GGGGGGGGGGGGG

Computer Graphics:

Clipping and Viewport
Transformation
Part 2 — Lecture 3

=
Today’s Outline

m Pseudodepth
m Clipping
m Viewport Transformations

=

Znear /

PSEUDODEPTH

"
Perspective Transformation

m Requirements:

x and y values must be scaled by same factor as derived in
perspective projection equations

z values must maintain depth ordering (monotonic increasing)

z values must map: -z, =2 -1 and -z, = +1, view volume -
NDC cube

m S0 we need a transformation that given a point P results in a
transformed point P’ such that
P’ and P’, meet requirement 1 and pr :(—near o, A f(pz)j
f(p,) meets requirements 2 and 3: Pz Pz
m We have already found such a transformation:
Multiply P with M .,
Convert result to ordinary coordinates (perspective division)

© 2004 Lewis Hitchner & Richard Lobb

"
Perspective Transformation (cont’d)

m Perspective division:
I:)homog = (X’ y’ Z, V\) 9 Pord = (X/W’ y/W’ Z/V\b

m Thus, for these transformed points,

near X near X near X
P*=PP= neary P* near = P Pznear = neary P* ta = P Pgar = neary
az+b —anear +b —afar +b
-2 near far
: far + near — 2 far near
m UsiIng a=- , b=
far — near far —near
Ordinary form of the Ordinary form of the z components:
X and y components: (az+b)/ (-2
ZnearX [z= ('Znealz) X (a Zneart b) / Znear — -1.0 Check this out!

ZneaY | Z= (-Zpeaf2) Y faz,+b)/z, =+1.0

© 2004 Lewis Hitchner & Richard Lobb

"
Pseudodepth

m Transformed z* not linear function of z

. pseudodepth = z*

[_ far +nearjZ+ — 2 far onear

Zk:az+b: far —near far —near 1
-7 -7
far + near) z+ 2 far onear

L

(far —near)z |

m This is OK (sort of) because
Z* meets our 2 requirements:

monotonic increasing, and
z*=-1forz=12z,, = -near

and z* = +1 for z = z;,, = -far

m But: can cause z-buffer precision problems!
(z-buffer values are usually 32 bit integers)

© 2004 Lewis Hitchner & Richard Lobb

Problems of Pseudodepth

Points closer to near plane have
highest pseudodepth resolution

Points closer to far plane have
lowest pseudodepth resolution

Never use nea =0
— division by zero

Avoid very small near

and very large far

— resolution too low for points
that are further away

X: depth
y nearl y: pseudodepth
far=2
nea=0.5 nea=1
far=2 far=10
near0.1 nearl
far=2 far=50
near0.01 nearl
far=2 far=100 ;

Scene Primitives
Master Coordinates |

17 “n}"

0*47;

Modeling

View

Transformation

Projection

Normalized

y

Device Coordinates

Transformation

Viewport

Clipping

\ 4

Transformation

< llumination

A\ 4

Transformation

VA

m‘

~

t “u

A

View Coordinates

CLIPPING

Device Coordinates

\ 4

Rasterization

Clipping

m Determine which lines are in the

canonical view volume (using NDC)
m Qutside of the view volume is given by:

<-1,p,>+1,p,<-1,p,>+1,
p,<-1,p,>+1
(- clip planes)

m Each line is either...

completely inside
- trivial accept

completely outside
- trivial reject

Partially in the view volume
- heed to find out which part
IS Inside

Trivial accept for:
CB and GF

Trivial reject for:
DA

Partially visible:
AB, CD, EF and EG

Trivial Accept and Reject Tests

m For each point, check if it is outside
of left (L), right (R), bottom (B), top
(T), near (N) and far (F) clip plane

m Create table with outcodes:
1 if point is outside, O if inside

m Trivial reject of a line PQ:
= P and Q outside of the same
clip plane
= outcodes for same plane both 1
= (outcode P & outcode Q! =0

m Trivial accept of a line PQ:
= both endpoints inside of all
clip planes
= all outcodes 0
= (outcode C | outcode D) ==0

@ MmO T >

+1

y

N\
A
C

B

Z

G
=1 |
-1 E +1

O O O O O O O

O O O O O O O

o O »r O O O O

o O ©O b O O B
O O O O O O O
o O O O o O Bk

10

" S
Nontrivial Clipping /

m |dea: find intersection point of line with
each clipping plane

m Each line can only enter and leave the

view volume once /
m For each intersection X of line PQ with
a clipping plane:

If P outside, then clip off PX
If P inside, the clip off XQ
P(tou)

m We use parametric line equation o(t =0)
p(t) = P + t(Py — Po) With 0 <=t<=1 "
= Clipping by finding t,, and t_, parameter “B(t,=1)

values for line segment in view volume o/.p(tin)
/’ﬁtout)
p(tin)

11

" JE
Liang-Barsky Clipping Algorithm
Clip a line from point p, to p, represented as p(t) = py + (P, — Po)
1. Perform trivial reject and accept tests, stop if trivial
2. Initialize t,,=0 and t =1
3. For each halfspace {x>— 1, x<+1, y>-1, y<+1, z>-1, z<+1} do
Compute t. .. Where (extended) line crosses halfspace

If entering half-space then t,, = max(t;,, t.,oss)
else 1:out = min(tout’ 1:cross)

P(tou)
StOp |f tin > tout (O) p(tin)
P
4. 1f t,, >t . then line is outside viewing volume
else py = p(ti,) and p; = p(tyy) A({'gﬁ)

O

Clipping with Homogeneous Coordinates

m OpenGL actually performs clipping before perspective division,

l.e. using homogeneous coordinates

m One reason: perspective division only necessary for vertices that

are in view volume
m Differences in clipping algorithm:

Point p is outside of view volume if

P/ pw<-1 -
Other planes:

Px<—pw =

px+ pw<0

P> 1, pt+ P, <0, p—p,>0,p+p, <0, p—p,>0
Compute p,(t), py(t), p,(t), and p,,(t)

-« —> Clipping

| Perspective

Division

Viewport

| Transformation

13

oy
e ’ @
=l . ke .
4 X ! Modeling & 1 Ay . View
Scene Primitives | | Transformation World Coordinates Transformation

Master Coordinates |

+1 VA

yA VAN
AN 4

1~ /, Z S~. i ’
® ; ﬂ .) - -
‘*4’ Ty — JURY L INY
-1 Projection L lllumination [«

Normalized Transformation View Coordinates
Device Coordinates

y

Clipping

, Viewport
Transformation Device Coordinates

» Rasterization

N
e
VIEWPORT II

TRANSFORMATIONS

14

=
Viewport Transformation

m Mapping from Normalized Device Coordinates (NDC)
to device coordinates (DC) aka viewport coordinates

m For NDC: x,y,z U (-1, +1)

m For DC: x U (vleft, vright), y U (vbottom, vtop), z U (0, maxz)

X and y are 2D window coordinates

vleft, vright, vbottom, vtop are the
boundaries of the viewport in the window

maxz depends on type used for
depth buffer values (e.g. uint32)

vtop:---

vbottom----

In OpenGL.: set viewport position and size with

glViewport(x, y, width, height);
m NDCs are multiplied with viewport matrix M

viewport

My Window

vleft

which maps NDC boundaries onto viewport boundaries

vright

Viewport Matrix M

+1 /F Y
— —>
@ X
-1 |
-1 +1
1 0
Mviewport =T S= 0 1

9 @0

_vright —vieft N vright — vieft

0

0

2

vright + vleft

2
vtop + vbottom

2
maxz
2
1

viewport

vtop------

vbottom------ |
: | X
left igh
5 vie vright
vright —vieft 0 0 0
2
0 vtop — vbottom 0 o
2
0 — 0
2
0 0

16

"
Multiple Viewports

m Problem: How to write a GL program that displays multiple views of a
scene, each one in a different viewport?

m Solution: Multiple viewports
Multiple views of a scene, e.g., architectural drawing front, side, and top views
Loop: repeat for each viewport

Set this viewport:

glViewport (X, y, width, height);

Set view projection for this viewport (might be the same for all viewports,
If so do this before loop):

glOrtho(left, right, bottom, top, zNear, zFar);

or other such as gluPerspective(...);

Set camera view position and orientation for this viewport
gluLookAt(left, right, bottom, top, zNear, zFar);
or other such as glTranslatef(...); glRotatef(...);
Draw scene
© 2004 Lewis Hitchner & Richard Lobb

" JE
Multiple Viewports Code Example

/I left: perspective I/ right: orthographic
glViewport(0, 0, 100, 100); glViewport(100, 0, 100, 100);
glMatrixMode(GL_PROJECTION); glMatrixMode(GL_PROJECTION);
glLoadldentity(); glLoadldentity();
gluPerspective(yfov, aspect, glOrtho(left, right, bottom,

zNear, zFar); top, near, far);
glMatrixMode(GL_MODELVIEW); glMatrixMode(GL_MODELVIEW);
glLoadldentity(); glLoadldentity();
// do view transformations... // do view transformations...
drawScene(); drawScene();

My Window X

=
AN
I

18

" A
Aspect Ratio of View Volume and Viewport

m Final pipeline transformation step is viewport transformation
glViewport(GLint X, GLint v,
GLsizei w dt h, GLsizel hei ght);
Default viewport is entire drawing window, (0, 0, winWidth, winHeight).

m Aspect ratio of view volume and viewport should be same

/ Viewport
Q — > |:| O with 2:1 aspect ratio
View volume Normalised view volume |:| O
with 2:1 aspect ratio 1:1 aspect ratio
in World Coords in NDC

Viewport
with 1:2 aspect ratio

m Problem: How to write a GLUT program that automatically resets
the view volume aspect ratio when window (viewport) is resized?

© 2004 Lewis Hitchner & Richard Lobb

"
Aspect Ratio: reshape callback function

Solution: in GLUT, use reshape callback to adjust viewport and view
volume aspect ratio after a window resize event

m Register reshape callback function (in main at prog. init.)
void reshape(GLsizei width, GLsizei height); // prototype
glutReshapeFunc(reshape); // callback registration

m Define reshape callback function (in main prog. module)

/I left, right, bottom, top = class member or global variables

void reshape(GLsizei width, GLsizei height) {
glViewport(0, O, width, height); // set viewport size
GLfloat aspect = (GLfloat)width /(GLfloat)height; //NOT Iint!
GLdouble center = (left + right) / 2.0;
GLdouble newHalfWidth = aspect * (top - bottom) / 2.0;
| eft = center- newHalfWidth; ri ght = center + newHalfWidth;
glMatrixMode(GL_PROJECTION); // reset proj matrix
glLoadldentity();
glOrtho(left, right, bottom, top, near, far);
drawSceneObjects(); // redraw all objects

SUMMARY

21

Summary

m Pseudodepth
Used to normalize z with matrix
For small nearand large far resolution problems
m Clipping removes lines outside of view volume
Trivial accept and reject tests using outcodes
Check t,, and t, values of parametric line equation
m Viewport Transformation: maps NDCs to DCs using M

References:
Pseudeodepth: Hill, Chapter 7.4.3, pp. 349-351
Clipping: Hill, Chapter 7.4.3, pp. 356-361
Viewport Transformation: Hill, Chapter 7.4.3, p. 361

viewport

22

" JEE
Quiz
1. Why isn't it a good idea to use a very small

number for nearor a very large number for far?

2. How Is an outcode table constructed? How Is it
used for trivial reject/accept?

3. How do we find t,, and t_ during clipping? How
does it help us to clip lines?

23

