
Automatically generated User-Interfaces
Ken Lee

Department of Electrical and Computer Engineering
University of Auckland

Private Bag 92019
Auckland, New Zealand

clee207@ec.auckland.ac.nz

ABSTRACT
Developing user interface is often complex and time-
consuming, and it is unscalable for the human programmers
to create interfaces for each type of devices (PCs, mobile
phones and PDAS) and every kind of users. These problems
can be corrected with automatic generation of user
interfaces. This article reviews four different approaches
and generation processes of automatic user interface
generation, and findings from different studies. It also looks
at the viability of automatic generation of user interfaces.
There are four approaches to automatic generation of user
interfaces this paper describes: 1) using communicative acts,
2) model-based approach, particularly declarative model-
based approach, 3) use of interface design tools, 4)
adaptation. Each approach has different generation process
which is explained in main section. One of the reviewed
studies demonstrated the viability of automatic user
interface generation by examining the Personal Universal
Controller (PUC) system. Future works are also discusses in
this article.

Author Keywords
automatic user interface generation, approach, generation
process, viability

ACM Classification Keywords
D.2.2 Approaches and generation process: User interfaces –
automatic generation. H.5.2. User Interfaces: Theory and
methods.

INTRODUCTION
Research of automatically generating user interfaces has
been carried out for more than two decades. There are a
number of studies done and works produced in the past.
There are several motivations for developing automatic
generation of user interface:

1. The increasing diversity of computing devices
providing user interface requires multiple user
interfaces to be constructed for each application.

2. For certain devices, especially office appliances
and consumer electronics, it is economical for
manufacturers to include many complex functions
but expensive to provide a high-quality user
interface

3. There are many users with different backgrounds,
goals, and capabilities using today’s user

interfaces, and each may benefit if his or her
interfaces are specifically designed to take
individual needs into account. It is impractical for
human designers to create a different interface for
each individual user, but an automatic interface
generator can easily do this.

Therefore, it is necessary to develop automatic user
interface generation. There are several approaches and
generation processes that have been considered. Using
communicative acts [1] is one of the most recent studies in
this area. Model-based approach has been considered for
quite sometime but it is still in its early stage. Adaptation
approach uses adaptive algorithm to generate user interface
but its concept it too complicated.

Nichols et al. [6] conducted a user study to demonstrate the
usability of interfaces automatically generated by the
Personal Universal Controller (PUC) system (figure 7). The
results of the study show that the PUC can automatically
generate interfaces which are more usable and provide
personal consistency.

The remainder of this paper is organized in the following
manner. First, it states the general problems of developing
user interface and the need for automatic user interface
generations. Then it presents four different approaches and
generation processes, and what was found in each reviewed
studies. At the end of this paper, it describes a user study
conducted by Nichols et al.[6] to demonstrate the viability
of automatic generation of user interfaces.

PROBLEM
The most common problems of user interfaces are: 1)
implementation is expensive and difficult (time & money),
2) different user interfaces offer inconsistent modes of
interaction, 3) most of the interfaces are primitive [1,2,3,4].
In developing software applications, an average of 48% of
the coding is devoted to the user interface, and about 50%
of the implementation time is committed to implement the
user interface, i.e. as user interfaces become easier to use,
they become harder to create [2]. These problems raise need
for automatic user interface generation.

APPROACHES

Communicative Acts
Falb et al. [1] used communicative acts, derived from
speech act theory, as an approach to generate user interfaces
for multiple devices fully automatically. Computer
scientists have found that speech act theory is very useful to

describe interaction and communication, since speech act
theory provides a clean and formal view of communication.
The use of communicative acts in high-level models of user
interfaces allows their creating with less technical
knowledge, since such models are easier to provide than
user interface code in a usual programming language.

Falb et al. [1] used a meta-model to define high-level user
interface model (figure 1). It captures three main concepts
used for modelling as well as their relations:

1. the intention capture by a communicative act

2. the propositional content modelled by use of an
ontology language

3. the set of interaction sequences modelled with a
finite state machine (figure 2) – where each state can
have multiple ingoing and outgoing transitions
representing segments of the interactions sequences

Figure 1. The meta-model of high-level UI models in UML [1]

Figure 2 shows a small selected part of the state machine
consisting of four states. A specification of a high-level UI
model according to this meta-model provides the essence of
a user interface to be generated.

Figure 2. Example of a state machine [1]

Model-based approach

Two of the reviewed studies used model-based approach to
guide the generation of the user interfaces [2,3]. There are
several model based user interface software tools and the
common property (figure 3) of all these tools is that the
desired user interface is automatically generated from a
specification represented by declarative models [3].

Figure 3. Model-based user interface generation [3]

The model-based approach offers a number of potential
benefits over traditional methods of developing user
interfaces, e.g., powerful design and runtime tools, support
for early conceptual design, consistency and reusability,
iterative development, integrated development of user
interface and application core.

Schlungbaum and Elwert [2] applied model-based approach
in two projects; 1) The Personal Universal Controller
(PUC) project applied model-based concepts to
automatically generate remote control interfaces for all of
the computerized appliances, 2) The Rich Human-Agent
Interaction (RHAI) project built a system that allows
intelligent agents to communicate with the user. In both
project, a high-level, usable, concise XML-based language
was designed and rules for generating user interfaces from
this language were developed.

Use of interface design tools

Pizano et al. [4] Created an automatic screen layout
generator and described a prototype that combines the
specification tool and the layout generator with a code
generator that produces calls to the GUI toolkit that
materialize the interface.

Figure 4. Prototype Architecture [4]

Adaptation

The Adaptive algorithm described in Pizano et al. [5]
supplements an existing model-based interface development
environment. The adaptive algorithm has three operators for
altering the decision tree. The one that reduces the greatest
number of errors is selected. The operators are as follows:

1. Change the recommended interators for a given leaf
of the tree.

2. Alter the boundary conditions for a branch.

3. Add a branch, and then set the output of the new
leaves.

GENERATION PROCESS

Figure 5. Conceptual Architecture [1]

Figure 6 describes the used generation process that can be
divided into four steps as followed.

1. Generation of the UI domain class implementations
together with their binding to the actual application
functionality.

2. Generation of the finite state machine
implementation.

3. Assembly of the UI domain information and the
communicative acts according to each state.

4. Rendering of the concrete user interface based on the
complete interaction design model

The first three steps transforms the specification into code
by applying a typical code generation process that uses an
instantiation of meta-model, describe in approach section,
as input and applies templates on them. At the fourth step,
the rendering process is based on the complete interaction
design model and is guided by device profiles, user
preferences, application=specific style guides and some
heuristics.

The PUC project mentioned in Nichols and Faulring [2]
generates a user interface automatically from a functional
model that is downloaded from the appliance to the user’s
device. PUC project uses its own XML-based language and
rules to generate user interfaces on different devices such as
PocketPCs, Microsoft Smartphones and desktop computers.

The process of user interface generation in Schlungbaum
and Elwert [3] consists of four basic steps.

1. High-level dialogue generation: identify all windows
of the desired user interface, specify the navigation
structure among these windows in the interface, and
assign interface objects to each window.

2. Layout generation: Each abstract interaction object is
assigned to a concrete Interaction Object (CIO) and
all CIOs are placed on their corresponding windows
by a layout algorithm that observes interface design
guidelines.

3. Low-level dialogue generation: deals with the user
interface behaviour on the CIO-level, e.g., disabling
of application actions if there no selected object.

4. Layout and design revision: used for participatory
design steps on which the end user of the desired
user interface is involved.

In Pizano et al. [4], a prototype automatic GUI generator
system (figure 4) is used to generate user interfaces. From a
developer point of view the automatic GUI generation
involves the following steps:

1. invoking the visual specification tool
2. selecting the target database and loading its schema
3. using the schema editor to generate the ASD
4. instructing the system to interpret the ASD and

generate the GUI
5. reviewing the resulting interface

In Eisenstein and Puerta[5], a range of tool is provided in
order to handle each stage in the interface development
cycle.

1. A knowledge elicitation system called U-TEL helps
the user of the interface develop models of the
interface’s data and task structures.

2. The interface designer uses model editors to create
relations between the more abstract elements in the
data and task structures and the more concrete
elements that describe the actual look and feel of the
interface.

3. MOBILE, a layout tool that can be configured to
reflect the decisions made at previous stages, is
provided.

TIMM, The Interface Model Mapper, is used to assist
designers in the generation of mapping between various
formal elements at different levels of abstraction. A decision
tree (figure 5) is used to perform the automatic mappings. A
decision tree defines a procedure for classifying cases into
groups based on discriminants.

Figure 6. A simple Decision Tree for Interactor Selection [5]

FINDINGS
Falb et al. [1] performed subjective evaluation. They found
that with regard to the generated user interface itself, a
usability problem has been noted with some embedding.
They also found some issues with inherent to the device: a
PDA has a small screen requiring both hands for it use and
it is not ideally suited for elderly people for several reasons.
In general, the usability of the user interfaces generated was
assessed informally as good.

An adaptive system for automated user interface design will
benefit both designers and interface-design researchers [5].
Designers will benefit in at least three ways as following:

1. User-interface design software will adapt to
accommodate their stylistic preferences. In the case
of individual idiosyncrasies, designers can trust that
the software will take their preferences into account.
Where there are whole schools of thought on design-
e.g., within a single software company-adapted
versions of the interface design software can be
distributed.

2. Designers will find it easier to explain their stylistic
preferences to others, since the adaptive algorithm
will extract a formal description of that style.

3. Technological developments in user-interface design
can be accommodated by existing design software
without the need for updates or patches. If, for
example, a new user-interface widget is introduced,
the automatic design algorithm can learn to handle it
by observing the designer’s behavior

Researchers, who can discover new information about the
way designers make decisions, will also benefit from
adaptation by observing the results of using the adaptive
algorithm. Adaptation will serve as a formal methodology
that will help researchers to develop and refine general
aspects of a theory of user interface design.

VIABILITY

Figure 7. PocketPC interfaces generated by the PUC [6]

Nichols et al. [6] presented a user study that examines the
usability of interfaces automatically generated by the
Personal Universal Controller (PUC) system (figure 7). The
study was carried out as follows:

1. showing that automatic generation can improve
usability by moving interfaces that are constrained
by cost and poor interaction primitives to another
device with better interactive capabilities: subjects
were twice as fast and four times as successful at
completing tasks with automatically generated
interfaces on a PocketPC device as with the actual
appliance interfaces.

2. showing that an automatic generator can improve
usability by automatically ensuring that new
interfaces are generated to be consistent with users’
previous experience: subjects were also twice as fast
using interfaces consistent with their experiences as
compared to normally generated interfaces.

The results show that:

1. users perform faster using the PUC and Uniform
interfaces as compared to the printers’ built-in
interfaces.

2. users perform faster using the Uniform interfaces as
compared to the PU interfaces.

3. PUC can improve usability by moving appliance
interfaces to another platform with improved
interaction primitives

CONCLUSIONS
Developing user interfaces is often hard, error-prone and
costly. It is also very difficult to develop interfaces for
different devices and users. These problems motivate the
creation of automatic user interface generation. The study in
this area has been carried out for nearly two decades and
there are a number of approaches (communicative acts,
model-based approach, use of interface design tools,
adaptive approach) and generation processes developed. A
user test was conducted by Nichols et al.[6] to show the
viability of generation of user interface automatically.

FUTURE WORK
Nichols and Faulring [2] addressed three challenges for
future user interface tools that incorporate automatic
generation.

1. finding more domains where automatic generation
can be applied successfully.

2. Improving modelling languages, which can be made
easier to author within a specific domain.

3. Finding novel ways of using models from multiple
sources to create customised user interfaces.

Pizano et al. [4] discussed the next step in the project as to
development of an automatic code generator capable of
producing the call-backs needed to convert the GUIs
currently created with the prototype (figure 4) into complete
applications.

Eisenstein and Puerta [5] talked about three possible future
works.

1. the prospect of incorporating user advice to
improve the applicability of the adaptation
algorithm

2. Applying the methodology described in Eisenstein
and Puerta [5] to other aspects of model-based
user-interface design: dialog layout and
application structure.

3. Applying the methodology to a variety of design
problems outside of user interface design.

REFERENCES
1. Falb, J., Popp, R., Rock, T., Jelinek, H., Arnautovic, E.,

Kaindl, H. (2007). fully-automatic generation of user
interfaces for multiple devices from a high-level model
based on communicative acts. System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International
Conference (26-26) Waikoloa, HI: IEEE

2. Nichols, J., Faulring, A., Automatic Interface
Generation and Future User Interface Tools. In Proc.
CHI2005, ACM Press (2005).

3. Schlungbaum, E., Elwert, T(1996)., Automatic User
Interface Generation from Declarative Models.
Proceedings CADUI'96: Computer-Aided Design of
User Interfaces, 3-18.

4. Pizano, A., Shirota, Y., Iizawa. A. (1993). Automatic
generation of graphical user interfaces for interactive
database applications. Proceedings of the second
international conference on Information and
knowledge management (pp 344-355). Washington DC,
United States: ACM

5. Eisenstein. J., Puerta. A. (2000). Adaptation in
automated user-interface design. Proceedings of the 5th
international conference on Intelligent user interfaces.
(pp 74-81). New Orleans, Louisiana, United States:
ACM

6. Nichols. J., Chau. D.H., Myers. B.A (2007).
Demonstrating the Viability of Automatically
Generated User Interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems.
(pp 1283-1292). San Jose, California, USA: ACM

http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4076361/4076362/04076422.pdf?tp=&arnumber=4076422&isnumber=4076362
http://www-2.cs.cmu.edu/%7Ejeffreyn/papers/nichols-faulring-uitools.pdf
http://www-2.cs.cmu.edu/%7Ejeffreyn/papers/nichols-faulring-uitools.pdf
http://www-2.cs.cmu.edu/%7Ejeffreyn/papers/nichols-faulring-uitools.pdf
http://www.isys.ucl.ac.be/bchi/cadui/96/files96/Schlungbaum-CADUI96.pdf
http://www.isys.ucl.ac.be/bchi/cadui/96/files96/Schlungbaum-CADUI96.pdf
http://www.isys.ucl.ac.be/bchi/cadui/96/files96/Schlungbaum-CADUI96.pdf
http://www.isys.ucl.ac.be/bchi/cadui/96/files96/Schlungbaum-CADUI96.pdf
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/180000/170166/p344-pizano.pdf?key1=170166&key2=5191109021&coll=GUIDE&dl=GUIDE&CFID=65187394&CFTOKEN=48443783
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325787/p74-eisenstein.pdf?key1=325787&key2=2525109021&coll=ACM&dl=ACM&CFID=65190390&CFTOKEN=64042364
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325787/p74-eisenstein.pdf?key1=325787&key2=2525109021&coll=ACM&dl=ACM&CFID=65190390&CFTOKEN=64042364
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325787/p74-eisenstein.pdf?key1=325787&key2=2525109021&coll=ACM&dl=ACM&CFID=65190390&CFTOKEN=64042364
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325787/p74-eisenstein.pdf?key1=325787&key2=2525109021&coll=ACM&dl=ACM&CFID=65190390&CFTOKEN=64042364
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/330000/325787/p74-eisenstein.pdf?key1=325787&key2=2525109021&coll=ACM&dl=ACM&CFID=65190390&CFTOKEN=64042364
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1250000/1240819/p1283-nichols.pdf?key1=1240819&key2=7122809021&coll=GUIDE&dl=GUIDE&CFID=65313556&CFTOKEN=53111902
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1250000/1240819/p1283-nichols.pdf?key1=1240819&key2=7122809021&coll=GUIDE&dl=GUIDE&CFID=65313556&CFTOKEN=53111902
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1250000/1240819/p1283-nichols.pdf?key1=1240819&key2=7122809021&coll=GUIDE&dl=GUIDE&CFID=65313556&CFTOKEN=53111902
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1250000/1240819/p1283-nichols.pdf?key1=1240819&key2=7122809021&coll=GUIDE&dl=GUIDE&CFID=65313556&CFTOKEN=53111902
http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/1250000/1240819/p1283-nichols.pdf?key1=1240819&key2=7122809021&coll=GUIDE&dl=GUIDE&CFID=65313556&CFTOKEN=53111902

