Computer Graphics:

Recap

Part 2 — Lecture 15

=
The Camera Analogy

Model Transformations
Arranging objects in a scene

View Transformation
Positioning the camera

Projection

Choosing a lens & taking a photo Lens

Viewport Transformation
Printing a photo

=
The View Coordinate System

gluLookAt(
eyeX, eyeY, eyeZ,
lookAtX, lookAtY, lookAtZ,
upX, upY, upZ

n = Normalised(Eye — LookAt)
u = Normalised(Cross(Up, n))
v = Cross(n, u) z P

S
View Transformation

Camera is at the origin looking down negative Z axis
Could change camera position with translation T and rotation R

But instead of rotating and moving camera, transform our scene
inversely so that the camera sees what we want it to see:

In other words: we translate and rotate view coordinate system
so that it is aligned with world coordinate system

Viewing transform can be done as the last transform in My;,genview
(i.e. must be set first in program) .

- "
Orthographic Projection Perspective Projection y = What are the coordinates of P’ ?
Y y m Camera-A-P’ and Camera-B-P
‘ P are similar triangles
%; H%'| L m Ratios of similar sides are equal:
z ¥ N I
' ‘ = ?%K A Py Py . near
= = Py = Py
S— near —P: -P.
Eyepoint Near plane near
+— Near plane b
Viewing m When looking from the bottom, we get analogous calculations
volume for the x-coordinate of P’: P, Py near
] = < Py'= Px
‘ y - N ™ Perspective Spersp _ near near - PZ = Pz
“.L.0O| irection H
Far plané £ Far gane Ic_i?rglétio% Sca“ng factor —-P: 6
" JE " JE
Pseudodepth Clippin o
P pPpINg y A
m Transformed z* not linear function m Determine which lines are in the 1
of z x: depth canonical view volume (using NDC) c
,_ (far+near)z+2far.near near=1 | Y pseudodepth 9 o 4
= (far —near)z far= = Outside of the view volume is given by: Tz 5
_ ~ — _ p<-1,p>+1,p,<-1,p,>+1, G £
m This is ok because p,<-1,p,>+1 a1
z* monotonic increasing, and ear=0.5 near=1 (— clip planes) 1 I

z*=-1 for z=-near far=2 far=10
z*=+1 for z = -far ' e

= Avoid very small near near=0.1 near=1
far=2 far=50
and very large far . |
— resolution too low for points
that are further away
near=0.01 near=1

far=2 far=100

m Each line is either...
completely inside
— trivial accept
completely outside
— trivial reject
Partially in the view volume

— need to find out which part
is inside

Trivial accept for:
CB and GF

Trivial reject for:
DA

Partially visible:
AB, CD, EF and EG

B
Trivial Accept and Reject Tests

. e . y
m For each point, check if it is outside A

of left (L), right (R), bottom (B), top 1
(T, near (N) and far (F) clip plane % 5

m Create table with outcodes:
G
1
-1 e fl

1 if point is outside, 0 if inside
m Trivial reject of a line PQ:
= P and Q outside of the same
clip plane
= outcodes for same plane both 1

S
Phong lllumination Model

m Idea: calculate intensity R (and color) of visible light at a point as the
sum of ambient, diffuse and specular reflection

m Variables taken into account:
Intensities 1, 14, 1, for incident light @ @
Surface normal vector m = m _
Vector s describing the direction to the light source
Distance d to light source
Vector v describing the direction to the viewer

Phong lllumination Equation

Angle between Angle between

Specular highlight

sand m vandr - e
s for different shininess o
() me
R= PP TRAALL
+(d pd ‘ H +
Ambient + Diffuse + Specular = Phong Reflection

A 0O 0O 0 1 0 1
= (outcode P & outcode Q)!=0
. . Reflection coefficients of the surface material p,,, pgy,
m Trivial accept of a line PQ: =09 E e e o Pa: Pa: Ps
= both endpoints inside of all co0o 00000
clip planes D OOOA“11TO0O
= all outcodes 0 E 0 0 1 0 0 O
= (outcode C | outcode D)==0 F 00000 O
o R L KO KON O [0 ° Ambient + Diffuse + Specular = Phong Reflection 10
- S = JEE

Setting Up Lights

float lightPosO[] = {-1.0, 2.0, 3.0, 1.0}; // point source
glLightfv(GL_LIGHTO, GL_POSITION, lightPos0);

float lightPosl[] = {0.0, 1.0, 2.0, 0.0}; // directional
glLightfv(GL_LIGHT1, GL_POSITION, lightPosl);

glEnable(GL_LIGHTING); // enable lighting in general
glEnable(GL_LIGHTO); // enable light number 0O
glEnable(GL_LIGHT1); // enable light number 1 7

For setting the properties of lights, use one of
glLightfv(GLenum light, GLenum pname, float* params)
glLightf(GLenum light, GLenum pname, float param)

light selects a light GL_LIGHTi with 0 <i < GL_MAX_LIGHTS (8)
pname selects a property to set (e.g. GL_POSITION)
m For point sources: set position to (X, y, z, 1)

m For directional light sources: set position to (x, y, z, 0)
(x,y,2) points towards the light source 12

" JE
Using Materials

float ambient[] = {0.1, 0.1, 0.1, 03}; /7 ParsPagsPan s 1
float diffuse[] = {0.4, 0.4, 0.6, 0}; // PyrsPugsPab 5 1
float specular[] = {0.8, 0.8, 1.0, 1.0}; /7 PysPsgsPsp 51

giMaterialfv(GL_FRONT, GL_AMBIENT, ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);
glIMaterialfv(GL_FRONT, GL_SPECULAR, specular);

gIMaterial F(GL_FRONT, GL_SHININESS, 40.0);

1.
1.

// a=40 7

Set the current material, then draw primitives (they will use the material)
glMaterialfv(GLenum face, GLenum pname, float* params)
glMaterialf(GLenum face, GLenum pname, float param)

Tface selects side to use material on (GL_FRONT, GL_BACK or
GL_FRONT_AND_BACK)

pname selects a property to set (e.g. GL_AMBIENT, GL_EMISSION,
GL_AMBIENT_AND_DIFFUSE, GL_SHININESS, ...)

m Set coefficients as RGBA: A (alpha) for color blending, is usually 1 |,

" I
Shading Algorithms

Simple and fast
Phong equation only
once per face

Still fast Crisp highlights with
Phong equation at each few vertices

vertex

No Oth-order color

discontinuities

Slight mach bands, Slow

Color invariance with Phong calculation for
quadrilaterals, every Pixel
Problems with highlights

Mach Bands

14

" S
Ray Casting Algorithm

Image

define scene = ({ objects }, { lights }) ©amera
define camera (eye, u, v, n) R
for (intr = 0; r < nRows; r++) {
for (int c = 0; c < nCols; c++) {
construct ray going through (c, r)

find closest intersection of ray
with an object (smallest t)

find intersection point P
get the surface normal at P
get the color at the intersection shade
pixel(c, r) = color

8 Light Source
View Ray

' . Scene Object

LY

intersect

b}

15

"
Constructing Rays

Wanted: ray (startPoint, direction) from eye through every pixel

m Corners of the view plane in world coords: A (ttea vy)

bottomLeft = centre + (-Wu, -Hv) row 7 Hi —
bottomRight = centre + (Wu, -Hv) o W
topLeft = centre + (-Wu, Hv) “w g
topRight = centre + (Wu, Hv)
—H| T
column ¢

m Go through all pixels, with column 0 and row 0 at bottomLeft
m Ray direction d = pixelPos - eye

d=-Nnaw[-2 alusn(-2 1)
nCols nRows

16

=
Ray-Object Intersection

m Define each object as an implicit function f:
f(p) = O for every point p on the surface of the object

(if p is not on surface, then f(p) = 0)
m Examples for simple objects (“primitives”):
Sphere (center at origin, radius 1)
f(p) =x2+y?+2z2-1=|p*-1
Cylinder (around z-axis, radius 1)
f(p) =x2+y>-1

el
o

m Where aray (eye + d t) meets the object:
fleye +dt)=0
— solve for t and get intersection point eye + d t

17

N
Transformed Primitives

Problem: How to intersect with transformed primitives?
(e.g. scaled and translated unit sphere)

=)
&

Solution: intersection of ray with transformed primitive is the same
as intersection with inversely transformed ray and primitive

m [ntersect with transformed ray (eye; + d, t)
ie. eye,=Mleye and d,=Mld
m t for the intersection is the same in world and primitive space

18

World
Space

Primitive
Space Ya

N
g

"
Shadow Feelers

Problem: How do we know if a point p is in shadow of a light | ?
Solution: Check if there is something between p and |

1. Calculate (source, d) for a ray
that starts at p and goes to |
(a “shadow feeler”) AN

2. Check if there is an intersection
with any scene object
(— use intersect)

3. If there is a ray-object intersection .
between p and I then:
do not illuminate p with the light
i.e. do not add R, and Ry
Otherwise: normal illumination

Image

Camera

_View Ray

5 Light Source

Scene Object

19

S
Ray Tracing Reflections

Idea: the color of a point is influenced by the color that the ray
carries over from the previous reflection

@;@

Reflectivity: fraction of incident radiation reflected by a surface
(between 0 and 1)

Add the fraction of light reflected from q to the reflection at p:
R, =R +R +R

p ambient, p

Ray is reflected at q (blue sphere)
before being reflected at p (white box)
— ray has bluish color when it hits

the box
p

+reflectivity) R,

diffuse, p specular, p

20

M
Seeing Red, Green, Blue (cont’d)

m Example L, M, S responses for various SDF’s

=‘ =“

Blue reflecting object SDF

Sunlight SDF

tl t

Green reflecting object SDF Yellow reflecting object SDF
m Resulting L, M, and S SRF responses are independent values

m The 3 SRF response values are interpreted as hues by our brain,
e.g. red + green = , red + green + blue =

21

M
Color Coordinate Space

m Defines 3 SRFs (color matching functions) for some sensing system
m One dimension for each SRF (— tristimulus color space)
Each dimension represents a primary color P
Coordinate value = resulting SDF integral normalized to (0, 1)
m Color triple is 3D point defined by chromaticity values (c,, c;, c,)
m Example: RGB color space

Primaries: Blue,
Red, Green, Blue
with basis vectors
R =(0,0,1) Ma
G =(1,0,0)

B =(0,1,0)

Chromaticity values:
(rgb)=r(R)+g(G)+b(B)

RGB “color cube”

Red 22

S
Aliasing

A signal looks like another signal (the “alias”) after sampling
m Not a problem if the signals are still very similar
m But is a problem if the alias looks really different

(— aliasing artifacts)

m Happens particularly when sampling a high-frequency
signal with a low sample frequency

Original

Alias

23

Exam

m Multiple-choice only

m Closed book

m Question types in my part:
A few calculations (involving matrices)
Which formula is correct?
Which of the statements is false?

Given some code:
= “What needs to be changed to achieve X?”
= “What happens if you change X?”

24

