Computer Graphics:

Rasterization |

Part 2 — Lecture 12

0
Today’s Outline

m Rasterization in OpenGL
m Pixmaps and Blending
m OpenGL Display Lists

A __ I
|

: yA
kel L
Modeling & Ty : View
Scene PrlmlthGS l Transformation World Coordinates Transformation
Master Coordinates . _-—————"77- - - -
y A"
Jr.i > Z
% =
PrOJectlon lllumination
Normahzed Transformation

Device Coordinates

Vv

Clipping

, Viewport R
Transformation Device Coordinates

RASTERIZATION =
IN OPENGL II

" JE
Rasterization Stage of Rendering Pipeline

Scene geometry OpenGL “engine” HW part on GPU
components
(polygons, points, lines, The “MODELVIEW?” transformation

y normals, etc.) T — T :
S o . | Modelling R View i

8 : Transformation Transformation |
=< O commands |
D5
o > status —— Projection |, A
£ 5 Clipping Transformation Ml Soi
(@)
5O
m .
=_| GCJ > Tra\n/Isef;er:r(l):tion | IRESBAO ;@
O Qo .
c O ot \
Sc |
@) Pixmaps includes

(via gIReadPiers, gIDraWPiers, frame buffer memory
texture map set up etc)
CPU

looking at this stage

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

" JJE
Rasterization Stage

m Input: scene component geometry from viewport transformation,
vertex and normal coordinates (3D, floating point)

m Rasterization = converting floating point numbers that define
primitives into “rasters”, i.e. pixels in frame buffer memory

m Output: coordinates and colors of pixels that comprise
primitives’ shapes in the frame buffer array

viewport per fragment

- - rasterization —
transformaton c . operations @

FIGURE 10.1 The rasterization

step in the graphics pipeline.

" J
Rasterization Operations

m Point rasterization: convert (X,y,z) vertex to “disc” (filled circle)
of pixels, dependent upon glPoiIntSize

m Line rasterization: convert 2 (x,y,z) vertices to sequence of
pixels, dependent upon glLineWidth (and other functions such
as glLineStipple)

m Polygon rasterization:
convert n (X,y,z) vertices to 2D region /
of pixels, dependent upon many

functions, e.g. glPolygonMode

SONE H:%?Ssﬁ'.ec
“®® Image thanks to Wojciech Muta

" JJE
Other Rasterization Operations

m Shading: flat or smooth (Gouraud) ~ Screen? Scan line
Color interpolation along scanline Y
— can be reduced to simple additions,

€.9. redyiq (+1) = redpiye i + deltae,

m Depth buffer (z-buffer) calculations:

Compute each pixel’'s z value (as an integer)
— can be reduced to simple additions,
€.9. Zpixel +1) = Zpixeri T delta,

If computed pixel z value < current z-buffer depth value
1. Replace z-buffer value at that pixel location with computed z

2. Replace color buffer values at that pixel location with
computed color (from shading algorithm)

m Other per-pixel operations: texture map interpolation, anti-aliasing
and other blending ops, pixmap ops (text, overlay, compositing, etc.)

Screen x

PIXMAPS AND BLENDING

" JE
Pixmaps in OpenGL

m Arrays of pixels, usually used to store an image, e.g.

Pixels saved from the frame buffer
(rendering window content, “screen dump”)

Imported image, e.g. from a file
m Examples of tasks that use pixmaps:

Read all or part of an image rendered by an OpenGL program
and store it in a file

Write images onto a screen object
Write bitmap of text (font defined by 1 bltmap per character)
Write menu items, button labels, icons, etc. onto a GUI Q))
Copy a 2D “sprite” from one region of screen to another

(also for scrolling) @ @

" JE
Different Types of Pixmaps

Pixel formats: what components to store per pixel

m Color buffer values: GL_RGBA, GL_RGB, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA

Color index values: GL_COLOR__INDEX

Intensity values: GL_LUMINANCE, GL_LUMINANCE_ALPHA
Depth buffer (z-buffer) values: GL_DEPTH COMPONENT
Stencil buffer values: GL_STENCIL__INDEX

Data types: how to store each component
m 1 bit: GL_BITMAP

= 1 byte: GL_UNSIGNED BYTE, GL_BYTE

m integer: GL_UNSIGNED SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT

m float: GL FLOAT

"
Reading Pixmap & Setting Raster Position

m Reading pixels into an array:
void glReadPixels(GLiInt x, GLiInt vy,

GLsizel width, GLsizel height,
GLenum format, GLenum type, GLvoid *pixels)

X, Yy, width, height defines the region of pixels
pixels is the pointer to the array (needs to be big enough)

m Setting the current raster position:
void glRasterPos3t(GLfloat x, GLfloat y, GLfloat z)

Sets the current raster position in 4D world space (X, y, z, w)

Note: raster position is transformed by current modelview and
projection matrices

Can also set raster position directly in window coordinates:
void giIWwindowPos21(GLiInt x, GLiInt y)

" Jd
Writing & Copying a Pixmap

m \Writing pixmap from array to current raster position:
void glDrawPixels(GLsizel width, GLsizer height,

GLenum format, GLenum type,
GLvoird *pixels)

width, heirght defines size of pixel region

pixels is the pointer to array with pixmap to be drawn

m Copying pixmap from frame buffer to current raster position:
void glCopyPixels(GLint x, GLInt vy,
GLsizer width, GLsizel height,
GLenum type)

type specifies one of 3 possible buffer types that can be
copied: GL_COLOR, GL_DEPTH or GL_STENCIL

"
Automatic Operations on Pixels

Scale and bias pixel values while transferred from/to frame buffer:
voild glPixelTransferf(GLenum pname, GLfloat param)

m destination value = source value * scale + bias

m pname selects operation: GL_RED SCALE, GL_ALPHA SCALE,
GL _DEPTH_ SCALE, GL_RED BIAS, ...

m param sets scaling or bias value

Zo0om bixmans that are written/copied to frame buffer:
e LI I | r.lll\lllur/u I TGAL WA W VYV I IWWWVIE LT erllvu S\ 11T GALTTINW NUELITEWVIE .

void glPixelZoom(GLfloat xfactor, GLfloat yfactor)

m Magnifies or reduces written/copied pixmap by
replicating/ommitting pixels

m Can also be used for mirroring with negative zoom factor

S
Blending Pixel Values

m Blending in OpenGL uses read-modify-write cycle:
When new pixel A is written, it is combined with the
pixel B that is already there, resulting in pixel C

m Blending is done with C;; =a A;; PIXEL_OP b B;;

PIXEL OP may be any arithmetic or logical
function

Multiplication coefficients a and b can be set
with pixel alpha values (opacity)

m Examples:
C;="%A;+"7% B (averaging)
Cij=A- B (differencing)

Ci;=tA;+(1-1)B; (linearinterpolation,
“fade” , “dissolve”)

" JE
Choosing the Blending Coefficients

void glBlendFunc(GLenum sfactor, GLenum dfactor)
m C,,=sfactor * A PIXEL_OP dfactor *B;;

m sfactor maybe: GL ZERO, GL _ONE, GL DST COLOR,
GL_ONE_MINUS DST COLOR, GL_SRC _ALPHA,
GL_ONE_MINUS_SRC _ALPHA, GL_DST_ ALPHA,
GL_ONE_MINUS DST ALPHA GL_SRC_ALPHA SATURATE
Default: GL_ONE

m dfactor maybe: GL ZERO, GL_ONE, GL SRC COLOR,
GL_ONE_MINUS_SRC COLOR, GL_SRC _ALPHA,
GL_ONE_MINUS_SRC _ALPHA, GL_DST_ ALPHA,
GL_ONE_MINUS _DST ALPHA
Default: GL_ZERO

m Enable/disable blending with glEnable/glDisable and GL_BLEND

15

=
Choosing the Blending Function

void glBlendEquation(GLenum mode)

m Use it to choose blending functions other than addition

m mode is one of GL_FUNC_ADD, GL FUNC SUBSTRACT,
GL_FUNC REVERSE SUBSTRACT, GL MIN, GL MAX,
GL_LOGIC OP

void glLogicOp(GLenum opcode)
m Use it to select sepcific GL_LOGIC_OP blending function

GL_CLEAR 0 GL_AND A&B
GL_SET 1 GL_OR A|B
GL_COPY A GL_XOR ANB

m glEnable/glDisable using GL_COLOR _LOGIC OP

OPENGL DISPLAY LISTS

.
Immediate Mode Execution

OpenGL engine (HW and SW driver) processes commands from
scratch every time the display () function is called:

1. Function calls (e.g. glBegin/glEnd, glVertex, gINormal) must be
translated into driver and hardware commands (“assembly
language” for the GPU)

2. Commands and data values must be copied from CPU memory
into the GPU’s local memory (on graphics card)

— Efficient if commands or data change frequently (e.g. vertex
values are recomputed in each call to display())

— But with constant commands and data this is very inefficient!

" A
Retained Mode Execution

m If commands and data are constant, prepare them in advance (like a
compilation step):

Request OpenGL to construct a display list (with an integer id)

Use the same function calls (including C++ statements such as
loops, etc.) and data values

— Commands are translated into GPU code and copied with data
from CPU memory to GPU memory and stored in the GPU

m To render the display list, only one command is sent to OpenGL
(copied from CPU to GPU): glCallList(idNumber); \

Immediate mode execution
Is similar to interpreting source code

(1

Compiling a display list
and retained mode execution is like |
compiling and executing source code

" Jd
OpenGL Display Lists
1. Get range unused listlds for your display lists (first id is

returned): GLuint glGenLists(GLSsi1zel range)

2. Start list definition with call to
void gINewList(GLuint listld, GLenum mode)

(mode is either GL_COMPILE or GL_COMPILE_AND EXECUTE)

3. Follow this with all code (OpenGL calls and C++) for rendering
the objects to be included in this list

Not all commands are stored (e.g. no state queries)

May include execution of other display lists
May not call gINewLi1st
4. End list definition with call to void glEndList()

— Execute the display list with
void glCallList(Gluint listid)

=
Display Lists: Pros and Cons

Advantages of using a display list (— retained mode)
m Speed up (compared to immediate mode) can be significant
m Modular reuse of commands and data

Set state appropriately before calling display list (e.g.
transformations, colors, ...)

Call other display lists from within a display list

Disadvantages of using a display list (— immediate mode)

m |f data or commands change frequently, using a display list may
be slower (list cannot be changed, has to be compiled again)

m Display lists do not allow parameter passing (except setting of
appropriate state before calling the list)

SUMMARY

" I
Summary

1. Rasterization: converting floating point primitives into pixels
+ shading + depth testing + blending

2. Pixmap operations: read, write, copy

3. Blending with existing pixels when writing new pixels:
weighted sum, difference, min, max, logic operations, ...

4. Display lists can be used to compile a list of commands and
data for faster execution

References:
m Rasterization: Hill, Chapter 9.1
m Pixmaps and Blending: Hill, Chapter 9.2 — 9.3

m OpenGL API Reference:

http://www.cs.auckland.ac.nz/compsci372s1c/resources/manpagesOpenGL
23

S
Quiz

. What is done during the rasterization stage?
. What can we do with pixmaps?
. What is blending and how can we blend pixels

in OpenGL?

. What are display lists and why are they useful?

24

