iOS, Your OS, Everybody's OS: Vetting and Analyzing Network Services of iOS Applications

Zhushou Tang, Shanghai Jiao Tong University and PWNZEN InfoTech Co., LTD; Ke Tang, Shanghai Jiao Tong University; Minhui Xue, The University of Adelaide; Yuan Tian, University of Virginia; Sen Chen, Nanyang Technological University; Muhammad Ikram, Macquarie University; Tielei Wang, PWNZEN InfoTech Co., LTD; Haojin Zhu, Shanghai Jiao Tong University

Presenter: Yujun Zhang yzha725@aucklanduni.ac.nz

Background

- In April 2021, iOS has 26.99% of worldwide market share
- Network Services are used in multiple purposes with smart devices:
 - Online data storage
 - Smart device management
 - Receive command from a peripheral equipment (IoT device)
 - File delivering, voice calls, etc., (Point-to-Point Network)
 - File or media sharing, etc., (Content Delivery Network)

iOS Network Structure

- Top-down Network Services • See Figure
- Service build on top of BSD sockets
 - Both System APIs and 3rd party Libraries
 - Directly or indirectly
 - See Figure

Network service	Possible mistakes	Vulnerability impact
Resources / functionalities	(M1) Over resource / functionalities	(A1) Privacy leakage / command execution
Access control	(M2) Weak / no access control	(A2) Easily bypass / unauthorized access
Communication protocol	(M3) Bugs in the implementation	(A3) DoS / RCE
Open port	(M4) Interface misconfiguration	(A4) Attack surface exposure

Challenges

- Public repository of iOS apps is not available
- Practical tools for automatically analyzing iOS apps are not well developed
- Network service libraries (Source code) of iOS apps are not available.

In This Paper

- An efficient way to collect iOS apps
- Systematic characterization and analysis of network services of iOS apps
- Identify new vulnerabilities of iOS apps

Dynamic analysis 🛹 Static analysis 🗭 Manual confirmation

App Collection

- Collecting IDs from iTunes Searching API
 - Collected 168,951 apps in 30 days Ο
- Download Apps using a headless-downloader
 - For purchasing and downloading DRM protected Apps Ο
 - Leverages iTunes .dll flies of iTunes for Windows Ο
- Decrypting the executable using jailbroken iOS device
- Parsing the Executable using JTool
- Select Seed Apps.

iTunes App Store		
↓ Crawling		
DRM protected IPA file		
<u> </u>	→ DRM Removing	
DRM rem	DRM removed IPA file	
Parsing		
Metadata		
	Storing	

Analysis - Dynamic

- Selected 1300 Seed Apps
 - Top 20 free apps from each category
 - $\circ ~~480\, from\, China\, and\, 820\, from\, US$
- Check which app provides a network service by inspecting network interface
 - By Implement an "Add-on" on Jailbroken device
 - Redirect and parse _bind API calls
- Call stack extraction
 - Exposed and preserved by the "Add-on"

* _bind calls is used by developers to pass rich parameters to limit the access scope of network services interfaces.

Dynamic Analysis Result

Three categories of network interfaces:

- The **dynamic port** to which a socket binds is usually used for in-app communication.
- Attack target network service on **loopback interface** is not practical in iOS.
- For apps that use the LAN interface, we run static analysis on them later.

	Dynamic Port (0)	Loopback Interface (e.g., 127.0.0.1)	LAN Interface
China (480)	16 (3.33%)	14 (2.91%)	51 (11.04%)
United States (820)	42 (5.12%)	43 (5.24%)	62 (7.01%)
Total (1,300)	58 (4.46%)	57 (4.38%)	113 (8.69%)

Analysis - Static and Manual

• Static Analysis Pipeline

- "Dynamic first, static later, and manual confirmation last"
 - Dynamic analysis rapidly check for misconfigured network interface
 - Static analysis is more time consuming but fine-grained
 - Manual confirmation used to verify the identified vulnerabilities

Deeper scope - Building Signature for Network services

1,300 seed apps

Static analysis | 👄 | Manual confirmation

Vetting results

By Dynamic vetting process

- 172 unique apps, 13.2% of collected total 0 provide network services
- 65 from China and 107 form US 0

By Static and manual analysis

- 11 (9.7%) of the 113 candidate apps have 0 vulnerabilities
- Include Waze, QQBrowser, Now, Scout GPS 0 and Youku

	Dynamic Port (0)	Loopback Interface (e.g., 127.0.0.1)	LAN Interface
China (480)	16 (3.33%)	14 (2.91%)	51 (11.04%)
United States (820)	42 (5.12%)	43 (5.24%)	62 (7.01%)
Total (1,300)	58 (4.46%)	57 (4.38%)	113 (8.69%)

PATH #1

Trace

[GCDWebUploader initWithUploadDirectory:]0x7ff2c5f953a0 cal	l void
objc_msgSend(%regset* %0)(store i64 %X0_6421, i64* %X3_	ptr, align 4)
Called:	
-[GCDWebServer	
addGETHandlerForBasePath:directoryPath:indexFilename:	cacheAge:allowRangeRequests:]
[GCDWebUploader initWithUploadDirectory:]0x7ff2c5f94290 sto	re i64 %X0_6421, i64* %X3_ptr,
lign 4(store i64 %X0_6421, i64* %X3_ptr, align 4)	
[GCDWebUploader initWithUploadDirectory:]0x7ff2c5d59b58 %	X8_3778 = load i64, i64* undef,
lign 1(@100 = external global i1)	DATU #0
x7ff2c5f807e0 i64 4295171188(@100 = external global i1)	PAIH #2
oad from 0x100031C74: 103079215120	
	Trace
	-[AppDelegate application:didFin
	@objc_msgSena(%regset" %0)(
Figure: example of	Called:

static analysis result of

NOW app

ishLaunchingWithOptions:]0x7ff2c67305b0 call void store i64 %X0_7536, i64* %X3_ptr, align 4) -[GCDWebServer addGETHandlerForBasePath:directoryPath:indexFilename:cacheAge:allowRangeReguests: -[AppDelegate application:didFinishLaunchingWithOptions:]0x7ff2c6730310 store i64 %X0_7536, i64* %X3_ptr, align 4(store i64 %X0_7536, i64* %X3_ptr, align 4) -[AppDelegate application:didFinishLaunchingWithOptions:]0x7ff2c672f490 call void @NSHomeDirectory(%regset* %0)(@98 = external global i1) Called: NSHomeDirectory

Larger-Scale Analysis Result - Ecosystem of iOS

Remarkable:

- Apps in Game category are inclined to provide network services
- The Game category mainly uses CocoaHTTPServer and GCDWebServer libraries may lead to the library misuse.

Found Vulnerabilities - Seed Apps

- Connected with a IOT device with no/week access control
 - Waze, Scout GPS Link
- Served as a command server to execute command per the client's request
 - QQBrowser, Taobao4iPhone, Youku
- Served as a file server to share files between PC and iOS device
 - Now
- Served as a CDN node to share videos with other peer devices
 - Amazon Prime Video, QQSports

Found Vulnerabilities - Network Service Libraries

- Using the vulnerable Weblink library
 - \circ $\hfill WebLink\hfill series\hfill libraries\hfill such as WebLink\hfill\$
- Abusing the out-of-date vulnerable portable UPNP library
 - iMediaShare, Flipps TV, Fite TV
- Misuse of the GCDwebserver Library
 - JDRead, QQMail

Conclusions

• Remarkable

- Network service is wildly used in iOS applications.
- Vulnerabilities are wildly exist in these network services.
- Vulnerabilities: 11 in 1,300 seed apps, 92 in 168,951 apps

• Mitigation Strategies

- Developers should use loopback interface as much as possible to avoid unnecessary or misuse of LAN interface
- Stricter firewall strategies and block unknown connection attempts from same LAN network
- Less usage of misused or vulnerable third party libraries

Thank you!

Question time!