
Slide title
In CAPITALS

50 pt

Slide subtitle
32 pt

Nalin Asanka Gamagedara Arachchilage

March 30, 2021

RUNTIME PERMISSIONS
IN ANDROID 6.0

Lecture 13
COMPSCI 702

Security for Smart-Devices

Slides from Muhammad Rizwan Asghar

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

2

ANDROID 6.0

§ A version of the Android mobile operating system
officially released in October 2015

§ Named Marshmallow

§ Android 6.0 corresponds to the SDK API level 23

§ As of October 26, 2018, 21.3% (and 49.7%) of the
devices accessing Google Play run Android 6.0 (and
later versions, i.e., 7.0-8.1)

– Source: https://developer.android.com/about/dashboards/index.html

https://developer.android.com/about/dashboards/index.html

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

3

RUNTIME PERMISSIONS

§ In Android 6.0+ (API level 23+), users grant
permissions at runtime

– When the app is running
– Not when they install the app

§ Granting permissions at runtime streamlines the app
installation process

§ It also gives the user more control over the app’s
functionality

– For example, a user could choose to give a camera app
access to the camera but not to the device location

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

4

REVOKING PERMISSIONS

§ The user can revoke the permissions at any
time, by going to the app's Settings screen!

§ It provides flexibility and more control to the
user

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

5

PERMISSION PROTECTION LEVELS

§ From the user point of view, we can divide permissions into two
categories

§ Normal permissions
– Normal permissions do not directly risk the user's privacy
– If your app lists a normal permission in its manifest, the system

grants the permission automatically

§ Dangerous permissions
– Dangerous permissions can give the app access to the user's

confidential data
– If you list a dangerous permission, the user has to explicitly give

approval to your app

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

6

CHANGE IN ANDROID 6.0

§ Before API level 23, the user has to grant dangerous permissions
when they install the app

– If the user does not grant the permission, the system does not install the
app at all

§ With API level 23 (or later), the app has to list the permissions in
the manifest, and it must request each dangerous permission it
needs while the app is running

§ The user can grant or deny each permission, and the app can
continue to run with limited capabilities, even if the user denies a
permission request

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

7

CHECK FOR PERMISSIONS

§ You must check whether you have the permission every time you
perform an operation that requires that permission by calling the
checkSelfPermission() method

§ If the app has the permission, the method returns
PackageManager.PERMISSION_GRANTED, and the app can
proceed with the operation

§ If the app does not have the permission, the method returns
PERMISSION_DENIED, and the app has to explicitly ask the user
for permission

// Assume thisActivity is the current activity
int permissionCheck = ContextCompat.checkSelfPermission(thisActivity,

Manifest.permission.WRITE_CALENDAR);

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

8

EXPLAIN AND REQUEST PERMISSIONS

§ Android provides ways to request a permission

§ You might want to help the user understand why your
app needs a specific permission

§ Keep in mind that you do not want to overwhelm the
user with explanations

§ If you provide too many explanations, the user might
find the app frustrating and remove it

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

9

EXPLAINING AND ASKING PERMISSION

Image Source: androidcentral.com

http://www.androidcentral.com/run-permissions-why-change-android-60-may-make-you-repeat-yourself

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

10

EXPLAINING AND ASKING PERMISSION
if (ContextCompat.checkSelfPermission(thisActivity,

Manifest.permission.READ_CONTACTS)
!= PackageManager.PERMISSION_GRANTED) {

// Should we show an explanation?
if (ActivityCompat.shouldShowRequestPermissionRationale(thisActivity,

Manifest.permission.READ_CONTACTS)) {

// Show an expanation to the user *asynchronously* -- don't block
// this thread waiting for the user's response! After the user
// sees the explanation, try again to request the permission.

} else {

// No explanation needed, we can request the permission.

ActivityCompat.requestPermissions(thisActivity,
new String[]{Manifest.permission.READ_CONTACTS},
MY_PERMISSIONS_REQUEST_READ_CONTACTS);

// MY_PERMISSIONS_REQUEST_READ_CONTACTS is an
// app-defined int constant. The callback method gets the
// result of the request.

}
}

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

11

HANDLING REQUESTS

§ When your app requests permissions, the system
presents a dialog box to the user

§ Your app cannot configure or alter that dialog box

§ When the user responds, the system invokes
onRequestPermissionsResult()

§ Your app has to override that method to find out
whether the permission has been granted

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

12

HANDLING REQUESTS
Override
public void onRequestPermissionsResult(int requestCode,

String permissions[], int[] grantResults) {
switch (requestCode) {

case MY_PERMISSIONS_REQUEST_READ_CONTACTS: {
// If request is cancelled, the result arrays are empty.
if (grantResults.length > 0

&& grantResults[0] == PackageManager.PERMISSION_GRANTED) {

// permission was granted, yay! Do the
// contacts-related task you need to do.

} else {

// permission denied, boo! Disable the
// functionality that depends on this permission.

}
return;

}

// other 'case' lines to check for other
// permissions this app might request

}
}

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

13

MULTIPLE PERMISSIONS

Image Source: androidcentral.com

http://www.androidcentral.com/run-permissions-why-change-android-60-may-make-you-repeat-yourself

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

14

USING AN INTENT

§ In many cases, you can choose one of two ways for
your app to perform a task

§ Your app can ask for the permission to perform the
operation

§ Alternatively, the app could use an intent to have
another app perform the task

§ Example
– If you need to make a phone call and access the user's

contacts, you can do that by creating an appropriate intent

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

15

PERMISSIONS VS INTENT

§ Using permission, your app has full control over the
user experience

§ However, such broad control adds to the complexity of
your task, since you need to design an appropriate UI

§ Using intent, you do not have to design the UI for the
operation

§ The app that handles the intent provides the UI

§ However, this means you have no control over the user
experience

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

16

BEST PRACTICES

§ Consider using an intent

§ Only ask for permissions your app needs

§ Do not overwhelm the user

§ Explain why you need the permissions

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

17

PERMISSION WORKFLOW

Image Source: xamarin.com

https://blog.xamarin.com/requesting-runtime-permissions-in-android-marshmallow/

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

18

REVOKING PERMISSIONS

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

19

REVOKING PERMISSIONS OF OLD APPS

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

20

RESOURCES

§ Requesting Permissions at Run Time
http://developer.android.com/training/permissions/requesting.html

§ Permissions Best Practices
http://developer.android.com/training/permissions/best-
practices.html

http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/best-practices.html

Top right
corner for
field
customer or
partner logotypes.
See Best practice
for example.

Slide title
40 pt

Slide subtitle
24 pt

Text
24 pt

5
20 pt

21

Questions?

Thanks for your attention!

