fele¥

7. Modelling with Polygon Meshes

So far, we have dealt only with wireframe 3D models. Solid objects

can be modelled by polygons representing their surface.

7.1 Displaying a Coloured Cube

7.2 Rendering 3D objects: The Depth Buffer

7.3 Colouring 3D objects: The RGB Colour Cube
7.4 Shading 3D objects

7.5 GLUT functions (cone, sphere, teapot, ...)
7.6 Modelling using Matrix Operations

7.7 Extruded Surfaces

7.8 Parametric Surfaces

7.9 Surfaces of Revolution

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

Slide 1

g
7.1 ColourCube Example

/I A program to display a simple cube with each face a different colour.
/I Cube can be rotated with a trackball.
#include <windows.h>

#include <gl/gl.h>

#include <gl/glu.h>

#include <gl/glut.h>

#include "Trackball.h"

yTZ 3

const int windowWidth=400;
const int windowHeight=400;

1 define vertices and faces of the cube
const int numVertices=8; Z

(ele¥

aii=|

const int numFaces=6;
const int numFaceVertices=4;

const float vertices[numVertices][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,1},{1,0,1},{0,1,1},{1,1,1}};
const int faces[numFaces][numFaceVertices] ={ {0,1,5,4}, {1,3,7,5}, // Bottom, Right

{0,4,6,2}, {2,6,7,3}, // Left, Top
{4,5,7,6}, {0,2,3,1}}; // Front, Back

const float faceColours[numFaces][3] = Il (R,G,B) colours of each face

{{1,0,0},{0,1,0},{0,0,1},{1,1,0},{1,0,1},{0,1,1}}; // red, green, blue, yellow, magenta, cyan

CTrackball trackball;

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

Slide 2

= S
ColourCube Example (cont'd)

void handleMouseMotion(int x, int y) { trackball.tbMotion(x, y); }

[eley)

void handleMouseClick(int button, int state, int x, int y) {trackball.tbMouse(button, state, X, y); }

void handleKeyboardEvent(unsigned char key, int X, int y) { trackball.tbKeyboard(key); }

void display(void){
glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
glLoadldentity(); /I ... to identity.
gluLookAt(0,0,4, 0,0,0, 0,1,0); /I camera is on the z-axis
trackball.tbMatrix(); Il rotate the cube using the trackball ...
glTranslatef(-0.5f,-0.5f,-0.5f); /I ... and move it to the centre

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear colour buffer

/I and depth buffer

for (int i=0; i < numFaces; i++) {

const int* face = facesl[i];

glBegin(GL_POLYGON);

glColor3fv(faceColoursli]);

for (int vindex=0; vindex<numFaceVertices; vindex++)

glVertex3fv(vertices[face[vindex]]);

glEnd():}
glFlush ();
glutSwapBuffers();

/I the frame buffer read by the CRT controller

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

/I swap framebuffer in which image has been draw with

Slide 3

=
ColourCube Example (cont'd)

void init(void)

/I select clearing color (for gIClear)
glClearColor (1,1,1,1); /I RGB-value for white
/I enable depth buffering
glEnable(GL_DEPTH_TEST);
Il initialize view (simple orthographic projection)
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(33,1,2,8);
trackball.tbInit(GLUT_LEFT_BUTTON);

}

void reshape(int width, int height) {
/I Called at start, and whenever user resizes component
int size = min(width, height);
glViewport(0, 0, size, size);
trackball.tbReshape(width, height);

/I Largest possible square

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

[e[ey

Slide 4

= S
ColourCube Example (cont'd)

fele¥

/I create a double buffered colour window

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize(windowWidth, windowHeight);
glutinitWindowPosition(100, 100);
glutCreateWindow("Coloured Cube");
init (); Il 'initialise view
glutMouseFunc(handleMouseClick); /I Set function to handle mouse clicks
glutMotionFunc(handleMouseMotion); /I Set function to handle mouse motion
glutKeyboardFunc(handleKeyboardEvent); /I Set function to handle keyboard input

glutDisplayFunc(display); /I Set function to draw scene
glutReshapeFunc(reshape); /I Set function called if window gets resized
glutMainLoop();

return 0;

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 5

= JEE GG
Notes on the ColourCube Example

m Polyhedra are solid objects with polygonal faces
Usually represented as an array of vertices and an array of polygonal faces,
each face being an array of indices into the vertex array.

m IMPORTANT: the vertices of a face must be stored in ANTICLOCKWISE order

when looking from outside

i.e. right-handed with respect to outgoing face normal
Ordering is used by OpenGL to classify faces as front or back w.r.t. eye point.
Wrongly classified faces may be coloured wrongly (see later)

m Use double buffering for animations :
In main: glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
Indisplay: glutSwapBuffers();

= As you rotate the cube, the new image is rendered into an off-screen
buffer, then buffers are swapped.

= Without these lines, animation can look messy
© 2008 Burkhard Wuensche

http://www.cs.auckland.ac.nz/~burkhard Slide 6

= S feley |
Notes on the ColourCube Example (cont’'d)

m Enable depth testing as polygons are drawn to the screen
glEnable (GL_DEPTH TEST) ;
Only front faces are visible [see next slide]
m display method does a perspective projection with the view point
being on the z-axis (more in chapter 8 of this course)
m Before drawing scene, you must clear the frame buffer (aka colour
buffer) AND the depth buffer with:
glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT) ;
m The output primitives are polygons
Between glBegin (GL_POLYGON) and glEnd () Yyou output all the
vertices of the (convex) polygon
m Polygon is drawn with whatever the current colour is.
Note: OpenGL can't fill concave polygons
You have to break them into convex bits

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 7

T
7.2 The Depth Buffer

m When polygons overlap, we want to see only the nearest one
“Visible surface determination” aka “Hidden surface removal’
m Achieved by using a depth buffer

projection defines for each pixel of the colour buffer a depth value which
corresponds to the normalised distance of that pixel to the view point
(camera):

depthBuffer[i][i] = -Zperpecivespace O PiXel stored at colourBufferfi][j]
m As each new polygon is drawn, its depth is computed at each pixel

Its colour and depth are copied into the colourBuffer and depthBuffer only if
its depth is less than the current depth
glEnable(GL_DEPTH_TEST) turns on this feature

Depth buffer must be cleared (to value 1.0f) at the same time as colour
buffer is cleared

[e[ey

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

" JEE
The Depth Buffer (cont'd)

m Depth test performed after view transformation and perspective
projection
z=—1far

(right,top, -ner) o =
Lo = ,

z=-far e B -
(left, bottom, -near) =

" S
7.3 RGBColourCube Example

m Rather than having each face a fixed colour, we can set each
vertex to a different colour.
m If we set the (R,G,B) colour of each vertex of the unit cube to
equal its spatial coordinates, we draw the “RGB Colour Cube”
Main output loop in display becomes:

for (int i=0; i < numFaces; i++) {
const int* face = facesl[i];
gIBegin(GL_POLYGON);
for (int vindex=0; vindex<numFaceVertices; vindex++)

glColor3fv(vertices[face[vindex]]);
glVertex3fv(vertices[face[vindex]]);

}
glEnd();
}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

(ele¥

Slide 10

Z=-near
E =)
\% =
i z=1
nk/ég\\ X z——1{' B e ‘}
u z B) I
Perform depth test in these coordinates!!
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 9
" JEE GG
RGBColourCube Example (cont’'d)
m Computer screens have a fine (i
dot pattern of red, green and
blue phosphor dots green yellow

A separate electron gun acitvates

|

(0,1,0) :— 1,1,0)
T
|

each colour (gfr;) ~ it
= Hence all computer colours are ek __| CR)
generated by additive mixing of ~ (0.0.0) Baiin B/r el
red, green and blue. blue L (10.0)
= So a solid RGB cube contains all (,O’Q'l) oD
colours that can be produced on B
a monitor

But it's a subset of the space of all
VISIBLE colours

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 11

= S
RGBColourCube Example (cont'd)

m OpenGL renders polygons by breaking them into triangles

m If each triangle vertex has a colour the colours are interpolated over the
polygon: Within a triangle ABC, the colour at any

point O =0[A+ﬂB+}/C
is C,=aC,+ pBCy +yC,

[e[ey

where C,, Cg, and C. are the colours at the vertices = w
A, B and C respectively and o, B and yare the _ area(A ngc)
barycentric coordinates of p: area(A c,)
area(A pc)

A _area(A)

}/ =
B area(A xgc)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

Slide 12

"
7.4 Shading 3D Objects

Up to now we created coloured surfaces without considering light
sources. Example: A coloured cylinder

fele¥

void display(void)
{

glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
glLoadldentity(); II'... to identity.
gluLookAt(0,0,6, 0,0,0, 0,1,0); // camera is on the z-axis
trackball.tbMatrix(); Il rotate the cylinder using the trackball ...
glColor3f(1,0,0); Il cylinder is red

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); =
float X,z theta; 1 unit
g/Begin(GL_QUAD_STRIP); T
for (int segment=0; segment <= NUM_SEGMENTS; segment++){

theta=2.0f*Pi*(float) segment/(float) NUM_SEGMENTS; X

x = (float) cos(theta); I x =rcos(theta), and r = 1

z = (float) sin(theta); Iz =r sin(theta)

glVertex3f(x,-1, z);

glVertex3f(x,1,2); N=(x,0,2)
glEnd(); Note: Figure shows an example with 5 segment.

glFlush (); glutSwapBuffers();
}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 13

" JEE
A Coloured Cylinder (cont’d)

s The resulting image is very hard to interpret
since all faces have the same colour.

[dmcdie -l x|

NV light

i)

N surface
element

= In natural scenes objects are illuminated. The perceived colour of a polygon
is influenced by its material properties, its orientation with respect to the light
source and the view point, and the light's colour.

= The orientation of a surface is defined by specifying a surface normal for
each polygon (flat shading) or for each vertex (smooth shading).

= We will do more on illumination and shading later in this lecture

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

" feley]
A Flat-Shaded Cylinder

= An improved image of the scene is obtained by defining material properties &
light sources and one normal for each polygon:

All points of a polygon will have the same perceived colour, but different
polygons might have different perceived colours according the orientation
of the polygon normal with respect to the light source.

glShadeModel(GL_FLAT);

glBegin(GL_QUAD_STRIP);
for (int segment=0; segment <= NUM_SEGMENTS; segment++)
{

theta=2.0f*Pi*(float) segment/(float) NUM_SEGMENTS;
x = (float) cos(theta); // x =r cos(theta), and r =1

z = (float) sin(theta); // z =r sin(theta)

glVertex3f(x,-1, z);
glVertex3f(x,1,2);
theta=2.0f*Pi*((float) segment+0.5f)/(float) NUM_SEGMENTS;
x = (float) cos(theta);

z = (float) sin(theta); // if defining individual polygons specify
gNormal3f(x,0,z); /I one normal for each polygon

}
glEnd();

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15

= S ! [eley |
A Smooth-Shaded Cylinder

= In order implement smooth shading (Gouraud shading) define the true
surface normal for each vertex of a polygon mesh:

OpenGL computes the perceived colour at each vertex of a polygon and
then interpolates the colour (similar to slide 12).

glShadeModel(GL_SMOOQTH);

glBegin(GL_QUAD_STRIP); aloi
for (int segment=0; segment <= NUM_SEGMENTS; segment++)
{
theta=2.0f*Pi*(float) segment/(float) NUM_SEGMENTS;
x = (float) cos(theta); // x =r cos(theta), and r =1
z = (float) sin(theta); // z = r sin(theta)
gINormal3f(x,0,2); Il Usually define one normal for each vertex. Here the
Il Here the same normal is used for both
glVertex3f(x,-1, z); Il the top vertex and
glVertex3f(x,1,2); Il the bottom vertex
}
glEnd();
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 16

= JEE
Rendering Polygon Meshes

m By default only one side of a polygon (the side on
which the light source is located), is shaded.

No problem when modelling solid objects (such as
a cube) since back faces are not visible.

Double-sided shading is possible in OpenGL.
m Since back faces of solid objects are not visible (back

faces are always covered by front faces) rendering
speed can be improved by eliminating these polygons:
glCullFace (GL_BACK) ;
glEnable (GL_CULL_FACE) ;
(backfaces are identified by testing whether its
anticlockwise ordered vertices are ordered clockwise
when projected onto the screen)

© 2008 Burkhard Wuensche

http://www.cs.auckland.ac.nz/~burkhard

Slide 17

= S
7.5 GLUT Functions

m The utility libraries GLUT provides a number of
functions for rendering solid objects using polygon
meshes:
glutSolidCube (GLdouble size)

renders a solid cube centred at the origin with length size.

equivalent functions exist for drawing the corresponding
objects as wire frames, eg. glutWireCube (GLdouble
size)

glutSolidCone (GLdouble base, GLdouble

height, GLint slices, GLint stacks)
renders a solid cone oriented along the z-axis with base at
z=0, the top at z=height, and a base radius of base. The

cone is subdivided around the z-axis into slices and along the
z-axis into stacks.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

glutWireCone(1,2,8,2)

Slide 18

= S
GLUT Functions (cont’d)

m glutSolidSphere (GLdouble radius,
GLint slices, GLint stacks)
renders a solid sphere centred at the origin
with radius radius. The sphere is subdivided
around the z-axis into slices and along the z-
axis into stacks.

glutSolidTeapot (GLdouble size)

renders a solid teapot centred at the origin
with a diameter of approximately 2*size.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

e — =y
e — =
glutSolidSphere(1,6,8)

(Flat shaded))

=

Slide 19

=
GLUT Functions (cont’d)

m glutSolidTorus (GLdouble innerRadius, GLdouble
outerRadius, GLint nsides, GLint rings)

renders a solid torus (doughnut) centred at the origin
whose axis is aligned with the z-axis. The torus is
subdivided into rings segments along its circular centre
line and into nsides segments around that line.

glutSolidTetrahedron ()
glutSolidOctahedron ()
glutSolidDodecahedron ()

glutSolidIcosahedron () (Flat shadled)

A . . Platonic Solids

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

[e[ey

o
o

glutSolidTorus(0.2, 1.0, 6, 8)

Slide 20

" _ ey
7.6 Modelling using Matrix Operations

An object can be transformed using the OpenGL matrix operations
glTranslatef(GLfloat dx, GLfloat dy, GLfloat dz)
glScalef(GLfloat xFactor, GLfloat yFactor, GLfloat zFactor)
glRotatef(GLfloat anglelnDegrees, GLfloat axisX, GLfloat axisY, GLfloat axisZ)
glMultMatrixf(const GLfloat *m) /I general purpose matrix

Many real-world objects can be modelled by combining and transforming more

basic models. Example:
glutSolidTorus (0.1,1.0,24,32);
glRotatef (90,1,0,0);
glutSolidTorus (0.1,1.0,24,32);
glRotatef (90,0,1,0);
glutSolidTorus (0.1,1.0,24,32);
glutSolidSphere(0.4,32,32);

CIrTE— aloi =il

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 21

" JEE GG
Modelling using Matrix Operations (cont’d)
m Problem: matrices put onto the matrix stack apply to all subsequently drawn
objects.
m Often this is undesirable, e.g. imagine you want to draw a 4x4 matrix of spheres.

A row in x-direction can be drawn by applying after each step a transformation
in x-direction. Before drawing the next row a transformation must be applied in
order to shift one level up in y-direction and back to the beginning of the row in
x-direction.

float radius=0.2, shift=2*radius+0.05;
for (int j=0;j<4;3++){
for (int i=0;i<4;i++){
glutSolidSphere (radius, 20,20) ;
glTranslatef (shift,0,0);

}

glTranslatef (-4*shift,shift,0);

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 22

" _ _ feley |
Modelling using Matrix Operations (cont’d)

m [t is much more convenient to specify for each sphere its position, without having
to worry about how the transformations influence subsequent drawing
commands.

m This can be achieved by using glPushMatrix () and glPopMatrix ().

m In order to explain these commands we have to explain how a matrix stack
(such as GL_MODEL_VIEW) works:

After initialisation with the identity matrix the matrix stack contains one
element, ie. the identity matrix.

If an object is drawn then each point of the object (specified by

glvertex ()) is multiplied by the current top of the matrix stack.

If a transformation is applied (eg. glTranslatef ()) then the current top of
the matrix stack is multiplied on the right with the new matrix and the result
replaces the matrix at the top of the stack.

glPushMatrix () makes a copy of the top of the matrix stack and pushes it
on top of the stack. Any subsequent transformation matrices are therefore
multiplied with that copy.

The (modified) copy is removed using glPopMatrix (). The new top of the

matrix stack is the matrix on top before calling glPushMatrix ().
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 23

= JEE GG
Modelling using Matrix Operations (cont’d)

m Here is an example demonstrating how various matrix operations change the
GL_MODELVIEW matrix stack:

glTranslatef (tx,ty, tz) ; // matrix T

1. glMatrixMode (GL_MODELVIEW) ;

2. glLoadIdentity() ; // matrix I
3. gluLookAt(0,0,6, 0,0,0, 0,1,0); // matrix V
4. trackball.tbMatrix() ; // matrix B
5. glPushMatrix() ;

6.

7.

glPopMatrix () ;

The GL_MODELVIEW matrix stack

*V*B | | I*V*B*T

L0 v JrveB | [1*v*B | [I*v*B | [I*V*B |
1. 2. 3. 4. 5. 6. 7.
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

= JEE GG 8
Modelling using Matrix Operations (cont’d)

m We can now write rewrite our original program as follows:
float r=0.2, shift=2*r+0.05;
for(int j=0;j<4;j++)

for(int i=0;i<4;i++) {

98 Shacked € yleeder alol x|

glPushMatrix() ;

glTranslatef (i*shift,j*shift,0);
glutSolidSphere(r,20,20) ;

glPopMatrix() ;

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25

= S
7.7 Extruded Surfaces

m Many 3D objects can be constructed by taking a 2D object and extruding it
into a third dimension.

m The line strip defining the outline of the original 2D object becomes a quad
strip defining the surface of the extruded object.

m Example:

(ele¥

Lirl0, 86565

2 ,
A

Original 2D object Original 2D object andthe Extruded surface Add front and
same object translated into represented by the back faces

athird dimension quad strip (1,2,9,10;
1,122 ,33,... 2,389; ...)
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 26

= feley]
Extruded Surfaces (cont'd)

m The polygons representing the front and back faces can be specified “by
hand”.

m A more elegant solution is found, however, by noting that the front and the
back face are concave (ie. non-convex) polygons. GLU provides a function to
tessellate such polygons (ie. to subdivide them into triangles).

gluNewTess () returns such a polygon tessellator.

outside the scope of this lecture, but useful if you want to go into graphics
=)

m The surface normal of each polygon of the
extruded surface is given by the cross
product of each segment of the original
line strip and the extrusion direction.

n

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 27

= JEE
Extruded Surfaces (cont’d)

m Code for the extruded surface example:

[e[ey

const int numVertices=10;

const float vertices|[numVertices] [2] =

{{o,1},{0.25£,0},{0.5€,0.6£},{0.75£,0},{1,1},
{o.9£,1},{0.75£,0.4£},{0.5¢,1},{0.25£,0.4£},{0.1£,1}};

// in display ()

glBegin (GL_QUAD STRIP) ;

for (int i=0;i<=numVertices;i++) {
glVertex3f (vertices[i%10] [0]
glvertex3f (vertices [1%10] [0]
CVec3df v1(0,0,-0.4);
CVec3df v2(vertices|[(i+1)%10] [0] -vertices[i%10] [0],

vertices[(i+1)%10] [1]-vertices[i%10] [1],0);

CVec3df n=cross(vl,v2);
n.normaliseDestructive (
glNormal3fv (n.getArray (

, vertices([i%10] [1], 0.0);

0
0], vertices[i%10] [1], -0.4);

)i
V)i
}

glEnd() ;

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 28

= JEE
Extruded Surfaces (cont’d)
// front face

glBegin (GL_QUAD STRIP) ;
glNormal3£f(0,0,1.0);

(
glvertex3f (vertices[4] [0], vertices([4][1], 0.0);
glvertex3f (vertices[5] [0], vertices[5][1], 0.0);
glvVertex3f (vertices[3] [0], vertices[3][1], 0.0);
glvertex3f (vertices[6] [0], vertices[6] [1], 0.0);
glVertex3f (vertices[2] [0], vertices([2][1], 0.0);
glvVertex3f (vertices[7] [0], vertices[7][1], 0.0);
glvertex3f (vertices[1] [0], vertices[1l][1], 0.0);
glvVertex3f (vertices[8] [0], vertices([8][1], 0.0);
glvertex3f (vertices[0] [0], vertices[0] [1], 0.0);
glvVertex3f (vertices[9] [0], vertices[9][1], 0.0);
glEnd() ;
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 29

T
7.8 Parametric Surfaces

(ele¥

X(s,1)
= A parametric surface is defined as the set of points P(S,t) =| Y(S,t)
Z(s,t)

where Xx(s,t), y(s,t), and z(s,t) are functions of the parameters s and t,
which lie within the intervals [S i, Smad @Nd [tyin thaxds FESPECtively.
tcos(2rs) S
Example: P(S,t) =| tsin(2zs) | ,te[0,1],s€[0,]]
0

defines a disc with radius 1 and the z-axis as normals.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 30

" — (eey
Parametric Surfaces (cont'd)
m In order to draw the surface subdivide the parameter intervals

into equally sized steps, compute the vertex at each step,
and connect the vertices to form quadrilaterals.

t
p(st) = S
0.2sin(2rt)s

Example: ,te[0,1],s€[0,1]

(s,t) = (0,0)
(s,t)=(0,1/32)
(s,t) = (0,2/32)

(st) = (1/10,0)
(st) = (1/10,1/32)
(st) = (1/10,2/32)

For each pair of s
values draw one
quad strip by
varying t.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 31

= S
Parametric Surfaces (cont’'d)

[e[ey

int numSegmentsS=10, numSegmentsT=32;
int 1,3;
float s, t;
for (i=0;i<numSegmentsS;i++) {
glBegin (GL_QUAD STRIP) ;
for (j=0;j<=numSegmentsT; j++) {
s=(float) i/ (float) numSegmentssS;
t=(float) j/(float) numSegmentsT;
glvertex3f (t,s,0.2*sin(2*Pi*t) *s) ;
s=(float) (i+1)/(float) numSegmentsS;
glvertex3f (t,s,0.2*sin(2*Pi*t) *s) ;
}

glEnd() ;

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 32

= JEE
Parametric Surfaces (cont'd)

fele¥

+ Problem: What are the surface normals at each point?
Idea: For each point p(s,t) compute
the tangents of the surfacein sand t
direction. The surface normal
n is perpendicular to both tangents.

t
p(st)= S
0.2sin(2xt)s
1 0
%—[:: 0 ,%= 1 ,n(s,t)=aa—$><%
0.2 27 cos(2rt)s 0.2 sin(2xt)
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 33

= JEE
Parametric Surfaces (cont’'d)

int i, j, numSegmentsS=10, numSegmentsT=32;
float s,t; CVec3df vl1,v2,n;
for(i=0; i<numSegmentsS; i++) {
glBegin (GL_QUAD STRIP) ;
for (j=0; j<=numSegmentsT; j++) {
s=(float) i/ (float) numSegmentsS;
t=(float) j/(float) numSegmentsT;
vl.setVector(1,0,0.2*s*2*Pi*cos (2*Pi*t)) ;
v2.setVector (0,1,0.2*sin(2*Pi*t)) ;
n=cross (vl,v2); n.normaliseDestructive() ;
glNormal3fv(n.getArray()) ;
glvVertex3f(t,s,0.2*sin(2*Pi*t) *g) ;
s=(float) (i+1)/(float) numSegmentsS;
vl.setVector(1,0,0.2*%g*2*Pi*cos (2*Pi*t)) ;
v2.setVector(0,1,0.2*%sin (2*Pi*t)) ;
n=cross (vl,v2); n.normaliseDestructive () ;
glNormal3fv(n.getArray()) ;
glvVertex3f(t,s,0.2*sin (2*Pi*t) *s) ;}
glEnd () ; }
© 2008 Burkhard Wuensche

http://www.cs.auckland.ac.nz/~burkhard Slide 34

T
7.9 Surfaces of Revolution

[eley)
» Surfaces of Revolution are extremely common in natural scenes
(eq. pillars).
m They are formed by a rotational sweep of a profile curve around
an axis.
= Without loss of generality we can assume that the profile curve
is defined in the xz-plane and that it is rotated around the z-axis.

Example: Using a line parallel to the z-axis as a profile curve
gives a cylinder. y y

X
x

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 35

= S
Surfaces of Revolution (cont'd)

[e[ey

= The profile curve is a parametric curve with the coordinates
(x(1), 0, z(1)), t€ [tminstmax-

= If we rotate a point on this curve by an angle s around the z-axis we get the
point (x(t) cos(s), x(t) sin(s), z(t)).

= A surface of revolution is therefore a parametric surface with the coordinates

Radius of the circular profile at z=z(t).

0SS
p(st) = Sins |, te [ty Tl 5€[0,27]

z(t)
z'(t)coss
= The normal vector at a point (s,t) is n(s,t) = x(t)| z'(t)sins

=X'(t)

http://www.cs.auckland.ac.nz/~burkhard Slide 36

where Z'(t) is the derivative of z.

© 2008 Burkhard Wuensche

= JEE | GG 8
Surfaces of Revolution (cont'd)

m Example: A sphere can be defined by taking a half circle as a
profile curve.

X(t)) (cost V4
z(t)) \sint)’ 2’
X(t)coss) (costcoss
p(s,t)=| x(t)sins |=| costsins |, te —%% , se [0, 2r]
Z(t) sint

n(s,t) =p(s,t) [after normalisation]

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 37

= S
Surfaces of Revolution (cont'd)

int 1t, lg, numLatitudes=16, numLongitudes=16;
double x,y,z,r;
for (1t=0; lt<numLatitudes-1; lt++){
glBegin (GL_QUAD_STRIP) ;
for (1g=0; lg<=numLongitudes; 1lg++) {
sin(Pi*1t/ ((double) (numLatitudes-1))-Pi/2.0f);
cos (Pi*1lt/ ((double) (numLatitudes-1))-Pi/2.0f);
cos (2*Pi*lg/ (double) numLongitudes) *r;
sin(2*Pi*1lg/ (double) numLongitudes) *r;
glNormal3f (x,y, z) ;
glvertex3f (x,y,z);
z sin(Pi* (1t+1)/((double) (numLatitudes-1))-Pi/2.0f);
r cos (Pi* (1t+1)/((double) (numLatitudes-1))-Pi/2.0f);
X cos (2*Pi*1lg/ (double) numLongitudes) *r; e i
y sin(2*Pi*1lg/ (double) numLongitudes) *r;
glNormal3f (x,y,z);
glvertex3f (x,y,z);

(ele¥

MoX R N

} NOTE: Facesare defined in
glEnd () ; clockwise direction. Use
} glFrontFace (GL_CW) ;

if enabling back face culling.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 38°

