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Abstract- HP and Intel have recently introduced a new style 
of instruction set architecture called EPIC (Explicitly 
Parallel Instruction Computing), and a specific architecture 
called the IPF (Itanium Processor Family).  This paper seeks 
to illustrate the differences between EPIC architectures and 
former styles of instruction set architectures such as 
superscalar and VLIW.  Several aspects of EPIC 
architectures have already appeared in computer designs, 
and these precedents are noted.  Opportunities for traditional 
instruction sets to take advantage of EPIC-like 
implementations are also examined. 
 

1. Introduction 
 
Instruction level parallelism (ILP) is the initiation and 
execution within a single processor of multiple machine 
instructions in parallel.  ILP is becoming an increasingly 
more important factor in computer performance.  It was first 
used in the supercomputers of the 1960s, such as the CDC 
6600 [34], IBM S/360 M91 [36], and IBM ACS [31], but 
such efforts were for the most part dropped in the 1970s due 
to the an apparent lack of parallelism in programs generated 
by then-existing compilers [35] and due to the less attractive 
performance / implementation-complexity tradeoffs 
necessary for ILP as compared to simpler cache-based 
processors, such as the IBM S/360 M85, and as compared to 
multiprocessor systems. 
  By the 1980s and 1990s, instruction level parallelism 
once again became an important approach to computer 
performance.  Alan Charlesworth, Josh Fisher, and Bob Rau 
were leaders in experimenting with VLIW (very long 
instruction word) architectures, in which sophisticated 
compilers uncovered independent instructions within a 
program and statically scheduled these as multiple 
concurrent operations in a single wide instruction word.  
Charlesworth led efforts at FPS (Floating Point Systems) for 
attached array processors programmed in VLIW style [4]. 
 
 
 
 
 
 
 

  Fisher led efforts at Yale on a VLIW machine called 
the ELI-512 and later helped found Multiflow, which 
produced the Multiflow Trace line of computers [6]. Rau led 
efforts at TRW on the Polycyclic Processor and later helped 
found Cydrome, which produced the Cydra-5 computer 
[25].  Other early VLIW efforts include iWarp and CHoPP. 
  In contrast to these VLIW-based efforts, other 
companies were exploring techniques similar to those used 
in the 1960s where extra hardware would dynamically 
uncover and schedule independent operations.  This 
approach was called “superscalar” (the term was coined by 
Tilak Agerwala and John Cocke of IBM) to distinguish it 
from both traditional scalar pipelined computers and vector 
supercomputers.  In 1989, Intel introduced the first 
superscalar microprocessor, the i960CA [21], and IBM 
introduced the first superscalar workstation, the RS/6000 
[33].  In 1993 Intel introduced the superscalar Pentium, and 
since the mid-1990s the AMD or Intel processor in your 
desktop or laptop has relied on both clock rate and the 
superscalar approach for performance. 
  After a few years of operation, Cydrome and Multiflow 
both closed their doors after failing to establish a large 
enough market presence in the crowded minisupercomputer 
market of the 1980s.  HP hired Bob Rau and Mike 
Schlansker of Cydrome, and they began the FAST (Fine-
grained Architecture and Software Technologies) research 
project at HP in 1989; this work later developed into HP’s 
PlayDoh architecture.  In 1990 Bill Worley at HP started the 
PA-Wide Word project (PA-WW, also known as SWS, 
SuperWorkStation).  Josh Fisher, also hired by HP, made 
contributions to these projects [28]. 
  In 1992, Worley recommended that HP seek a 
manufacturing partner for PA-WW, and in December 1993 
HP approached Intel [8,28].  Cooperation between the two 
companies was announced in June 1994, and the companies 
made a joint presentation of their plans at the 
Microprocessor Forum in October 1997.  The term EPIC 
(Explicitly Parallel Instruction Computing)  was coined to 
describe the design philosophy and architecture style 
envisioned by HP, and the specific jointly designed 
instruction set architecture was named IA-64.  More 
recently, Intel has preferred to use IPF (Itanium Processor 
Family) as the name of the instruction set architecture.  
Itanium is the name of the first implementation (it was 
previously called by the project codename Merced) [29], 



and currently Itanium-based systems can be purchased from 
HP, Dell, and Compaq, with many other system 
manufacturers committed to selling Itanium-based systems. 
 

2. Three Major Tasks for ILP Execution 
 
Processing instructions in parallel requires three major 
tasks: (1) checking dependencies between instructions to 
determine which instructions can be grouped together for 
parallel execution; (2) assigning instructions to the 
functional units on the hardware; and, (3) determining when 
instructions are initiated (i.e., start execution) [27].  (Note: 
This departs from the earlier Rau and Fisher paper [24]; the 
three tasks identified there are: determine dependencies, 
determine independencies, and bind resources.)  Four major 
classes of ILP architectures can be differentiated by whether 
these tasks are performed by the hardware or the compiler.   
 

 
Table 1.  Four Major Categories of ILP Architectures. 

 
  Table 1 identifies the four classes of ILP architectures 
that result from performing the three tasks either in 
hardware or the compiler.  A superscalar processor is one 
with a traditional, sequential instruction set in which the 
semantics (i.e., meaning) of a program is based on a 
sequential machine model.  That is, a program’s results 
should be the same as if the instructions were individually 
processed on a sequential machine where one instruction 
must be completed before the next one is examined.  A 
superscalar processor includes the necessary hardware to 
speed up program execution by fetching, decoding, issuing, 
executing, and completing multiple instructions each cycle, 
but yet in such a way that the meaning of the program is 
preserved.  The decoding and issuing of multiple 
instructions requires dependency-checking hardware for 
instruction grouping, decoding and routing hardware for 
assignment of instructions to function units, and register 
scoreboard hardware for timing the initiation of instruction 
execution.  The dependency-checking hardware does not 
scale well (O(n²)) and has been seen as a limit to the width 
of multiple instruction issue in superscalars. 
  At the opposite extreme is VLIW.  The three 
responsibilities for ILP are each assigned to the compiler.  
The implementation of a VLIW computer uses long 

instruction words that provide a separate operation for each 
function unit on each cycle (similar to horizontal 
microprogramming).  The width of the instruction word 
depends on the number of function units; e.g., Multiflow 
produced machines with long instruction words up to 28 
operations wide.  Groups of independent operations are 
placed together into a single VLIW, and the operations are 
assigned to function units by position in the given fields 
within the long instruction word (“slotting”).  The initiation 
timing is bound by the instruction word in which an 
operation appears; all operations in a VLIW start execution 
in parallel. 
  A sequence of long instruction words thus defines the 
plan of execution for a particular program on a particular 
implementation, the plan being specified by the sequence of 
VLIW instructions cycle by cycle [28].  It is the 
responsibility of the compiler to determine which operations 
can be grouped together and where they must be placed in 
this sequence of long instruction words.  However, this also 
represents the Achilles heel of VLIW architectures: the 
problem of compatibility between implementations.  Code 
compiled for one implementation with a certain set of 
function units with certain latencies will not execute 
correctly on a different implementation with a different set 
of function units and/or different latencies (although there 
have been studies directed at providing compatibility, e.g., 
see [7]).  In contrast, compatibility is not a problem with 
superscalars, and this is a major reason for their popularity. 
  Table 1 suggests intermediate architectures between 
superscalars and VLIWs with varying amounts of compiler 
responsibility (see also [27]).  If the compiler determines the 
grouping of independent instructions and communicates this 
via explicit information in the instruction set, we have what 
Fisher and Rau termed an “independence architecture” [24] 
or what is now known as the EPIC architecture style [28].  
EPIC retains compatibility across different implementations 
as do superscalars but does not require the dependency 
checking hardware of superscalars.  In this manner, EPIC 
can be said to combine the best of both superscalar and 
VLIW architectures.  The first EPIC architecture appears to 
be Burton Smith’s Horizon (in 1988), which provided an 
explicit lookahead count field of the distance to the next 
dependent instruction [19], although Lee Higbie sketched an 
EPIC-like approach some ten years earlier (in 1978) in 
which concurrency control bits are added to the instruction 
format and set by the compiler or programmer [13]. 
  Another category of ILP architecture is one in which 
the grouping and function unit assignment is done by the 
compiler, but the initiation timing of the operations is done 
by hardware scheduling.  This style is called dynamic 
VLIW [26], and it has some advantage over traditional 
VLIW since it can respond to events at run time that cannot 
be handled by the compiler at compile time.  For example, 
early VLIW designs did not include data caches, since a 
cache miss would disrupt the sequence of long instruction 
words by invalidating the compiler’s assumption of latency  
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for load instructions.  Thus in a simple dynamic VLIW 
approach, we can add load-miss interlock to otherwise bare 
hardware and stall the entire machine on a data cache miss. 
  Along these lines, Rau paid special attention to 
memory latency in the Cydra 5 design by use of a “memory 
collating buffer” which handled the early, and possibly out-
of-order, arrival of values loaded from memory so as to 
preserve the static memory access latency assumptions made 
by the compiler; late arrivals delayed the entire machine 
[25,26].  (See also the discussion of LEQ semantics in [27].) 
  A more complicated architecture handles run-time 
events not by merely delaying the initiation of the next 
group, but by adding what is essentially dynamic scheduling 
hardware for the individual operations within each VLIW.  
(Although called dynamic VLIW by Rudd [26] and others, 
because of the complexity of the hardware this approach 
might actually be considered as a fifth category.)  
Instruction execution is split into two (or three) phases, with 
the first phase statically scheduled to read the registers, 
compute a result, and write the result to a temporary results 
buffer.  The second phase will move results from the buffer 
into the register file.  (Note the extra hardware and 
buffering, similar to what is found in a superscalar 
processor.)  Rudd’s simulations suggest that there is little 
performance to be gained from introducing this level of 
complexity [26]. 
  Figure 1 is a revision of Figure 2 from Rau and Fisher 
[24] using the responsibilities identified above, and shows 
the three responsibilities as performed by the compiler or by 
the hardware.  The horizontal lines demonstrate the four 
levels at which information about the program can be given 
to the hardware.  At the top level, a traditional instruction set 
is used and the hardware must perform the three tasks.  

There is no information in the instruction set to convey 
independent instruction groups, function unit assignment, or 
instruction timing. 
  The dashed lines within the compiler box indicate that 
for best performance, the compiler may go ahead and do all 
three tasks as required for best performance on a particular 
implementation, but supply the instructions in a less 
semantically-rich instruction set.  In such a case, the 
hardware has to rediscover the independent groups among 
the instructions that the compiler has already arranged 
within the instruction stream, and it has to repeat the 
function unit assignment and instruction initiation timing. 
  As an example of the benefit of scheduling even for a 
superscalar processor, consider the HP PA-8000.  It will run 
code generated for any PA-RISC 1.1 or 2.0 processor, but 
Holler reports that SPECint95 benchmarks ran 38% faster 
and SPECfp95 benchmarks ran 53% faster when specifically 
compiled for the PA-8000 as compared to running those 
same benchmarks but as compiled for the previous 
generation PA-7200 [14].   
  The other levels in Figure 1 at which programs can be 
conveyed to the hardware add more information to the 
instruction set and thus require less hardware.  For example, 
let us assume a machine with two load/store units, an integer 
ALU, and a branch unit, with latencies 2, 2, 1, 2, 
respectively.  If we wish to perform a simple addition, C = 
A + B, the code given to a superscalar would be something 
like this: 
 
  Load R1,A 
  Load R2,B 
  Add   R3,R1,R2 
  Store C,R3 
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Figure 1. Graphical Depiction of the Three Major Tasks. 



  The hardware has to determine that the loads are 
independent and can be grouped together, while the add is 
dependent on both and must be in a separate group.  
Likewise the store is dependent on the add and must be 
placed in a third group.  The hardware will assign the 
instructions to the different function units based on the 
operation codes, and the register scoreboarding hardware 
will govern the initiation of the add and store.  (Note: 
because of special forwarding paths or cascaded function 
units, some superscalar processors like the IBM RS/6000 
and the TI SuperSPARC can start the execution of certain 
pairs of dependent instructions at the same time.) 
  If we look at the corresponding VLIW program, we see 
that the compiler has completely planned out the grouping, 
function unit assignment, and initiation timing.  This is the 
complete plan of execution and relies on a particular 
implementation and on particular latencies.  Thus, this 
VLIW program would be invalid for an implementation 
with only one load/store unit, whereas the traditional code 
for a superscalar processor as given above would run 
without any changes being necessary. 
 
  ld/st unit 0       ld/st unit 1      integer alu           branch unit 

Load R1,A Load R2,B nop nop 
nop nop nop nop 
nop nop Add R3,R1,R2 nop 
Store C,R3 nop nop nop 

 
  The VLIW program also illustrates a difficulty of low 
utilization of the long instruction word fields.  Of the 16 
total fields in the four long instruction words, 12 are empty 
and have a no-operation placed in them.  Multiflow 
recognized this inefficiency and provided a compression 
scheme, in which VLIW programs existed on disk and in 
main memory in an encoded format [6].  Long instruction 
words from the program were expanded to the traditional 
fixed-length VLIW format when they were fetched into the 
instruction cache.  Several VLIW processors now use 
similar compression schemes, including the Lucent 
StarCore, Philips TriMedia, Sun MAJC, and TI C6x 
processors. 
  If we add register scoreboarding to handle dynamic 
events like cache misses, either on a long-instruction-word-
wide basis or on a function-unit-by-function-unit basis, we 
move to a dynamic VLIW architecture.  Note that in this 
case we can omit the second long instruction word above, 
since it only has nops.  This further improves the utilization 
of instruction memory.  Two computers that can be placed 
in this category appeared in the late 1980s: the Intel i860 
microprocessor [18] and the Apollo Domain DN10000 
workstation.  In each computer, an integer pipeline can run 
in parallel with a floating-point pipeline.  The instruction 
formats in these computers include a bit to specify an 
integer and a floating-point instruction pair that can be 
initiated in parallel (they are slotted in a fixed order in 
memory to correspond to the function unit assignment). 

  The EPIC style of instruction set for this example must 
have grouping information, such as a count of independent 
instructions.  For example, if we add a Horizon-like 
lookahead count (given in parentheses for all but the last 
instruction), we obtain: 
 

(2) Load R1,A 
(1)   Load R2,B 
(1) Add  R3,R1,R2 
(.)   Store C,R3 
 

The hardware can use the lookahead count to group the two 
loads together.  Note that hardware function unit assignment 
and hardware instruction initiation timing are still required. 
  An analogy to these distinctions that might be helpful 
in presenting these ideas in the classroom is the example of 
designing and building a simple wooden stool.  The design 
represents a program, and the construction and assembly of 
the stool (e.g., top, two legs, cross-brace) represent the 
operations.  The designer will send the plan to the 
woodshop, which represents the processor.  If there are 
several machines and workers in the woodshop (i.e., 
multiple function units), a shop foreman would set up a 
complete plan of building the stool.  This plan would 
determine which parts could be constructed or assembled in 
parallel, which machines or tools would be used, and when 
construction or assembly activities would start.  E.g., 
 
  table saw     band saw     hand saw      hammer 

 
  To correspond to the superscalar approach, the designer 
walks to the wood shop and hands the design to the shop 
foreman, who must then do the planning there in the shop as 
construction proceeds.  To correspond to the VLIW 
approach, the designer and the shop foreman are the same 
person; the design includes the detailed plan of building as 
illustrated above.  This plan is necessarily shop-specific, 
since some shops might not have a band saw.  Instead, in 
this second shop a hand saw must be used, and the time for 
cutting the legs will lengthen, thereby forcing the nailing to 
start later.  The plan is thus not compatible across wood 
shops. (A dynamic VLIW analog might be where the time to 
complete hand sawing is unknown in the second shop and 
nailing activities start only when sawing on certain parts is 
completed.) 
  To complete the analogy for the EPIC approach, the 
dependencies can be given in the design.  For instance, the 
cutting of the brace, top, and legs are all independent; but, 
nailing cannot start until at least two parts are completed.  
The design and independence information make no 

Cut 
brace 

Cut leg 0   

Cut top Cut leg 1  Nail leg 0 to brace 
   Nail leg 1 to brace 
   Nail legs to top 



assumptions about what particular shops tools will be 
present (i.e., at least one cutting-type tool is assumed, but 
the specific type is not necessarily set down in the plan), nor 
assumptions about the length of time required to construct or 
build.  The independence information assists the foreman in 
the shop in setting up an efficient plan of building. 
 

3. Characteristics of EPIC Architectures 
and Historical Precedents 
 
3.1. Explicit Parallelism 
 

As described above, explicit information on independent 
instructions in the program is a major distinguishing feature 
of EPIC architectures.  In the IPF architecture, three 41-bit 
instructions are packaged together into a 128-bit “bundle”, 
which is the unit of instruction fetch.  A 5-bit template 
identifies the instruction type and any architectural stops 
between groups of instructions.  In little-endian format, a 
bundle appears as: 
 

Instruction 2 Instruction 1 Instruction 0 Template 
127                    86                     45                     4                 0 
 
  Bundles can have zero, one, or at most two stops.  
Instruction groups (i.e., sets of independent instructions) 
thus can span instruction bundles.  Nops may be needed to 
pad out the bundles in some cases.  The instruction type 
(one of six types: integer alu, non-alu integer, memory, 
floating-point, branch, and extended) can help in function 
unit assignment and routing during decoding, but this 
information provides type information rather than specific 
function unit identification.  Thus, it is not in the dynamic or 
traditional VLIW category.  (Note that not all combinations 
of instruction type and stop boundaries are available -- 
which would have required an 11-bit template to encode 
6³*2³ cases.)  S. Vassiliadis at IBM proposed a similar 
instruction bundling scheme, called SCISM, in the early 
1990s [37]. 
  Schlansker and Rau list five other attributes of EPIC 
architectures beyond instruction grouping [28].  The first 
two deal with eliminating and/or speeding up branching, the 
third with cache locality management, and the final two with 
starting load instructions as early as possible. 
 
3.2. Predicated execution 
 

To avoid conditional branches, each instruction can be 
conditioned or predicated on a true/false value in a predicate 
register.  Only those instructions with a true predicate are 
allowed to write into their destination registers.  Thus, if-
then-else sequences can be compiled without branches 
(called “if conversion”).  Instructions from each side of the 
decision are predicated with one of two inversely-related 
predicate registers and can be executed in parallel.  (If 
predicate values are available in time, an implementation 

can delete instructions with false predicates in the decode or 
issue stages.) 
  IPF provides 64 predicate registers.  Each register can 
hold one bit (true or false) and is set by compare 
instructions.  In the normal case, a compare instruction 
writes to two predicate registers, one with the result of the 
compare and one with the inverted result, so that if-
converted code can make use of this register pair. 
  The idea of predication dates back to at least 1952, 
when the IBM 604 plugboard-controlled computer included 
a suppression bit in each instruction format and 
programmers could provide if-converted segments of code 
[2].  Predication has been an important part of several 
instruction sets, including Electrologica X8 (1965), IBM 
ACS (1967), ARM (1986), Cydra-5 (1988), and Multiflow 
(1990) [2,24].  Other instruction sets without extra bits to 
spare in instruction formats have added a conditional move 
instruction, which provides for “partial predication”. 
 
3.3. Unbundled branches 
 

Conditional branches are composed of three separate 
actions: (1) making a decision to branch or not; (2) 
providing the target address; and, (3) actual change of the 
PC.  By separating these actions, multiple comparisons can 
be made in parallel, earlier in the instruction stream.  
Moreover, multiple targets can be specified, and instructions 
can be prefetched from those paths.  Thus, the change of the 
PC can be delayed until an explicit branch instruction or set 
of branch instructions, having the effect of a multiway, 
prioritized branch. 
  The IPF architecture uses the predicate registers to 
record the results of comparisons and includes eight branch 
registers for use in prefetching.  Branch instructions in IPF 
are made conditional by use of a predicate and can specify a 
branch register (action 3) or relative address (actions 2+3). 
  The decomposition of branches into separate actions is 
an idea that has been independently rediscovered several 
times, but the decomposition into actions 1+2 as a branch on 
condition instruction and action 3 as a separate exit 
instruction that chose among the currently active targets was 
part of the IBM ACS-1 instruction set in the mid-1960s [31]. 
 
3.4. Compiler control of the memory hierarchy 
 

EPIC architectures should be able to provide hints to the 
hardware about the probable latency of load operation (i.e., 
where in the memory hierarchy a data value will be found) 
and the probable locality of a loaded or stored data item 
(i.e., where in the memory hierarchy to place a data value).  
These are hints rather than exact operation timings, so 
register interlocks or scoreboarding techniques are still used. 
  IPF provides hints as given in Table 2 and also 
provides prefetching stride information by use of base-
update addressing mode.  Because of low temporal locality 
of vector operands, data cache bypass was a feature of some 



vector processors.  The Intel i860 was perhaps the first 
processor to offer two types of scalar load instructions, one 
of which would bypass cache [18].  In 1994, the HP 7200 
included temporal locality hints as part of the normal 
load/store instructions [20].  Several instruction set 
architectures since that time have included locality hints, 
typically as part of software prefetch instructions (e.g., 
Alpha, MIPS, SPARC v.9). 
 

hint Store Load Fetch 

Temporal locality / L1 Yes Yes Yes 

No temporal locality / L1  Yes Yes 

No temporal locality / L2   Yes 

No temporal locality / all 
levels 

Yes Yes Yes 

 
Table 2.  Cache Hints in IPF 

 
3.5. Control speculation 
 

To start loads (or other potentially-long-running 
instructions) early, they must often be moved up beyond a 
branch.  The problem with this approach occurs when the 
load (or other instruction) generates an exception.  If the 
branch is taken, the load (or other instruction) would not 
have been executed in the original program and thus the 
exception should not be seen.  To allow this type of code 
scheduling, an EPIC architecture should provide a 
speculative form of load (or other long-running instruction) 
and tagged operands.  When the speculative instruction 
causes an exception, the exception is deferred by tagging the 
result with the required information.  The exception is 
handled only when a nonspeculative instruction reads the 
tagged operand (in fact, multiple instructions may use the 
tagged operand in the meantime and merely pass the tag on).  
Thus, if the branch over which the instruction is moved is 
not taken, no exception occurs, thereby following the 
semantics of  the original program. 
  IPF provides speculative load and speculation check 
instructions.  Integer speculative loads set a NaT (Not a 
Thing) bit associated with the integer destination register 
when an exception is deferred.  Floating-point speculative 
loads place a NaTVal (Not a Thing Value) code in the 
floating-point destination register when an exception is 
deferred.  These bits and encoded values propagate through 
other instructions until a speculation check instruction is 
executed.  At that point a NaT bit or NaTVal special value 
will raise the exception. 
  The need to start loads early can be seen back in 
Konrad Zuse’s Z4 computer constructed in Germany during 
the Second World War.  The instruction stream was read 
two instructions in advance; and, if a load was encountered, 
it was started early [2].  The IBM Stretch (1961) used a 
separate index processor to pre-execute index-related 

instructions in the instruction stream and start loads early 
[3].  Moving instructions across branches was a vital aspect 
of Fisher’s trace scheduling [24], and Ebcioglu discussed 
conditional execution of instructions based on branches in 
1987 [9].  Multiflow introduced special non-faulting loads 
and used IEEE floating-point NaN propagation rules for 
supporting control speculation [6]. Deferring exceptions 
from speculative loads appears to have been first presented 
by Smith, Lam, and Horowitz in 1990 [30]. 
 
3.6. Data speculation 
 

To be able to rearrange load and store instructions, the 
compiler must know the memory addresses to which the 
instructions refer.  Because of aliasing, compilers are not 
always able to do this at compile time.  In the absence of 
exact alias analysis, most compilers must settle for safe but 
slower (i.e., unreordered) code.  EPIC architectures provide 
speculative loads that can be used when an alias situation is 
unlikely but yet still possible.  A speculative load is moved 
earlier in the schedule to start the load as early as possible; 
and, at the place where the loaded value is needed, a data-
verifying load is used instead.  If no aliasing has occurred, 
then the value retrieved by the speculative load is used by 
the data-verifying load instruction.  Otherwise, the data-
verifying load reexecutes the load to obtain the new value. 
  IPF provides advanced load and advanced load check 
instructions that use an Advanced Load Address Table 
(ALAT) to detect stores that invalidate advanced load 
values. 
  The IBM Stretch (1961) started loads early, as 
mentioned above.  The lookahead unit checked the memory 
address of a store instruction against subsequent loads and 
on a match cancelled the load and forwarded the store value 
to the buffer reserved for the loaded value (only one 
outstanding store was allowed at a time) [3].  The CDC 
6600 (1964) memory stunt box performed similar actions 
[34]. 
 

4. Alternate Translation Times 
 
To this point, we have assumed a standard compilation 
model, which includes steps such as compilation, linking, 
loading, and execution.  We have assumed that either the 
compiler or the hardware does the three major tasks of 
managing ILP.  However, alternatives exist.  For example, 
even within the compilation model, nontraditional points of 
translation and optimization have been proposed, such as 
reallocating registers and/or repositioning procedures at link 
time for better performance.  Additionally, other 
nontraditional points are available during execution, such as 
software-based translation at page-fault time [7], hardware-
based translation at icache-miss time [1,22], hardware-based 
capture and caching of parallel issue [11,23], or various 
dynamic optimizations during execution (e.g., software



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
based [10] or hardware-based [5]).  At any of these 
additional points, translation from a traditional instruction 
set into an EPIC or VLIW internal format is possible.  
Indeed, a typical compiler optimization step of if-conversion 
has been proposed as a run-time action using either software 
[12] or hardware [17]. Transmeta provides a run-time 
software approach that translates x86 instructions into an 
internal VLIW format, which they call “code-morphing” 
and which includes data and control speculation [15,16]. 
   An early example of the run-time hardware approach 
is the National Semiconductor Swordfish processor (1990).  
Instructions from a traditional instruction set were examined 
at instruction cache miss by a hardware predecoder.  The 
predecoder checked the instruction types and stored pairs of 
instructions with a grouping bit for parallel issue in the 
instruction cache [32].  Register scoreboarding was still 
performed at decode time, so this scheme looks like a 
traditional superscalar processor from the outside but is 
actually a dynamic-VLIW processor internally.  Figure 2 
illustrates this approach. 
 

 5. Conclusions 
 
EPIC architectures are a new style of instruction set for 
computers.  They are the skillful combination of several 
preexisting ideas in computer architecture along with a 
nontraditional assignment of the responsibilities in ILP 

processing between the compiler and the hardware.  As 
such, EPIC architectures can claim to combine the best 
attributes of superscalar processors (compatibility across 
implementations) and VLIW processors (efficiency since 
less control logic).  Through nontraditional translation,  
current traditional instruction sets can be used but the 
combined hardware and software system can exploit the 
efficiency of VLIW and EPIC implementations. 
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