. This model defines times when

the user will be statistically less distracted if interrupted by
LookOut (Horvitz, 1999). These times were gained through
experiments where the times between the message review
and the resulting invocations by the human operator were
measured. The resulted temporal-centric model of atten-
tion takes relationships between message length and the pre-
ferred interruption time into account which are approximated
by a sigmoid function. Additionally, if necessary the agent
can replace the predefined time model by one which it cal-
culates while observing the user. Thereby the times are cal-
culated in the same way they were during the experiments.
Another option is the explicit time delay adjustment by the
user.
A more feedback intensive approach is implemented in Maes’
Meeting Schedule agent (Kozierok & Maes, 1993) where the
interaction is modelled like a self-learning process. Thereby
the agent has an initial knowledge about scheduling which is
mostly manually determined by the user. Additional knowl-
edge is steadily added by observing the user and studying
the user’s habits.
When the user trusts and understands the agent the user will
most likely transfer more tasks.

How can I competently help my user?
Once the interaction style is established the agent has to for-
mulate a plan to help the user and not to hinder the user.
This includes the way the tasks are processed according to
the user’s preferences and the degree of automation of the
tasks.
To work according to the user’s preferences is a difficult
task for the agent. A study by Dabbish, Kraut, Fussell, and
Kiesler showed strong individual differences between peo-
ple when working with their emails. The intention of the
study was to model people’s email behaviour which can be
later used to design email user interfaces. When sorting
emails users had a 48% variance in selecting a destination
folder for incoming emails. Furthermore, the likelihood of
replying an email was bigger for social messages than any
other although they had nothing to do with work. Dabbish,
Kraut, Fussell, and Kiesler reasoned that the typical user
does not exist. This fact makes the successful observation
of the user by the agent more important because that is cur-
rently the only way to personalize the agent’s interaction
style.
Currently most agents process the predicted actions if they
are confident enough. It is up to the user to change the results
if they are not satisfied. With increasing observation time the
automation increases automatically because the agent learns
more and more about the user and has therefore higher con-
fidence. This leads to more accurate predictions and to a
higher degree of the user’s satisfaction. Basically the de-
gree of automation is determined by the autonomous work
accomplished by the agent without being interrupted by the
user. For example, VIO fills in data extracted from emails
autonomously in the corresponding forms. In case the ex-
tracted information is wrong the user has to correct them
manually. In case VIO makes no mistakes the user only has
to click the first item in the proposed list and the following
form is correctly filled out by VIO so that the user only has
to save it. In this optimal scenario the time benefit is sig-
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nificant. Instead of manually filtering the email’s content,
choosing the correct form and inserting the new data, the
user only has to choose one list entry and confirm the update
with one button click.

SUMMARY
The report described the steps necessary to establish an ef-
fective human agent interaction. The agent is acting on be-
half of the user to process mundane and time consuming
tasks which significantly reduce the time the user has to in-
vest to complete these tasks. After the agent has gained suf-
ficient information about the user’s habits and preferences as
well as about the environment, it has to earn and maintain the
users trust by successfully making predictions. Six different
existing interface agents were used to explain the problems
connected with the agent’s work and to show methodolo-
gies to solve them; VIO (Zimmerman et al., 2007), LookOut
(Horvitz, 1999), MailCat (Segal & Kephart, 1999), Re:Agent
(Tomasic et al., 2007), Magi (Payne & Edwards, 1997) and
Meeting Schedule agent (Kozierok & Maes, 1993). Accord-
ing to all of these authors, no agent is designed to be perfect
but rather to allow easy interaction, error detection and error
correction. Down to the present day the prediction rate of ex-
isting agents is not even close to perfect but the development
is steadily continuing.

FUTURE WORK
Hong and Landay envision a domain-spanning agent which
provides the right information at the right time. The agent
constantly searches for information in the background. In
contrast to the other introduced agents Hong and Landay’s
one will not automatically present its findings but will rather
wait until the user needs them and then call attention to itself.
To implement an agent as sophisticated as the one proposed
by Hong and Landay the human prediction models have to
be further developed. Therefore a closer investigation of hu-
man habits is necessary. Additionally, due to human individ-
uality the agent has to adopt too its user’s habits to a higher
degree. LookOut’s (Horvitz, 1999) temporal-centric model
of attention is a beginning but has to be further developed.
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