
Software Transactional Memory for Dynamic-sized

Data Structures

Maurice Herlihy
Computer Science Dept.

Brown University
Providence, RI 02912

Victor Luchangco Mark Moir
Sun Microsystem Laboratories
1 Network Drive, UBUR02-311

Burlington, MA 01803

William Scherer III
Computer Science Dept.
University of Rochester
Rochester, NY 14620

Abstract

We propose a new form of software transactional
memory (STM) designed to support dynamic-sized
data structures, and we describe a novel non-blocking
implementation. The non-blocking property we con-
sider is obstruction-freedom, which is weaker than
lock-freedom; as a result, it admits substantially sim-
pler and more efficient implementations. A novel fea-
ture of our obstruction-free STM is its use of mod-
ular contention managers to guarantee progress in
practice. We illustrate the flexibility of our dynamic
STM with a straightforward implementation of an
obstruction-free red-black tree, thereby demonstrat-
ing a sophisticated non-blocking dynamic data struc-
ture that would be difficult to implement by other
means. We also present the results of simple pre-
liminary performance experiments that demonstrate
that an “early release” feature of our STM is useful
for reducing contention, and that our STM lends it-
self nicely to the effective use of modular contention
managers.

1 Introduction

Locking in shared-memory multiprocessors has well-
known software engineering problems. Coarse-
grained locks, which protect relatively large amounts
of data, generally do not scale: threads block one
another even when they do not really interfere, and
the lock becomes a source of contention. Fine-
grained locks can reduce these scalability problems,
but they introduce software engineering problems as
the locking conventions for guaranteeing correctness
and avoiding deadlock become complex and error-
prone. Locks also cause vulnerability to thread fail-
ures and delays. For example, a thread preempted
while holding a lock will obstruct other threads.

Dynamic Software Transactional Memory (DSTM)
is a low-level application programming interface

(API) for synchronizing shared data without using
locks. A transaction is a sequence of steps executed
by a single thread. Transactions are atomic: each
transaction either commits (it takes effect) or aborts
(its effects are discarded). Transactions are lineariz-
able [6]: they appear to take effect in a one-at-a-
time order. Transactional memory supports a com-
putational model in which each thread announces the
start of a transaction, executes a sequence of opera-
tions on shared objects, and then tries to commit
the transaction. If the commit succeeds, the trans-
action’s operations take effect; otherwise, they are
discarded. Although transactional memory was orig-
inally proposed as a hardware architecture [5], there
have been several proposals for lock-free and wait-free
software transactional memory (STM) implementa-
tions [9, 10].

We present the first dynamic STM implementation.
Prior STM designs required both the memory usage
and the transactions to be defined statically in ad-
vance. In contrast, our obstruction-free DSTM allows
transactions and transactional objects to be created
dynamically, and transactions may determine the se-
quence of objects to access based on the values ob-
served in objects accessed earlier in the same trans-
action. As a result, DSTM is much better suited to
the implementation of dynamic-sized data structures,
such as lists and trees.

We have developed prototype implementations of
DSTM in the C++ and JavaTM programming lan-
guages. In this paper, we focus on the Java version,
which is considerably simpler because there is no need
for explicit memory management. Our Java imple-
mentation uses an experimental prototype of Doug
Lea’s java.util.concurrent package [1] to call na-
tive compare-and-swap (CAS) operations.

Much of the simplicity of our implementation is due
to our choice of non-blocking1 progress condition. A

1Some authors use “non-blocking” as a synonym for “lock-
free”; others use it more broadly to include all progress condi-
tions requiring that the failure or indefinite delay of a thread

1



synchronization mechanism is obstruction-free [4] if
any thread that runs by itself for long enough makes
progress (which implies that a thread makes progress
if it runs for long enough without encountering a syn-
chronization conflict from a concurrent thread). Like
stronger non-blocking progress conditions, such as
lock-freedom and wait-freedom, obstruction-freedom
ensures that a halted thread cannot prevent other
threads from making progress.

Unlike lock-free mechanisms, obstruction-free
mechanisms do not rule out livelock ; interfering con-
current threads may repeatedly prevent one another
from making progress. As demonstrated here and
elsewhere [4, 7], the obstruction-free property admits
substantially simpler implementations that are more
efficient in the absence of synchronization conflicts
among concurrent threads.

Livelock is, of course, unacceptable. Nevertheless,
we believe that there is great benefit to treating the
mechanisms that ensure progress as a matter of pol-
icy, evaluated by their empirical effectiveness for a
given application and execution environment. By
separating the concerns of safety and progress, we
can design and verify an obstruction-free data struc-
ture once, and then “plug in” modular contention
management schemes. These schemes can exploit
information about time, operating systems services,
scheduling, hardware environments, and other prac-
tical sources of information that have largely been
neglected in the lock-free literature. We believe that
this approach will yield simpler and more efficient
concurrent data structures, which will help to accel-
erate their widespread acceptance and deployment.

DSTM provides a simple and effective mecha-
nism for constructing non-blocking implementations
of complex concurrent data structures. Section 2 il-
lustrates the use of DSTM through a series of simple
examples. To evaluate the utility of DSTM for imple-
menting complex data structures, we have also used
it to implement an obstruction-free red-black tree.
As far as we are aware, this red-black tree is the
most complex non-blocking data structure achieved
to date. Our implementation is a reasonably straight-
forward transformation of a sequential implementa-
tion [3], but it would be very difficult to construct
such a non-blocking implementation from first prin-
ciples. Indeed, it would be difficult to implement even
a lock-based red-black tree that allows operations ac-
cessing different parts of the tree to proceed in par-
allel.

Section 3 describes how our STM detects synchro-

cannot prevent other threads from making progress. We prefer
the latter usage. Thus, we consider that obstruction-freedom,
lock-freedom, and wait-freedom are all non-blocking progress
conditions.

nization conflicts and how transactions commit and
abort, with an emphasis on how the obstruction-free
property simplifies the underlying algorithm. In Sec-
tion 4, we describe the ContentionManager class, the
part of the implementation responsible for ensuring
progress. Section 5 describes some simple experi-
ments conducted with our prototype DSTM imple-
mentation. Concluding remarks appear in Section 6.

2 Overview and Examples

In this section, we illustrate the use of DSTM through
a series of simple examples. DSTM manages a collec-
tion of transactional objects, which are accessed by
transactions. A transaction is a short-lived, single-
threaded computation that either commits or aborts.
A transactional object is a container for a regular
Java object. A transaction can access the contained
object by opening the transactional object, and then
reading or modifying the regular object. Changes to
objects opened by a transaction are not seen outside
the transaction until the transaction commits. If the
transaction commits, then these changes take effect;
otherwise, they are discarded.

Transactional objects can be created dynamically
at any time. The creation and initialization of a
transactional object is not performed as part of any
transaction.

Concretely, the basic unit of parallel computation
is the TMThread class, which extends regular Java
threads. Like a regular Java thread, it provides a
run() method that does all the work. In addition,
the TMThread class provides additional methods for
starting, committing or aborting transactions, and
for checking on the status of a transaction. Threads
can be created and destroyed dynamically.

Transactional objects are implemented by the class
TMObject. To implement an atomic counter, one
would create a new instance of a Counter class (not
shown), and then create a TMObject to hold it:

Counter counter = new Counter(0);

TMObject tmObject = new TMObject(counter);

Any class whose objects may be encapsulated
within a transactional object must implement the
TMCloneable interface. This interface requires the
object to export a public clone() method that re-
turns a new, logically disjoint copy of the object.
DSTM uses this method when opening transactional
objects, as described below. (DSTM guarantees that
the object being cloned does not change during the
cloning, so no synchronization is necessary in the
clone() method.)

2



A thread calls beginTransaction() to start a
transaction. Once it is started, a transaction is active
until it is either committed or aborted.

While the transaction is active, a transaction can
access the encapsulated counter by calling open():

Counter counter =

(Counter) tmObject.open(TMObject.WRITE);

counter.inc(); // increment the counter

The argument to open() is a constant indicating
that the caller may modify the object. The open()
method returns a copy of the encapsulated regu-
lar Java object2 created using that object’s clone()
method; we call this copy the transaction’s version.

The thread can manipulate its version of an object
by calling its methods in the usual way. DSTM guar-
antees that no other thread can access this version,
so there is no need for further synchronization.

Note that a transaction’s version is meaningful only
during the lifetime of the transaction. References
to versions should not be stored in other objects;
only references to transactional objects are meaning-
ful across transactions.

A thread attempts to commit its transaction
by invoking commitTransaction(), which returns
true if and only if the commit is successful. A
thread may also abort its transaction by invoking
abortTransaction().

Transactions that successfully commit are lineariz-
able: they appear to execute in a one-at-a-time order.
But what kind of consistency guarantee should we
make for a transaction that eventually aborts? One
might argue that it does not matter, as the transac-
tion’s changes to transactional objects are discarded
anyway. However, if synchronization conflicts could
cause a transaction to observe inconsistencies among
objects before it aborts, then the transaction might
have unexpected side-effects, such as dereferencing a
null pointer, array bounds violations, and so on.

DSTM addresses this problem by validating a
transaction whenever it opens a transactional object.
Validation consists of checking for synchronization
conflicts, that is, whether any object opened by the
transaction has since been opened in a conflicting
mode by another transaction. If a synchronization
conflict has occurred, open() throws an Aborted ex-
ception without returning a value. The set of trans-
actional objects opened before the first such excep-
tion is guaranteed to be consistent: open() returns
the actual states of the objects at some recent in-
stant. (Throwing an exception also allows the thread
to avoid wasting effort by continuing the transaction.)

2The open() method actually returns an object of class
java.lang.Object, which we must explicitly cast back to class
Counter.

public class List {

int value;

TMObject next;

}

public class IntSet {

private TMObject first;

public IntSet() {

List firstList = new List(Integer.MIN_VALUE);

this.first = new TMObject(firstList);

firstList.next =

new TMObject(new List(Integer.MAX_VALUE));

}

public boolean insert(int v) throws TMException {

List newList = new List(v);

TMObject newNode = new TMObject(newList);

TMThread thread = (TMThread)Thread.currentThread();

while (true) {

thread.beginTransaction();

boolean result = true;

try {

List prevList =

(List)this.first.open(TMObject.WRITE);

List currList =

(List)prevList.next.open(TMObject.WRITE);

while (currList.value < v) {

prevList = currList;

currList =

(List)currList.next.open(TMObject.WRITE);

}

if (currList.value == v) {

result = false;

} else {

result = true;

newList.next = prevList.next;

prevList.next = newNode;

}

} catch (Aborted a){}

if (thread.commitTransaction())

return result;

}

}

...

}

Figure 1: Integer Set Example

We also want DSTM to support nested transac-
tions, so that a class whose methods use transac-
tions can invoke from within a transaction methods of
other classes that also use transactions. However, we
have not acquired sufficient programming experience
to decide on the appropriate nesting semantics for
DSTM, so we do not specify this behavior for now.3

2.1 Extended Example

Consider a linked list whose values are stored in in-
creasing order. We will use this list to implement an

3Our implementation does support a rudimentary form of
nested transactions, but we do not use it in any of the examples
discussed in this paper.

3



integer set (class IntSet) that provides insert(),
delete(), and member() methods. Relevant code
excerpts are shown in Figure 1.

The IntSet class uses two types of objects: nodes
and list elements ; nodes are transactional objects
(class TMObject) that contain list elements (class
List), which are regular Java objects. The List class
has the following fields: value is the integer value,
and next is the TMObject containing the next list el-
ement. We emphasize that next is a TMObject, not
a list element, because this field must be meaningful
across transactions.

The IntSet constructor allocates two sentinel
nodes, containing list elements holding the minimum
and maximum integer values (which we assume are
never inserted or deleted). For brevity, we focus on
insert(). This method takes an integer value; it re-
turns true if the insertion takes place, and false if the
value was already in the set. It first creates a new list
element to hold the integer argument, and a new node
to hold that list element. It then repeatedly retries
the transaction until it succeeds. The transaction
traverses the list, maintaining a “current” node and
a “previous” node. At the end of the traversal, the
current node contains the smallest value greater than
or equal to the value being inserted, so the method
can detect a duplicate or insert the new node between
the previous and current nodes. The transaction then
tries to commit. If the commit succeeds, the method
returns; otherwise, it resumes the loop.

An attractive feature of DSTM is that we can
reason about this code almost as if it were sequen-
tial. The principal differences are the need to catch
Aborted exceptions and retry failed transactions, and
the need to distinguish between transactional nodes
and non-transactional list elements.

2.2 Conflict Reduction

A transaction A will typically fail to commit if a
concurrent transaction B opens an object already
opened by A. Ultimately, it is the responsibility
of the contention manager (discussed in Section 4)
to ensure that conflicting transactions eventually do
not overlap. Even so, the IntSet implementation
just described introduces a number of unnecessary
conflicts. For example, consider a transaction that
calls member() to test whether a particular value is in
the set, running concurrently with a transaction that
calls insert() to insert a larger value. One trans-
action will cause the other to abort, since they will
conflict opening the first node of the list. Such a con-
flict is unnecessary, however, because the transaction
inserting the value does not modify any of the nodes
traversed by the other transaction. Designing the op-

erations to avoid such conflicts reduces the need for
contention management, and thereby generally im-
proves performance and scalability.

DSTM provides several mechanisms for eliminating
unneeded conflicts. One conventional method is to
allow transactions to open nodes in read-only mode,
indicating that the transaction will not modify the
object. Concurrent transactions that open the same
transactional object for reading do not conflict.

List list = (List) node.open(TMObject.READ);

The revised insert() method navigates through
the list in read-only mode until it identifies which
nodes to modify. It then “upgrades” its access from
read-only to regular access by reopening that transac-
tional object in WRITE mode. Read-only access is par-
ticularly useful for navigating through tree-like data
structures where all transactions pass through a com-
mon root, but most do not modify the root.

DSTM also provides a novel and more powerful
way to reduce conflicts. By invoking the release()
method, a transaction may release an object that it
has opened in READ mode before it commits. Once an
object has been released, other transactions accessing
that object do not conflict with the releasing transac-
tion over the released object. The programmer must
ensure that subsequent changes by other transactions
to released objects will not violate the linearizability
of the releasing transaction.

In our IntSet example, releasing nodes is useful
for navigating through the list with a minimum of
conflicts, as shown in Figure 2. As a transaction tra-
verses the list, opening each node in READ mode, it
releases every node before its prev node.4 A transac-
tion that adds an element to the list “upgrades” its
access to the node to be modified by reopening that
node in WRITE mode. A transaction that removes an
element from the list opens in WRITE mode both the
node to be modified and the node to be removed. It is
easy to check that these steps preserve linearizability.

Because it is often difficult, especially in the face of
aliasing, for a transaction to keep track of the objects
it has opened, and in what mode each was opened, an
object may be opened several times, and in different
modes, by a single transaction. Therefore, for each
object, DSTM matches invocations of release()
with invocations of open(TMObject.READ); an object
is not actually released until release() has been in-
voked as many times as open(TMObject.READ) for
that object. Of course, objects opened in WRITEmode
by a transaction cannot be released before the trans-
action commits; if a transaction opens an object in

4This is analogous to the technique of lock coupling (see [2],
e.g.), but of course does not use any locks.

4

Administrator



public boolean delete(int v) throws TMException {

TMThread thread = (TMThread)Thread.currentThread();

while (true) {

thread.beginTransaction();

boolean result = true;

try {

TMObject lastNode = null;

TMObject prevNode = this.first;

List prevList =

(List)prevNode.open(TMObject.READ);

List currList =

(List)prevList.next.open(TMObject.READ);

while (currList.value < v) {

if (lastNode != null)

lastNode.release();

lastNode = prevNode;

prevNode = prevList.next;

prevList = currList;

currList =

(List)currList.next.open(TMObject.READ);

}

if (currList.value != v) {

result = false;

} else {

result = true;

prevList = (List)prevNode.open(TMObject.WRITE);

prevList.next.open(TMObject.WRITE);

prevList.next = currList.next;

}

} catch (Aborted a){}

if (thread.commitTransaction())

return result;

}

}

Figure 2: Remove method with early release

READ mode and then “upgrades” to WRITE mode, sub-
sequent requests to release the object are silently ig-
nored.

Clearly, the release facility must be used with care;
casual or careless use may violate transaction lineariz-
ability. Nevertheless, we have found it very useful for
designing shared pointer-based data structures such
as lists and trees in which a transaction reads its way
through a complex structure.

3 Implementation

We now describe our DSTM implementation. A
transaction object (class Transaction) has a status
field that is initialized to be active, and is later
set to either committed, or aborted by a CAS call.
(CAS functionality is provided by the AtomicRef
class in the experimental prototype of Doug Lea’s
java.util.concurrent package [1].)

3.1 Opening a Transactional Object

Recall that a transactional object (class TMObject) is
a container for a regular Java object, which we call

aborted

Data

Data

start

old object

new object

transaction

Locator
TMObject

Figure 3: Transactional object structure

a version. Logically, each transactional object has
three fields: (1) transaction points to the most re-
cent transaction to open the transactional object in
WRITE mode; (2) oldObject points to an old object
version; and (3) newObject points to a new object
version. The current (i.e., most recently committed)
version of a transactional object is determined by the
status of the transaction that most recently opened
the object in WRITE mode. If that transaction has
committed, then the new object is the current version
and the old object is meaningless. If the transaction
is aborted, then the old object is the current version
and the new object is meaningless. If the transaction
is active, then the old object is the current version,
and the new object is the active transaction’s ten-
tative version. This version will become current if
the transaction commits; otherwise, it will be dis-
carded. Observe that, if several transactional objects
have most recently been opened in WRITEmode by the
same active transaction, then changing the status of
that transaction from active to committed atomi-
cally changes the current version of each respective
object from its old version to its new version; this is
the essence of how atomic transactions are achieved
in our implementation.

The interesting part of our implementation is how
a transaction can safely open a transactional object,
without changing its current version (which should
occur only when the transaction successfully com-
mits). To achieve this, we need to atomically access
the three fields mentioned above. However, modern
architectures do not generally provide hardware sup-
port for such atomic updates. Therefore, we intro-
duce a level of indirection, whereby each TMObject
has a single reference field start, that points to a
Locator object (Figure 3). The Locator object con-
tains the three fields mentioned above: transaction
points to the transaction that created the Locator,
and oldObject and newObject point to the old and
new object versions. This indirection allows us to
change the three fields atomically by calling CAS to
swing the start pointer from one Locator object to
another.

We now explain in more detail how transaction A
opens a TMObject in WRITE mode. Let B be the

5



active

Data

committed

Data

Data

old object

new object

transaction

old object

new object

transaction

start

old Locator

new Locator

TMObject
copy

Figure 4: Opening transactional object after recent
commit

active

Data

aborted

Data

Data

old object

new object

transaction

old object

new object

transaction

start

old Locator

new Locator

TMObject

copy

Figure 5: Opening transactional object after recent
abort

transaction that most recently opened the object in
WRITE mode. A prepares a new Locator object with
transaction set to A. Suppose B is committed. A
sets the new locator’s oldObject field to the current
newObject, and the new newObject field to a copy of
the the current newObject (Figure 4). (Recall that
every class that can be encapsulated by a transac-
tional object must export a public clone() method.)
A then calls CAS to change the object start field from
B’s old locator to A’s new locator. If the CAS suceeds,
the open() method returns the new version, which is
now the tentative version for this object. A can up-
date that version without further synchronization. If
the CAS fails, the transaction retries.5 Suppose, in-
stead, that B is aborted. A follows the same proce-
dure, except that it sets the new locator’s oldObject
field to the current oldObject (Figure 5).

5Readers familiar with the use of CAS may be concerned
about the ABA problem [8], in which a CAS operation fails to
notice that the location it accesses has changed to a new value
and then back to the original value, causing the CAS to succeed
when it should have failed. This problem does not arise in our
Java implementation, because garbage collection (GC) ensures
that a Locator object does not get recycled until no thread has
a pointer to it. While GC eliminates the ABA problem in this
case, we caution the reader against assuming that the ABA
problem can never occur in environments that support GC.

Finally, suppose B is still active. Because B may
commit or abort before A changes the object’s start,
A cannot determine which version is current at the
moment its CAS succeeds. Thus, A cannot safely
choose a version to store in the oldObject field of its
Locator. The beauty of obstruction-freedom is that
A does not need to guarantee progress to B, and can
therefore resolve this dilemma by attempting to abort
B (by using CAS to change B’s status from active to
aborted), and then reverting to one of the previous
cases, depending on whether B was aborted or com-
mitted (A’s attempt to abort B ensures that one of
these is the case). This resolution also highlights an
important property of our algorithm with respect to
the integration of contention managers: Because A
can determine in advance that it will interfere with
B, it can decide, based on the policy implemented
by its contention manager (discussed in the next sec-
tion), whether to abort B or to give B a chance to
finish.

Read-only access is implemented in a slighly differ-
ent way. When A opens a transactional object o for
reading, it extracts the last committed version v (pos-
sibly by aborting an active transaction) exactly as
for write access. Instead of installing a new Locator
object, however, A adds the pair (o, v) in a private
read-only table. The release() method for o simply
validates the transaction, as described below, and re-
moves the (o, v) pair from the read-only table.

To match invocations of open(TMObject.READ)
and release(), the transaction also maintains a
counter for each pair in the read-only table. If an
object is opened in READ mode when it already has
an entry in the table, the transaction increments
the corresponding counter instead of inserting a new
pair. This counter is decremented by the release()
method, and the pair is only removed when the
counter is reduced to 0.

3.2 Validating and Committing a
Transaction

Before open() returns an object, DSTM requires that
the calling transaction be validated. Validation re-
quires two steps:

1. For each pair (o, v) in the read-only table, ver-
ify that v is still the most recently committed
version of o.

2. Check that the status field of the Transaction
object remains active.

Committing a transaction requires two steps: vali-
dating the entries in the read-only table as described

6



above, and calling CAS to change the status of the
Transaction field from active to committed.

3.3 Costs

In the absence of synchronization conflicts, a transac-
tion that opens W objects for writing requires W +1
CAS operations: one for each open() call, and one
to commit the transaction. Synchronization conflicts
may require CAS calls to abort other transactions.
These are the only strong synchronization operations
needed by our DSTM implementation: once open()
returns an object version, there is no need for further
synchronization to access that version.

Validating a transaction that has opened W ob-
jects for writing and R objects for reading (that have
not been released) requires O(R) work.

4 The Contention Manager

Our advocacy of obstruction-free synchronization
does not mean that we expect progress to take care
of itself. On the contrary, we have found that ex-
plicit measures are often necessary to avoid cyclic
restart and starvation. Obstruction-free synchroniza-
tion encourages a clean modular distinction between
the obstruction-free mechanisms that ensure correct-
ness (such as conflict detection and recovery) and
additional mechanisms that ensure progress (such as
adaptive backoff and queuing).

In our transactional memory implementation,
progress is the responsibility of the contention man-
ager. Each thread has its own contention manager
instance, which it consults to decide whether to force
a conflicting thread to abort. In addition, contention
managers of different threads may consult one an-
other to compare priorities and other attributes.

The correctness requirement for contention man-
agers is simple and quite weak. Informally, any active
transaction that asks sufficiently often must eventu-
ally get permission to abort a conflicting transaction.
More precisely, every call to a contention manager
method eventually returns, and in any infinite se-
quence of requests by a single transaction, that trans-
action will receive permission to abort the other in-
finitely often. This requirement is needed to preserve
the obstruction-free property: A transaction A that is
forever denied permission to abort a conflicting trans-
action will never commit even if it runs by itself. If
the conflicting transaction is also requesting and be-
ing denied permission to abort A, the situation is akin
to deadlock. Conversely, if A is eventually allowed to
abort any conflicting transaction, then A will even-
tually commit if it runs by itself for long enough.

public abstract class ContentionManager {

public void beginTransaction();

public void commitTransaction();

public void abortTransaction();

public boolean prepare(TMObject object, int mode);

public boolean

react(TMObject object, int attempt, int mode);

public void opened(TMObject object, int mode);

public boolean mayPreempt(ContentionManager other);

}

Figure 6: Contention manager interface

The correctness requirement does not guarantee
progress in the presence of conflicts. Whether a
particular contention manager should provide such
guarantees, and under what assumptions and system
models it should do so, is a policy question that may
depend on applications, environments, and other fac-
tors. The problem of avoiding livelock is thus dele-
gated to the contention manager.

Rather than mandate a specific contention-
reduction policy, our DSTM implementation defines
an interface in the form of an abstract class, as shown
in Figure 6. The manager class provides methods for
statistical tracking, and leaves it to subclasses to im-
plement methods that decide what a transaction does
when it detects a conflict.

The transactional memory implementation calls
the beginTransaction(), commitTransaction()
and abortTransaction() methods to inform the
contention manager when these events occur. When a
thread calls a transactional object’s open() method,
it initially calls prepare() to discover whether it
should immediately abort any conflicting transac-
tion. Each time it detects a conflict after refraining
from aborting its rival, the thread calls the react()
method to determine whether to continue to hold
back. It calls the opened() method when it succeeds
in opening the object. The mayPreempt() method
allows two contention managers to compare internal
state (such as priorities) to determine if one transac-
tion may abort the other. In addition to determining
whether to abort conflicting transactions, these meth-
ods may implement measures to reduce contention,
for example, by backoff or queuing.

4.1 Examples

As a baseline for the experimental results reported in
Section 5, we implemented a trivial Aggressive con-
tention manager that always and immediately grants
permission to abort any conflicting transaction. We
also implemented a simple Polite contention man-
ager, that adapatively backs off a few times when
it encounters a conflict. Each time a thread tries
to open a transactional object already opened by

7



another transaction, it calls the manager’s react()
method. This method sleeps for a random duration
before returning false, refusing permission to abort
the other thread. Each subsequent react() call dou-
bles the expected sleep time, until a threshold is
reached. Beyond that threshold, the react() call
returns immediately and returns true, granting the
caller permission to abort the conflicting transaction.
The contention manager follows the same strategy for
each object opened.

One could imagine many variations on this strat-
egy, as well as different strategies based on queueing
rather than backoff combined with spinning. Discov-
ering which strategies work best remains an open area
of research.

5 Results

In this section, we briefly present the results of some
simple performance experiments we conducted on a
Sun FireTM 15K server with 72 900MHz SPARC r©
processors.

In each experiment, we implemented an integer
set and measured how many operations completed
on the integer set in 20 seconds, varying the num-
ber of participating threads between 1 and 576 (i.e.,
a multiprogramming level of 8). For each opera-
tion, we randomly choose a value between 0 and 255
and randomly choose whether to insert or delete the
value. The restricted range ensures significant con-
tention among concurrent threads, and thus exercises
the contention managers. In each experiment, each
thread executes operations repeatedly with no delay
between them in order to examine how the imple-
mentations scale with increased contention. The re-
sults of these experiments are presented in Figure 7.
The graphs show results as throughput in operations
per millisecond. Each point represents the average
of seven runs of each experiment. The upper graph
shows the results for the various experiments, running
from 1 to 576 threads. The lower graph presents a
more detailed look at the unsaturated cases, when the
number of threads does not exceed the number of pro-
cessors (72). Of course, many more experiments can
and will be conducted to test various implementation
approaches at the transaction, contention manager,
and STM levels. The simple experiments presented
here are intended only to demonstrate some broad
principles.

We first implemented a simple linked list synchro-
nized with a single lock (see the “Simple Locking” line
in Figure 7). Due to its simplicity, this implemen-
tation yielded a higher throughput than any other
configuration in the single-threaded case (736 oper-

ations per millisecond). However, as the number of
threads increases, the throughput of this implemen-
tation quickly falls off; in particular, when there are
more threads than processors, this implementation
performs very badly due to preemption while holding
the lock.

There are also specialized optimistic locking algo-
rithms that exploit the simple semantics of linked
lists to substantially improve performance. However,
these algorithms involve unsynchronized reads of
shared data, and thus require careful reasoning about
concurrency to ensure correctness and avoid dead-
lock. Furthermore, they do not generalize straightfor-
wardly to more complex data structures. Because our
purpose here is to illustrate the implications of dif-
ferent implementation approaches, not to construct
the best implementation of integer sets, we do not
consider these algorithms in this paper.

Next, we used DSTM to implement the simple
transactional integer set shown in Figure 1, and com-
posed it with the trivial Aggressive contention man-
ager (IntSetSimple/Aggressive in Figure 7). This
configuration immediately livelocks as soon as there
is more than one thread. However, when we compose
the same implementation with the slightly more so-
phisticated Polite contention manager, it performs
much better. In fact, it outperforms the simple
lock based implementation with more than about 20
threads. These results demonstrate the necessity and
effectiveness of contention management.

Although we can manage contention, it is often
preferable to simply avoid contention, as discussed in
Section 2. We therefore also tested the linked list im-
plementation with early release shown in Figure 2. As
seen in Figure 7, this implementation does not live-
lock even when used with the Aggressive contention
manager, which demonstrates that this programming
technique is an effective way of reducing contention.
Also, because this implementation gives rise to less
contention, the effect of contention management is
less pronounced. This is because the number of ob-
jects opened by the transaction at any time is much
smaller in this implementation.

In the context of sequential algorithms, it is stan-
dard practice to design more complex algorithms that
outperform simpler ones (for example, by implement-
ing a balanced tree instead of a list). For non-
blocking algorithms, however, implementing more
complex data structures has been prohibitively diffi-
cult. Our work on DSTM makes a significant step to-
wards overcoming this problem. To demonstrate, we
have used DSTM to implement a non-blocking red-
black tree using a straightforward translation from
sequential code [3].

8



0

10

20

30

40

50

60

70

0 100 200 300 400 500

Number of Threads (72-processor machine)

Simple Locking
IntSetSimple/Aggressive

IntSetSimple/Polite
IntSetRelease/Aggressive

IntSetRelease/Polite
RBTree/Polite

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Number of Threads (72-processor machine)

Simple Locking
IntSetSimple/Aggressive

IntSetSimple/Polite
IntSetRelease/Aggressive

IntSetRelease/Polite
RBTree/Polite

Figure 7: Experimental results in operations per millisecond

As can be seen from Figure 7, our red-black tree
significantly outperforms the other non-blocking im-
plementations at low levels of contention. This is
because its time complexity is logarithmic in the size
of the set, in contrast to the linear time complex-
ity of the list. Note that this effect would be even
more pronounced if we chose values to insert from
a larger range, which would result in larger sets in
steady state.

Even with this limited value range, the red-black
tree (using the Polite contention manager) remains
competitive with all of the other configurations shown
while we have at most one thread per processor, and
is significantly better than most of them. However,
there is a marked degradation in its performance with

increasing numbers of threads, and it does not per-
form as well as the other configurations when we have
more threads than processors. We believe that we
can improve on this in two ways. First, by judicious
use of the early release mechanism, it should be pos-
sible to reduce the size of transactions and thereby
reduce contention, just as we did with the list-based
set. Furthermore, we believe that the more complex
nature of the red-black tree algorithm requires more
sophisticated contention management. We have al-
ready started work in both of these directions.

One shortcoming our of current DSTM implemen-
tation is that there is no way for one transaction to
detect that it is about to abort another transaction
via an object that the second transaction has opened

9



in READ mode. Clearly there is a tradeoff between
the amount of synchronization needed to open an ob-
ject in one of these modes in a “visible” way in order
to allow competing transactions to “be polite” and
the benefit derived from doing so. We are currently
working on some ideas in this direction.

6 Lessons and Future Work

Our early experiences suggest the following lessons:

• Our DSTM interface supports relatively
straightforward programming of a wide variety
of dynamic-sized data structures. There remain
a number of interesting issues regarding inter-
face and semantics. In many cases, there are
tradeoffs between efficiency of implementation
and usability and simplicity of interface; we
have yet to explore these tradeoffs in detail.

• Performance can be improved by putting a little
extra effort into determinining which objects can
safely be released from the transaction without
jeopardizing correctness.

• Our STM contention manager interface lends it-
self nicely to a variety of contention management
schemes, but can still be improved to provide
more information and flexibility to future con-
tention managers.

• The choice of contention managers matters. For
example, the Aggressive contention manager,
which always grants permission to abort a con-
flicting transaction, causes some benchmarks to
livelock.

• Relatively simple contention managers such as
the Polite manager are remarkably effective.
Even so, we believe that it will be important to
develop more sophisticated managers that can
adapt to different workloads.

• It is possible to design contention managers that
make provable progress guarantees in the pres-
ence of certain weak but reasonable assumptions
about the underlying system. Whether such
managers are practical is a matter for future re-
search, and we postpone further discussion to a
later paper.

We have only begun to explore the range of possi-
ble contention manager designs. Ultimately, we think
that designing, testing, and reasoning about modular
contention managers will be a rich source of research
problems.

Acknowledgments Thanks to Ron Larson for get-
ting us access to the Sun Fire 15K computer, and to
Steve Heller for useful discussions.

References

[1] Java Specification Request for Concurrent Utili-
ties (JSR166). http://jcp.org.

[2] Rudolf Bayer and Mario Schkolnick. Concur-
rency of operations on B-trees. Acta Informat-
ica, 9:1–21, 1977.

[3] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

[4] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd
International Conference on Distributed Com-
puting Systems, 2003.

[5] M. Herlihy and J. Moss. Transactional mem-
ory: Architectural support for lock-free data
structures. In Proceedings of the 20th Inter-
national Symposium in Computer Architecture,
pages 289–300, 1993.

[6] M. Herlihy and J. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[7] Victor Luchangco, Mark Moir, and Nir Shavit.
Nonblocking k-compare-single-swap and other
delights. Submitted for publication, January
2003.

[8] M. Michael and M. Scott. Simple, fast, and
practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the 15th
Annual ACM Symposium on the Principles of
Distributed Computing, pages 267–276, 1996.

[9] M. Moir. Transparent support for wait-free
transactions. In Proceedings of the 11th Inter-
national Workshop on Distributed Algorithms,
pages 305–319, 1997.

[10] N. Shavit and D. Touitou. Software transac-
tional memory. Distributed Computing, Special
Issue(10):99–116, 1997.

10


