
A Class of Compatible Cache Consistency Protocols

and their Support by the IEEE Futurebus

P a u l S w e a z e y * a n d A l a n J a y S m i t h **÷

Abstract
Standardization of a high performance blackplane

bus, so that it can accommodate boards developed by
different vendors, implies the need for a standardized
cache consistency protocol. In this paper we define a
class of compatible consistency protocols supported by
the current IEEE Futurebus design. We refer to this
class as the MOESI class of protocols; the term
"MOESI" is derived from the names of the states. This
class of protocols has the property that any system
component can select (dynamically) any action permit-
ted by any protocol in the class, and be assured that
consistency is maintained throughout the system.
Included in this class are actions suitable for copyback
caches, write through caches and non-caching proces-
sors. We show that the Berkeley protocol and the Dra-
gon protocol fall within this class, and can be extended
to be compatible with other members of the class. The
Illinois, Firefly and Write-Once protocols can be
adapted to be compatible with this class; the facilities
of the Futurebus currently do not support those proto-
cols without adaptation. We discuss very briefly per-
formance choices among protocols, and also other
issues relating to a standard bus consistency protocol.

A thought: ",4 foolish consistency is the hobgoblin of
little minds, adored by little statesmen and philosophers
and devines." [Emer41]

1. Introduct ion
Computer systems based on a common (shared)

backplane bus have become popular for a number of
reasons: (a) The cost of such a system tends to be low.
(b) The backplane bus provides a standard intercon-
nect which only has to be designed once. (c) The stan-
dard interconnect permits independent design of indi-
vidual boards. (d) It also permits those independently
designed boards to come from different vendors (mix
and match). (e) Additional boards can be added to
such a system, to incrementally add features such as
I/O processors, memory or additional CPUs. The
advantages of such a design have led to a number of
standard buses, including the S-100, VME bus [Fish84,
P1014], Multibus [Coop83], Multibus-II, Nu Bus
[TexaS3], IEEE Fastbus [ANSI86], et cetera; see

*Graphics Workstation Division, Tektronix, Inc., Wilsonville, Oregon 97070, USA

**Computer Science Division, EECS Department, University of California, Berke-
ley, Ca. 94720, USA.

tThe material presented here is partially based on research supported in part by
the National Science Foundation under grant DCR-8202591, by the Defense Ad-
vance Research Projects Agency (DoD), under Arpa Order No. 4871, Monitored by
Naval Electronic Systems Command under Contract No. N00039-84-C.0089, and
by the State of California under the MICRO program,

iGust84, Borr85] for an overview. Each new bus has
been introduced to remedy real or perceived
deficiencies in then available buses.

Existing buses are not considered by many to be
adequate to support the new generation of high perfor-
mance 32-bit microprocessors such as the Fairchild
Clipper [Cho86, Fair85], The MIPS machine [Mous86],
the 68020 [Moto84], the ZS0000 [Phil85], the 80386
[Elay85], and the 32332 [Mate85]. A bus for this class
of processor should be able to provide very high
bandwidth for block transfers, while still permit t ing
slower and less costly system components to communi-
cate at lower rates. The need for a bus with these
characteristics prompted the IEEE to set up the
Futurebus (P896) standards committee, with a charter
to propose a standard design for a high performance
bus. The signal lines and electrical characteristics of
Futurebus have been largely decided [Borr84, Bala84,
P896] and are close to formal adoption.

An important application for a backplane bus is to
support multi-(micro)-processor systems. The trend of
technology over the last few years has led to the
current situation in which it is considerably less
expensive to provide N mips via K processors of N/K
mips each than to build a single (uniprocessor) which
delivers N mips [Smit84b]. Multiprocessor systems
built around a backplane bus not only provide a con-
venient way to configure such systems but also provide
expansibility the number of processors can be
increased as more processing power is needed. (We
note, but do not further discuss, the fact that success-
fully programming such systems is difficult.)

Two factors require that high performance mul-
tiprocessor systems have cache memories [Smit82,
84a]. First, the access t ime to main memory across a
bus, no mat ter how fast the bus and the main memory
(within reason), is likely to be so large as to appreci-
ably slow down the processor. Second, simple calcula-
tions will show that no feasible bus design can provide
adequate bandwidth to memory for any reasonable
number of high performance processors. A cache
memory (of sufficient size and adequate performance)
solves the first problem by reducing the average
memory access t ime substantially - by as much as 90%
[Smit82]. The cache also cuts the memory bandwidth
requirement, since most references are satisfied locally
with no bus activity. Cache memories, thus, are a
necessity for high performance multiprocessor systems
with a shared memory.

Cache memories, however, introduce the cache
consistency problem, which refers to the fact tha t the
contents of a given location of main memory can reside
simultaneously in both main memory and in zero or

0884-7495/86/0000/0414S01.00 © 1986 IEEE
414

more cache memories. If such a system is to correctly
and deterministically execute computations, all refer-
ences to a given location, no mat ter from which proces-
sor they originate, should reference the same value;
i.e. the contents of the cache memories must be con-
sistent.

There are a number of approaches to the cache
consistency problem; the features and operation of the
chosen solution depend largely on the type of computer
architecture in which they are to operate. The cache
can be shared; there can be a combination of private
caches and a shared cache, with the shared cache hold-
ing the shared data; data modifications can be broad-
cast, with all other processors invalidating their
copies; or a global or distributed directory can be
maintained to keep track of which cache has what
information [Arch84, Cens78, Tang76]. Surveys of the
various cache consistency mechanisms appear in
[Smit82, 84a, 85d], directions for memory hierarchy
and cache research are discussed in [Smit85a] and a
complete bibliography of the l i terature on cache
memories appears in [Smit86].

With the increasing performance of microproces-
sors, a solution to the cache consistency problem in a
system with buses became necessary and the first pub-
lished bus consistency protocol appeared in [Good83];
such protocols are means of maintaining distributed
directories. Other bus based consistency protocols
have been given in [Fran84, Papa84, Rudo84, and
Katz85]. An excellent survey and comparison of some
of these appears in [Arch85], and another comparison
appears in [Vern85].

I t seems clear that any new bus design must
incorporate features and facilities sufficient to support
one or more of the bus based cache consistency proto-
cols. To the extent that these protocols are of
significantly different performance, support for the
higher (highest) performance protocols should be avail-
able. Conversely, it is also important that the bus be
able to support lower performance (i.e., lower cost)
cards, and in particular, the bus must be able to sup-
port both sophisticated cache masters (i.e., copy back
caches), simpler ones (e.g., write through caches) and
non-caching components (e.g. I/O processors). As
explained below, the IEEE Futurebus has been
designed with these goals in mind.

Because the Futurebus is intended to be a stan-
dard interface to which can be attached boards from
different vendors, it would seem highly desirable that
the Futurebus standard specify a protocol (or a class of
compatible protocols), such that any board adhering to
that standard could expect to maintain cache con-
sistency; otherwise, in general, consistency could not
be ensured. For that reason, the IEEE P896.2 work-
ing group on caching in the Futurebus has been work-
ing on defining a standard protocol (or class of compa-
tible protocols) for cache consistency. In this paper, we
present a class of compatible consistency protocols
which are supported by the IEEE Futurebus design.
By a class of protocols, we mean that different
caches/processors may use different algorithms for
what to cache when. By compa t ib l e , we mean that as
lon~ as each cache/processor uses a protocol from the

class we define, the overall memory system state will
remain consistent. Our class of compatible protocols,
as we explain below, includes those suitable for non-
caching boards (e.g. I/O processors) and write through
caches, as well as copy-back caches.

In the next section of this paper (2), we summar-
ize, to the extent useful for our discussion, the electri-
cal characteristics of the Futurebus. That is followed
in section 3 by our MOESI model for consistency
schemes, a definition of the signal lines we need, and
the class of consistency protocols that we specify. In
section 4, we discuss the extent to which existing pro-
tocols are compatible with the class we define. Other
issues in proposing a cache consistency standard are
briefly considered in section 5. Conclusions and over-
view appear in section 6.

2. Futurebus Electrical Features
The Futurebus incorporates numerous features

that support the efficient implementation of a variety
of cache consistency protocols. Some of these features
were added solely to support caching, while others are
a natural consequence of designing a generic, high-
performance, asynchronous bus. In this section, we
describe the electrical and related characteristics of
the bus.

2.1. Broadcast Address Cycle
Common to all of the possible Futurebus cache

consistency protocols is the need to monitor system bus
activity by caches that are not currently accessing the
bus; this activity is sometimes called snooping. Shared
memory image integrity is maintained by the ability
of each cache to detect when other modules are per-
forming an action that might affect the state of a line
in the local cache. This means that all caches must
participate in the address-time control handshake.

On the Futurebus all address cycles are broadcast
to all subsystems. A single bus master issues an
address and an address strobe, and it must continue to
assert the address until all other Futurebus modules
signal that they no longer need the address. In the
case of a processor/cache bus interface this means that
the cache must check the address for a hit in its direc-
tory before allowing the address cycle to complete.

2.2. Open Collector Signals
Figure 1 illustrates how a broadcast handshake

works. All bus signals are open-collector driven and
passively terminated. The effect of multiple drivers on
a single line is similar to having a number of children
stepping on a garden hose. A child's foot on the hose
(open-collector driver on) can stop the flow (low logic
level), but the removal of one foot will not cause flow
to resume (high logic level) as long as someone else is
stepping on the hose (another driver is on). Similarly
with open-collector signals, if you need to know when
the first module reaches a particular state, have it pull
the signal low. And if you need to know when "all"
modules have reached a particular state, arrange to
have them all pulling the signal low initially and wait
for the signal to go high. This will only occur when all

415

Mantnr
Sunchronlznr

m
Slave

Acknowledge

SInvn
Acknowledge

I n v e r o e m

.... ,tpc-cck

iiiiii ii i
::::::::::::::::::::::::::::::::::

 iiii iilliiiiiii i!iiiiiiiiii!
wlred-OR glltchnn

. S~c-*ck
:,:.:.........:.:.:,:,:.:.:.:.:.

2'11;21:222:;'22;:2:~;2:~2:~;2~11:

Vi::::iiiiiiii::::i}:i!!::::i::iiiiii
:::::::::::::::::::::::::::::::::::

Figure I: Broadcast handshake on Futurebus.

the drivers have "let go" of the signal. (In summary,
drive low, float high.)

We do note that an unavoidable perturbation of
the signal occurs when one driver releases an open-
collector signal that is still being asserted by another
driver. The current that is no longer passing through
the released driver must now be sunk through a driver
that is physically located elsewhere in the backplane.
This current switch manifests itself as a small glitch,
called a wi red -OR glitch, whose duration and ampli-
tude are a function of the distance between drivers,
and the amount of current that is no longer being sup-
plied by the released driver. The wired-OR glitch
problem is deterministically solved by using an asym-
metrical inertial delay line, or low pass filter [Gust83].
The exacted penalty on the Futurebus is that broad-
cast handshaking is 25 nanoseconds slower than single
slave transactions. The reward is that broadcast
operations are guaranteed to work, no mat ter how new
or old, fast or slow, a particular board may be.

As shown in Figure 2, the current bus master first
issues an address, then signals the event by asserting
the address strobe, AS*. All other bus modules assert
AK* immediately (address acknowledge), but each
releases AI* (address acknowledge inverse) and allows
it to rise only after it is finished with the address and
is ready to go on. Only after AI* has risen may the
bus master remove the address from the bus. See
[Borr84], [P896] for further details.

2.3. Bus Overv iew
To summarize some of the more significant

features of the electrical protocols of the futurebus, we
note the following: (a) Every unit on the bus may
examine the address on every address cycle. (b) Only
those units participating need monitor data transfer
cycles, which can therefore proceed at a high rate. (c)
The fact that all units must acknowledge the address
cycle implies that any unit has t ime to signal any sort
of "exception", as when it detects a hit in its cache. (d)
The nature of the connection level handshake means
that more than two parties can participate in a
transfer, as when more than one cache updates its
copy of a line.

3. The MOESI Model a n d Class of P ro toco l s

3.1. The M O E S I States
From results in [Smit79, 82, 85b] and the discus-

sion in [Good83], it is clear that the best performance
and greatest reduction in bus traffic can be obtained

with the use of a copy-back cache. With such a
cache, data modifications are first made to the line in
the cache, and then the modifications are written to
memory only when the line is replaced. For such a
cache, it is possible to observe that each line in the
cache may be assigned to one of five states, which par-
tition pairwise and can be specified with three bits:
validity, exclusiveness, and ownership; see Figure 3.

AK*

A,* J S
AD<31-0> m

AD<31-O>"

CM<5-O>*

ST<2-O)m

Figure 2: Futurebus parallel protocol.

3.1.1. Val idi ty
Data in shared memory is either val id or inval id.

Shared memory modules will not need to distinguish
valid data from invalid data; instead, caches associ-
ated with each master will keep t rack of the invalidity
of the data that resides in shared memory. In the
absence of information to the contrary, data in shared
memory is defined to be valid (e.g. at power-on),
although here the term "valid" relates only to the con-
sistency protocol and not to the semantics of the sys-
tem. The s h a r e d m e m o r y image or s h a r e d i m a g e is

OWNERSHIP

: V A L I D I T Y

EXCLUSIVENESS

Figure 3: Three characteristics of cached data.

416

the union of all valid data corresponding to every loca-
tion of the system address space.

3.1.2. Exclusiveness
The set of all valid data residing in caches can be

classified into exclusive data and shared data.
Exclusive data is cached data that is contained in one
and only one cache. Non-exclusive data is cached data
that may be in more than one cache. The term
shared is used to describe non-exclusive data even
though the number of other cached copies is not known
and may be zero. Exclusive data must match the copy
in main memory.

3.1.3. Ownership
Valid data residing in a cache may also be charac-

terized as being or not being owned. To own data
means to assume responsibility for its accuracy or vali-
dity for the entire system. Data in main memory may
or may not be valid, but that the main memory is not
responsible for that determination. That determina-
tion is made by the cache that owns that line of data;
in particular, if main memory does not contain valid
data, the owning cache is responsible for ensuring
that: (a) main memory is correctly updated, (b)
ownership is passed to another cache, or (c) the owning
cache substitutes for main memory in transfers.

All data is said to be owned uniquely either by
one and only one cache or by main memory. There-
fore, another way to define the shared memory image
is as the set of all owned data; main memory is the
default owner.

3.1.4. Resulting State Model
The shared memory is not responsible for tracking

the state of the data it holds. All such responsibility
resides with the caches. We therefore refer to d a t a
stored in caches when referring to the state of the
data.

There are eight possible ways to apply the three
characteristics of cached data to a particular cached
data line. However, it is pointless to consider the
exclusiveness or ownership of a data line that is
known to be invalid. The five remaining states are: (1)
Exclusive owned; (2) Shareable owned; (3) Exclusive
unowned; (4) Shareable unowned; (5) Invalid. The
purpose of the owned category is to distinguish a copy
that has been modified from that in main memory.
Substituting the term modified for owned results in
the more familiar terminology: (1) Exclusive modified;
(2) Shareable modified; (3) Exclusive unmodified; (4)
Shareable unmodified; (5) Invalid. These state labels
can be abbreviated by using the salient feature of each
state: (1) Modified; (2) Owned; (3) Exclusive; (4)
Shareable; (5) Invalid.

It is useful to agree beforehand on a consistent
terminology. To that end the three above lists are to
be considered completely equivalent, with the last set
the preferred terminology. In addition, the single-letter
abbreviations M, O, E, S, and I, are also appropriate,
hence the acronym "MOESr' cache states. Figure 3
illustrates the way that validity, exclusiveness, and
ownership combine to delineate each of the five states.

I "lntervenient" I

/leD/
/'Only cached/ \ "Shareable \

/ copy" / . D a t a \ data" \

i / owner"- s

O
e

Figure 4: MOES[state pairs.

We can learn something about the utility of cache
states in maintaining cache coherence by examining
the common qualities of certain state pairs. See Fig-
ure 4.

M data is also known as modified, exclusive
modified, and exclusive owned data. 0 data is owned,
shareable modified, or shareable owned data. The com-
mon characteristic of M and 0 data is that the cache
holding such data is responsible for the accuracy of
that data for the entire system. This means that if the
M or 0 data is not correctly stored in the shared
memory, the owner cache must somehow make sure
that no other module reads that incorrect data. The
term describing this responsibility is intervention. M
and O data are intervenient states.

E data is exclusive, exclusive unmodified, or
exclusive unowned data. M and E data have in com-
mon that they are the only cached copy corresponding
to a particular address range of the shared memory
image. Suppose that a cache client wishes to change
M or E data. Since it knows that no other cache holds
a copy, it needs not warn any other caches that the
data it holds is about to become invalid.

S data is also known as shareable, shareable
unmodified, or shareable unowned data. S and E data
are both unowned. This means that a cache holding S
or E data is not responsible for the integrity of
accesses to its data line by other system modules. Note
that the S state does not imply that main memory is
valid.

S and O data have the common characteristic that
they are non-exclusive copies of the data. This means
that any attempt by the cache client to locally modify
S or O data requires that a message be broadcast to
other caches notifying them of the change.

3.2. Signal Lines for Implementing MOESI Con-
sistency

To implement our consistency protocol(s), we need
six signal lines on the Futurebus backplane; three are
used by the master for the transaction to indicate his
intentions; the other three are used for other units on
the bus to assert either status or control. To imple-
ment versions of other protocols (e.g. Write-Once, IUi-

417

nois), we also need a seventh signal, BS, (busy), to
abort a transaction.

3.2.1. Cache Master Signals
We define the CA signal, when asserted, to mean

"I am a copy-back cache and at the end of this transac-
tion, I will retain a copy of the referenced data, or I
am a write-through cache and have just read this
data"; this is called the cache master signal. This
signal is important so that other units can distinguish
operations in which a cache loads data or a copy-back
cache retains data, from operations with non-caching
units and/or writes by write-through caches.

We define the IM signal, called intent to modi fy
to mean "in this transaction I will modify the refer-
enced data." This is necessary so that other units can
either discard or update their copies of the data.

Finally, we define the BC (broadcast) signal to
mean "if I do modify the data, I will place the
modifications on the bus so that you and/or the
memory can update itself." If IM is asserted and BC is
not, then units holding the data must discard it; the
data cannot be updated. Broadcast transactions are
generally slower than non-broadcast, due to wired.or
glitches (see section 2.2).

3.2.2. Response Signals
The Cache Hit (CH) line is generally used by

units with caches to respond during the address cycle
to say: "I have a copy of the referenced data, which I
will retain at the end of this transaction." (In a few
cases, CH is not asserted by one specific cache in the
transaction, so that it can listen and see if CH is
asserted by any other cache.) This response is neces-
sary so that the cache performing the transaction
and/or owning caches can determine which element of
the paired (S,E) and (O,M) states they should enter.
When the value of CH doesn't affect anything, i.e.
when no other cache would be listening, it is shown as
a "don't care" (CH?) in Table 2.

In the event that another cache in the system
(other than that of the bus master) is the owner of a
data line, it is necessary to use the DI, or Data Inter-
vent ion signal, which indicates that the unit asserting
this line is the owner of the data, and will preempt a
response from memory. I.e. on a read, it will supply
the data, and on a write, it will capture the informa-
tion and update itself.

The SL line (select) is used on a broadcast
transfer by a slave cache that wishes to connect on a
transfer and update its own copy of a line. Memory
also will assert this line when it participates in a tran-
saction.

Finally, the BS (busy) line is needed when cer-
tain protocols (e.g. Write-Once, Illinois) are to be
implemented on Futurebus. This is because Futurebus
currently has no mechanism by which a transfer f ro~
one cache to another can also update main memory .
BS is used to abort a transaction and update memory
before that transaction can resume.

*An extension to the Futurobus protocol to permit main memory to be updated on
a transfer is under discusalon.

MOESI Protocol:

Event: I Read
note: I
Prom
State

M M

Result State and Bus Signals

Local
Write Pass

2 3 Fl4ush

I,BC?,W M E,CA,BC?,W

CH:0/M, CH:S/E
0 0 CA,IM,BC,W CA,BC?,W I,BC?,W

or
M,CA,IM

E E M -- I

s I s

CH:S/E,
CA,R

or
S,CA,R*

Cm0/M
CA,IM,BC,W

or
M,CA,IM

or
S,IM,BC,W*

or
S,IM,W*

M,CA,IM,R
or

Read>Write
or

I, IM,BC,W*,**
or

I,IM,W*,**
or

Read>Write*

or
I,R**

Table I

3.3. Protocol Class Definition
Given the cache master and response signals

defined above, we can define a class of compatible
protocols supported by Futurebus. The complete
class of protocols is defined in Tables 1 and 2. (Where
a choice is shown, the first entry is preferred, as we
discuss later.) Rather than discuss every entry in
those tables, which is neither necessary nor feasible in
this limited space, we comment on the more important
features of our protocol definition. First we discuss the
behavior of a copy back cache.
1. A cache with a read miss places the data in S or E

states depending on whether anyone else has that
information in its local cache (via CH).

2. A unit writing to data in the O or S states must
either broadcast the changes (CA, IM, BC)
(remaining in or going to O or going to M, depend-
ing on CH), or simply invalidate the copies in the
other caches (CA, IM, not BC), and go to the M
state.

MC~I Protocol: Result State and Bus Slam,Is

l Bus Event '
Event: CA,~YM,~BC CA,IM,'BC ~CA,~IM,~BC CA IM,BCI~CA,IM,~BCI~CA,IM,BC!
note: 5 6 7 8 9 10

From

StMe at O,CH,DI I,DI M,DI, CH? -- M,DI, CH?

o o,~,Di ~,DI ~o/M, s,~,~o~ i o,D1,~

E S,CH I E,CH? -- I

S S,CH I S,CH S,SL, CH I
or I

I I I I I I

Table 2

M, ~.~, CH? I

I
0, SI,, C~ I

J

or I

S,SL, CH i
or I I

418

3. A unit generating a write miss may either request
a copy and invalidate other copies simultaneously
(CA, IM, Read), or use two transactions to read
the line (into state S or E) and then modify it
(entering O or M).

4, A cache in an intervenient state (O or M), when it
sees a read miss (not IM, not BC, columns 5, 7),
must supply the data. When it sees a write by a
non-caching master (not CA,IM, not BC, col. 9), it
must capture the write. When it sees a broadcast
write, by a caching master, (CA, IM, BC, col. 8), it
must relinquish ownership and either update
itself or invalidate itself; on a broadcast write
from a non-copyback unit (col. 10), it must update
itself. When it sees a write miss (CA, IM, not BC,
col. 6), it must supply the data, and then invali-
date itself.

5. A cache in a non-intervenient state (S or E) goes
to state S on a read (cols. 5, 7) and raises CH,
except when the read is by a non-caching master
(col. 7), in which case if in state E, it remains
there. On a non-broadcast write (cols. 6, 9), it
must invalidate its copy. For a broadcast write
(cols. 8, 10), it may either update itself or invali-
date its own copy.
Our protocol also works for write through

caches. A write through cache has two states: V
(valid) and I (invalid); a write through cache is not
capable of ownership. We equate the V state of the
write through cache with the S state of the copy-back
cache, and show the protocol definition in Table 1 as
well (designated by "*"); we comment on some of the
significant features here.
6. A write through cache on a write simply writes

through, with or without broadcast. If the cache
is to do write allocate, it does a read first, then a
write.

7. A write through cache on a read miss does a nor-
mal read, asserting CA.

8. On a read on the bus (cols 5, 7), the cache remains
valid. On a broadcast write (cols. 8, 10), it can
either become invalid or update itself. On a non-
broadcast write (cols. 6, 9), it must become
invalid, since it is not capable of intervention or
ownership.
Our protocol also applies to processors without

caches, as is also shown in Table 1 (marked with "**").
Such a processor writes with or without broadcast (as
with a write through cache), and reads without assert-
ing CA. A non-caching unit never responds to bus
events.

We note some additional alternatives to those
shown in Tables 1 and 2. In particular:
9. Any transition of the form CH:O/M can be

replaced by O. State M can change at any time to
state O, although with a loss of protocol efficiency.

10. Any transition of the form CH:S/E can be replaced
by S. State E can change at any time to state S,
although with a loss of protocol efficiency.

11. Any transition to or remaining in E or S on a bus
event can be changed to I, not CH.

12. The state E may be replaced by the state M,
although with a loss of efficiency, due to the now
required write-back.

3.4. Protocol Choice, Compatibility, and Variation
We've defined above and in Tables 1 and 2, a class

of protocols, such that for many states and events,
there is a choice of action. There are some observa-
tions we can make about that situation. First, we note
that different boards on the bus can implement
different protocols, provided that each comes from this
class. Second, we note that that each bus user can
change the protocol it is using, either statically,
dynamically, or can use protocols selectively. For
example, a given cache can make some pages copy
back, some write through, and some uncacheable (as
with the Fairchild CLIPPER [Cho86]). Further, as
noted, caches of different types (write through, copy
back, etc.) can coexist on the bus simultaneously. As
an extreme case, it would introduce no errors if a
board were to select an action at each instant from the
available set using a random number generator or a
selection algorithm such as round robin.

4. Protocol Compatibility and Other Protocols
As noted in the introduction, a number of other

bus based cache consistency protocols have been previ-
ously defined. The question arises as to whether any
(or all) of these preexisting protocols can: (a) be imple-
mented on the Futurebus, and (b) whether there exists
an implementation which falls within the class of pro-
tocols defined here.

In this section, we look at a number of the earlier
protocols (Berkeley, Illinois, Dragon, Firefly, Write-
Once) and address those questions. In each case, we
do not discuss the protocol definition in any detail, but
instead refer the reader to either the original paper or
to a recent comparison lArch85]. Our definitions of
the protocols and their mapping into our scheme are
presented only to the extent necessary to convey the
important points. In particular, we show the definition
of each algorithm only to the extent necessary to
define the algorithm relative to the Futurebus facili-
ties and to its interaction with other caches using the
same protocol. If a given board were to use one of
these algorithms on a Futurebus system in which
other boards were using other protocols, it would be
necessary to define the behavior of the board with
respect to bus events not generated by its own algo-
rithm. We do not do that here.

4.1. Berkeley Protocol
The "Berkeley Protocol" is so called because it was

defined by a group at UC Berkeley [Katz85] as the
consistency scheme to be used for the SPUR multipro-
cessor RISC computer being constructed there. The
states in that protocol map into M, O, S and I; there is
no state that corresponds to E. The facilities of
Futurebus are sufficient to implement the Berkeley
Protocol, and a state diagram for the implementation
appears in Table 3. The only difference between Table
3 and the protocol as defined in [Katz85] is that in
Table 3 the CH signal is generated for compatibility

419

with our mechanism; the CH signal is not used in
[Katz85].

Berkeley Protocol: Result State and Bus Signals

Event: ~Lo al. -External
Write I CA,'IM,~BC i CA,~,~BC

note: I 1 2 I 5 t
Prom l I I
State I I I

. I M M I o,cH,Di l i , o i

o ,I o M.CA,~ I O.C~.DI I I . D , , ,

s i s i s,o i

Table 3

4.2. Dragon Protocol
The "Dragon Protocol" is that used in the Dragon

Processor at Xerox PARC, and is defined in [McCr84]
and [Arch85]; we rely heavily on the latter due to the
vagueness of the definition in the first paper•

The Dragon protocol is implementable almost
• exactly using the Futurebus features. The one excep-
tion is that when a broadcast write is done on the
Futurebus, it affects all caches holding the line and
also main memory. Such a write for the Dragon proto-
col does not update main memory; main memory is
updated only on a replacement. Extra memory
updates, however, cause no incompatibility. An imple-
mentation of the Dragon protocol using the Futurebus
features appears in Table 4.

Dragon Protocol: Result State and Bus Signals

External
I----------~ :81 CA'8~4'BC Event: ~ Read Write

note: J I 2
Prc~
State

M I M M

0 i 0 CH:0/M 0,DI,CH S,SL,CH
CA,IM,BC,W

E i E M S,CH

m

I ctt:o/M,
S I S CA,IM,BC,W S,CH S,SL,CH

,los'S/E,
I I CA,R Read>Write I I

CA,~~,~BC

O,DI,CH

Table 4

4.3. Write-Once Protocol

The "write once protocol" was defined in [Good83]
and was the first bus based consistency protocol
invented. The name comes from the fact that the first
write to a datum is broadcast in order to invalidate the
other copies.

The write-once protocol requires that on an inter-
venient action, memory be updated at the same time
that the intervenient cache supplies the data to the
active cache. This is not possible with Futurebus, so
an exact implementation is not possible. We replace
intervention with an abort (BS), followed by an
immediate write back ("push") to main memory; when

Notes on Tables
Format: result state (M, O, E, S, I), bus signals (CA,
IM, BC, BS, SL, DI, CH), action (R, W)
*Write Through Cache, **No Cache
Read>Write : two transactions; Read, followed by
Write
CA = cache master signal
IM = "intent to modify" - used on address cycle to sig-
nal a write (data modify)
BC = "broadcast" - signals intent to broadcast data
write

CH = issued by a slave or 3'rd party cache on the bus
which will retain the referenced item, CH? = don't
care. CH:O/M = I f C H t h e n Oelse M. CH: S/E = If
CH then S else E.
DI = response by slave signalling intervention
SL = response by slave or 3'rd party signalling con-
nect on write
BS = "busy" - aborts transaction
W = issue write on bus
R = issue read on bus
Any transition of the form CH:O/M can be replaced by
O
Any transition of the form CH:S/E can be replaced by
S
Any transition to E or S (on bus events) (and CH) can
be changed to I , 'CH
1: read by local processor
2: write by local processor
3: push of dirty line by local processor and keep copy
4: push dirty line and discard copy
5: read by cache master on bu~ (including WT cache)
6: read for modify by cache master (i.e. write miss by
copy back cache) or address only invalidate signal
7: read by processor without cache
8: broadcast write by cache master
9: write by processor without cache or write past WT
cache
10: broadcast write by non-cache processor or write
past WT cache
.- not a legal case. error condition

Write Once Protocol:

Local-
R~ad Event: !

• note:
Prom
State

Result State and Bus Signals

External
Write 2 Ii CA"~'~BC

I
I

M I BS;S,CA,W

CA~IM,~BC

I,DI or
~S;S,CA,W

E E M i S,CH I

S S E,CA,IM,W ,i S,CH I

M,CA,IM,R or I
I S,CA,R Read>Write I I I

Table 5

4 2 0

the tran§action is restarted, memory is up to date and
intervention is no longer required.

We show our implementation of the write-once
protocol in Table 5. We note that the definition of the
algorithm as given in [Good83] and also in [Arch85] is
somewhat ambiguous; the varying possible interpreta-
tions are reflected by two states in which two actions
are connected by "or".

4.4. Illinois Protocol
The Illinois protocol was defined in [Papa84].

There are two of ways in which Futurebus cannot
exactly implement this protocol. First, it requires that
main memory be updated at the time that a dirty
block is passed from one cache to another; we do that
function by aborting the transaction (BS), updating
memory, and allowing the transaction to restart.
Second, all caches are to respond on a match to their
local directory, and a bus priority mechanism deter-
mines which gets bus access; we cannot permit that in
our protocol. Our implementation has either an inter-
venient cache or main memory respond (which is
always a unique respondent); caches in states S and E
never respond•

It is possible to map the states of the Illinois pro-
tocol into our states, but we note that the S state has a
different meaning. The Illinois protocol defines the S
state as consistent with memory; that is not the case
for the protocol as we have defined it.

Our implementation of the Illinois protocol, as
supported by the Futurebus, is shown in Table 6.

4.5. Firefly Protocol
The "Firefly Protocol" refers to a consistency

scheme being implemented at DEC SRC; the only
definition available is provided in lArch85].

The Firefly protocol requires that when an inter-
venient cache provides data, memory be updated. We
again do that function by aborting the transaction,
updating main memory, and restarting. This also
means that their S and E states are consistent with
main memory, whereas our S state is consistent with
the owner but not necessarily with main memory•
Finally, all of their caches respond on a read (as with
the Illinois protocol), which we do not permit; we leave
it to main memory or the intervenient cache to
respond, as appropriate.

Our implementation of the Firefly protocol, as
supported by the Futurebus, is shown in Table 7.

5. Other Considera t ions for a F u t u r e b u s Con-
sistency S t a n d a r d

There are some other issues in defining a cache
consistency standard for a standard bus, other than
the protocols to be used. We note those here very
briefly, without exploring them in detail.

5.1. A S t a n d a r d Line Size
The line size (block size) is the size of the data

unit in the cache. Lines are transferred in their
entirety to a cache, where the line contents are associ-
ated with an address tag. The entire discussion above

has implicitly assumed that the line size is constant
across all caches in the system.

If the line size is not constant throughout the sys-
tem, some very difficult problems can arise. For exam-
ple, let cache A (with a line of 64 bytes) do a read.
Cache B (with a line of 32 bytes) has part of that line

Illinois Protocol:

i

• Event: Read L°cal
note: I
Prom
State

M M M

E E M

S S M,CA, IM

C~.:S/E,
I CA,R M,CA, IM,R

Result State and Bus Signals

External
Write
2

CA,~IM,'BC CA,~,~BC
5

BS;S,CA,W ~S;S,CA,W

S,CH I

S,CH I

I I

Table 6

resident in state M. Cache B is therefore required to
supply part of the line requested by cache A, but
where is the rest of the line to come from?

The opinion of the P896.2 working group is that
the difficulties of managing a non-constant line size
are such as to require that a given system standardize
on a given line size, and that further, it is the respon-
sibility of the working group to recommend a size. A
recommended line size has not yet been selected, but
we refer the reader to [Smit85c] for a discussion of the
data and methodology to be used for such a recommen-
dation.

Firefl

Event:
• note:
Prom
State

Protocol: Result State and Bus Signals

Local External
Relad Write2 CA'8~'BC CA, ~~, ~BC

BS;E,CA,W M M M

E E M S,CH --

OH:S/E,
S S CA,IM,BC,W S,CH B,SL, CH

0H:S/E,
I CA,R Read>Write I I

Table 7

There is also the problem of supporting sector
caches [Hill84]. The implications of that design have
not been fully explored at this time, and it is undeter-
mined whether the address sector size, the transfer
subsector size or both must be standardized. (The
latter almost certainly needs to be fixed, for the same
reasons noted above• Consistency status also appears
to be necessarily associated with the transfer subsec-
tor, rather than the address sector•)

It is also worth noting the problem of "line
crossers"; i.e• a processor operation which makes a
reference which overlaps 2 or more lines. It should be
clear that the processor&ache interface must be able to
treat this as a separate transaction for each line

421

involved, and to generate bus transactions on that
basis.

5.2. Performance Issues and Enhancements
As noted earlier in this paper, the preferred proto-

col choice (from Tables 1,2) was always the first entry
in a given box. That preference is based on results
from [Arch85], which presents the results of simula-
tions which are based only on a model of program
behavior [Dubo82]. That work needs to be supple-
mented with experiments based on real multiproeessor
shared memory address traces.

One of the more interesting observations from
[Arch85] was that it was desirable to broadcast writes
to other caches rather than to invalidate them, if those
other caches have the line in them. A refinement on
that is to have a cache examine the replacement status
of a line written by another cache. If the line is quite
recently used (e.g. most recently used element of two
element set), it can be updated, and if it is nearing
t ime for replacement (e.g. least recently used element
of two element set), it can be discarded. (See [Puza83]
for a related idea.)

We also note that the preferred protocol is sensi-
tive to the implementation of the bus, the memory and
the caches. Changes in their relative performance can
change the cost of various bus operations (e.g. memory
read, intervenient cache read, etc.) and change the pre-
ferred actions.

6. Conclusions and Summary
In this paper, we have discussed the problem of

defining a cache consistency protocol for a standard
bus, in particular the IEEE Futurebus. We have
defined a class of compatible protocols, such that each
cache in the system may implement one of the proto-
cols in this class and still maintain consistency with
other caches implementing different (compatible) pro-
tocols. This permits the coexistence of copy back
caches, write through caches and non-caching boards
in the same system.

We have shown that a number of previously pub-
lished protocols (Berkeley, Illinois, Dragon, Firefly,
Write Once) can be supported (either as defined or
with minor modifications) on the Futurebus, and we
have defined them in that context.

Finally, we have very briefly discussed some other
issues relating to a standard caching mechanism,
including that of a standard line size and the support
of sector caches.

There are a number of aspects of this work that
must be continued. All implications of caching stan-
dardization must be fully explored, including line size,
sector caches, and how one might implement a system
with multiple buses and still maintain consistency.
Further research is required (with better data than
[Arch85]) to determine the best performance choice (or
cost/performance choice) to be made in our class of
compatible protocols. Proper mechanisms must also be
defined for issuing commands across the bus to cause
other caches to become consistent with main memory.

Acknowledgements
The work described in this paper comes out of dis-

cussions of the P896 (Futurebus) committee and the
P896.2 (caching) working group. We want to thank
the members of those groups, particularly Paul Borrill,
J im Goodman, Mark Papamarcos and Dave Gustavson
for their contributions. Thanks also to Mark Hill and
Susan Eggers who read and commented on this paper.

Bibliography

[ANSI86] ANSI/IEEE Standard 960 - 1986 Fastbus Modu-
lar High Speed Data Acquisition and Control System
larch84] James Archibald and Jean-Loup Baer, "An
Economical Solution to the Cache Coherency Problem",
Proc. 11'th Ann. Syrup. on Comp. Arch., June, 1984, Ann
Arbor, Michigan, pp. 355-362.

lArch85] James Archibald and Jean-Loup Baer, "An
Evaluation of Cache Coherence Solutions in Sharod-Bus
Multiprocessors", Tech. Rpt. 85-10-05, October, 1985, Com-
puter Science Dept., University of Washington, Seattle,
Wash.

[Bala84] R. V. Balakrishnan, "The Proposed IEEE 896
Futurebus - A Solution to the Bus Driving Problem", IEEE
Micro, August, 1984, pp. 23-27.

[Borr84] Paul Borrill and John Theus, "An Advanced Com-
munication Protocol for the Proposed IEEE 896 Futurebus",
IEEE Micro, August, 1984, pp. 42-56.

[Borr85] Paul L. Borrill, "Microstandards Special Feature:
A Comparison of 32-Bit Buses", IEEE MICRO, December,
1985, pp. 71-79.

[Cens78] Lucien Censier and Paul Feautrier, "A New Solu-
tion to Coherence Problems in Multicache Systems",
IEEETC, C-27, 12, December, 1978, pp. 1112-1118.
[Cho86] James Cho, Alan Jay Smith and Howard Sachs,
"The Memory Architecture and Cache and Memory
Management Unit for the Fairchild CLIPPER Processor",
February, 1986, submitted for publication. (Available from
Fairchild Advanced Processor Division, 4001 Miranda Ave.,
Palo Alto, Ca., or from Alan Smith, UC Berkeley.)
[Coop83] Steve Cooper, "Multibus Continues to Evolve to
Meet the Challenges of the VLSI Revolution", Proe. NCC
1983, pp. 497-501.

[Dubo82] M. Dubois and F. Briggs, "Effects of Cache
Coherency in Multiproeessors", IEEETC C-31, 11,
November, 1982, pp. 1083-1099

[Elay85] Khaled A. EI-Ayat and Rakesh Agarwal, "The
Intel 80386 - Architecture and Implementation'", IEEE
MICRO, December, 1985, pp. 4-22.

[Emer41] Ralph Waldo Emerson, Essays: First Series, 1841,
"Self Reliance".

[Fair85] Fairchild, "CLIPPER Module Product Description",
Fairchild Camera and Instrument Corporation, October,
1985.

[Fish84] Wayne Fischer, "The VMEbus Project", Proc. IEEE.
Compcon, February, 1984, pp. 376-378.

[Fran84] Steven J. Frank, "Tightly Coupled Multiprocessor
System Speeds Memory Access Times", Electronics, Janu-
ary 12, 1984, pp. 164-169.

422

[Good83] James R. Goodman, "Using Cache Memory to
Reduce Processor-Memory Traffic", Proc. 10'th Ann. Int.
Symp. on Comp. Arch., June, 1983, Stockholm, Sweden, pp.
124-131.
[Gust84] David B. Gustavson, "Computer Buses- A
Tutorial", IEEE MICRO, August, 1984, pp. 7-22.
[Gust83] David B. Gustavson and John Theus, "Wire Or
Logic on Transmission Lines", IEEE MICRO, 3, 3, June,
1983, pp. 51-55.
[Hi1184] Mark Hill and Alan Jay Smith, "Experimental
Evaluation of On-Chip Microprocessor Cache Memories",
Proc. l l ' th Ann. Symp. on Computer Architecture, June,
1984, Ann Arbor, Michigan, pp. 158-166.
[Katz85] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Per-
kins, and R. G. Sheldon, "Implementing a Cache Con-
sistency Protocol", Proc. 12'th Ann. Int. Symp. on Comp.
Arch., June, 1985, Boston, Mass, pp. 276-283.
[Mate85] Richard Mateosian, "National's NS32332 CPU: A
Graceful Extension of the Series 32000", Profession Pro-
gram Session Record, Wescon/85, November, 1985, San
Francisco, Ca., Session 1: 32-Bit Microprocessors - Part I.
[McCr84] Edward M. McCreight, "The Dragon Computer
System: An Early Overview", June, 1984, Technical Report,
Xerox PARC.
[Moto84] Motorola Corporation, "MC68020 Technical Sum-
mary", 1984.
[Mous86] J. Moussouris, L. Crudele, D. Freitas, C. Hansen,
E. Hudson, R. March, S. Przybylski, T. Riordan, C. Rowen,
and D. Van't Hof, "A CMOS RISC Processor with
Integrated System Functions", Proc. IEEE Compcon,
March, 1986, pp. 126-132.
[P896] IEEE P896 Draft Standard, Backplane Bus
(Futurebus)
[P1014] IEEEP1014 Versatile Backplane Bus (VME Bus)
[Papa84] Mark Papamarcos and Janak Patel, "A Low-
Overhead Coherence Solution for Multiprocessors with
Private Cache Memories", Proc. l l ' th Ann. Int. Symp. on
Comp. Arch., June, 1984, Ann Arbor, Michigan, pp. 348-
354.
[Phil85] David Phillips, "The Z80000 Microprocessor", IEEE
MICRO, December, 1985, pp. 23-36.
[Puza83] T. R. Puzak, R. N. Rechtschaffen and K. So,
"Managing Targets of Multiprocessor Cross Interrogates",
IBM Tech. Disc. Bull., 25, 12, May, 1983, p. 6462.

[Rudo84] Larry Rudolph and Zary Segall, "Dynamic Decen-
tralized Cache Schemes for MIMD Parallel Architectures",
Proc. l l ' th Ann. Int. Symp. on Comp. Arch., June, 1984,
Ann Arbor, Michigan, pp. 340-347.

[Smit79] Alan Jay Smith, "Characterizing the Storage Pro-
cess and its Effect on the Update of Main Memory by
Write-Through", JACM, 26, 1, January, 1979, pp. 6-27.

[Smit82] Alan Jay Smith, "Cache Memories", Computing
Surveys, 14, 3, September, 1982, pp. 473-530.

[Smit84a] Alan Jay Smith, "CPU Cache Memories", to
appear in Handbook for Computer Designers, ed. Flynn and
Rossman.

[Smit84b] Alan Jay Smith, "Trends and Prospects in Com-
puter System Design", part of proceedings of a Seminar on
High Technology, at the Korea Institute for Industrial
Economics and Technology, Seoul, Korea, June 21-22, 1984.
Available as UC Berkeley CS Report UCB/CSD84/219.
Verbatim transcript of speech published in "Challenges to
High Technology Industries", Korea Institute for Economics
and Technology, pp. 79-152.

[Smit85a] Alan Jay Smith, "Problems, Directions and
Issues in Memory Hierarchies", Proc. 18'th Annual Hawaii
International Conference on System Sciences, January 2-4,
1985, Honolulu, Hawaii, pp. 468-476. Also available as UC
Berkeley CS Report UCB/CSD84/220.

[Smit85b] Alan Jay Smith, "Cache Evaluation and the
Impact of Workload Choice", Report UCB/CSD85/229,
March, 1985, Proc. 12'th International Symposium on Com-
puter Architecture, June 17-19, 1985, Boston, Mass, pp. 64-
75.

[Smit85c] Alan Jay Smith, "Line (Block) Size Selection in
CPU Cache Memories", June, 1985. To appear, IEEETC.
Available as UC Berkeley CS Report UCB/CSD85/239.
[Smit85d] "CPU Cache Consistency with Software Support
and Using "One Time Identifiers'"', Proc. Pacific Computer
Communication Symposium, Seoul, Republic of Korea,
October 22-24, 1985, pp. 142-150.

[Smit86] "Bibliography and Readings on CPU Cache
Memories", February, 1986, to appear, Computer Architec-
ture News.

[Tang76] C. K. Tang, "Cache System Design in the Tightly
Coupled Multiprocessor System", Proc. NCC, 1976, pp. 749-
753.

[TexaS3] Texas Instruments, "NuBus Specification", 1983,
TI-2242825-0001.

[Vern85] Mary K. Vernon and Mark A. Holliday, "Perfor-
mance Analysis of Multiprocessor Cache Consistency
Protocols Using Generalized Timed Petri Nets", Tech. Rpt.,
University of Wisconsin, Computer Science Dept., 1985. To
appear, Proc. Sigmetrics '86.

423

